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DIRECT CURRENT ELECTRIC POTENTIAL FIELD 
ASSOCIATED WITH TWO SPHERICAL 
CONDUCTORS I N  A WHOLE-SPACE1 

D. F. ALDRIDGE and D. W .  OLDENBURG2 

ABSTRACT 
ALDRIDGE, D.F. and OLDENBURG, D.W. 1989. Direct current electric potential field associated 
with two spherical conductors in a whole-space. Geophysical Prospecting 37, 31 1-330. 

Bispherical coordinates are used to derive an exact mathematical solution for the poten- 
tial field generated by direct current electric conduction in an earth model consisting of two 
spherical inclusions in a uniform whole-space. The solution takes the form of a spherical 
harmonic expansion in bispherical coordinates; coefficients in the expansion are obtained by 
solving sets of linear equations. Rapid forward modelling of numerous interesting situations 
in d.c. resistivity prospecting is facilitated by the generality and computational efficiency 
inherent to this new solution. For example, the accuracy of image (or superposition) methods 
for calculating potential solutions can be quantified. Similarly, the ability of d.c. conduction 
methods to resolve two distinct bounded bodies in three-dimensional space can be examined 
by repeatedly calculating the secondary potential or apparent resistivity response of an earth 
model as a selected parameter is varied. Synthetic mise i la masse, crosshole, or area1 poten- 
tial data sets can be generated for subsequent use in inversion studies. Improvements in 
solution technique derived here also apply to a simpler model consisting of a single sphere 
buried in a half-space. 

INTRODUCTION 
Classical electric potential solutions are useful in geophysical prospecting for several 
reasons. They provide a means for making order of magnitude estimates of the 
influence of various geometrical and material parameters on the size, shape, extent 
and polarity of a measured anomaly. With a closed form mathematical solution, 
such tests can be conducted rapidly, accurately and cheaply. Furthermore, they can 

Received February 1988, revision accepted July 1988. 

Mall, Vancouver, B.C., Canada V6T 1W5. 
’ University of British Columbia, Department of Geophysics and Astronomy, 129-2219 Main 

311 



312 D. F. ALDRIDGE AND D. W.  OLDENBURG 

serve as analytical controls for programs that calculate potential solutions by 
numerical techniques. This is of particular importance for monitoring the accuracy 
and stability of a computational algorithm. Finally, they are valuable as educational 
tools. 

In this paper we extend the limited repertoire of classical potential solutions to 
include a model consisting of two spherical bodies of finite conductivity embedded 
within a uniform whole-space. With this solution, we are able to address an impor- 
tant and practical question concerning d.c. resistivity prospecting methods : what is 
the resolving power of the technique? Or, in terms of our assumed earth model, 
under what conditions (such as separation, sizes, resistivity contrast, electrode 
geometry) can the presence of two separate and distinct mineral bodies be inferred 
from a measured potential anomaly? Unlike prospecting methods based on wave 
propagation, where the wavelength of the incident radiation provides an intrinsic 
length scale with which to quantify resolving power, the resolution capabilities of 
static (i.e. zero frequency) potential methods can only be assessed via modelling 
studies. With an analytical solution to a full 3D problem, these studies can be con- 
ducted at a fraction of the cost associated with numerical techniques. Questions 
concerning the accuracy of the analytical approach still arise, but they are usually of 
minor importance compared with the theoretical and computational approx- 
imations inherent to most numerical modelling schemes. 

Figure 1 depicts the earth model used in this investigation and defines the co- 
ordinate frame of reference. All three media are considered electrically linear, homo- 
geneous and isotropic. A point source of d.c. electric current is located at S with 
coordinates (x,, y,, 2,) and emits conventional current I .  The problem is to calculate 
the potential (relative to infinity) at the field point P with coordinates (x, y, z). Once 
this solution is obtained, the potential difference measured by a more complicated 
voltage/current electrode arrangement can be constructed by superposition 
principles. 

The electric potential satisfies Laplace’s equation VzV = 0 everywhere except at 
S. A bispherical coordinate description is adopted because : (1) Laplace’s equation is 
separable in these coordinates (after factoring out a modulating function - see (8)), 
and (2) the physical surfaces of the assumed earth model are coincident with level 
surfaces of this coordinate frame. Appendix A gives the transformations between 
rectangular coordinates (x, y, z) and bispherical coordinates (,U, q, 4). 

Several investigators have used bispherical coordinates to study the potential 
field associated with a single spherical body buried in a half-space and subject to d.c. 
current flow from a nearby point electrode (Lipskaya 1949; Van Nostrand 1953; 
Large 1971; Merkel and Alexander 1971; Snyder and Merkel 1973). The mathemati- 
cal technique we employ to analyse the ‘ two spheres in a whole-space’ problem is a 
straightforward extension of that described by Large (1971). However, our reform- 
ulation of the mathematics yields a set of equations that possesses significant com- 
putational advantages over those previously published. The improvement manifests 
itself practically when modelling potential surveys where the position of the current 
source changes frequently. Basically, the set of matrices that needs to be inverted to 
obtain the potential solution can be made independent of the current source coordi- 
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FIG. 1. Earth model and rectangular coordinate reference system. a,, a3 are the sphere radii; 
pz , p3 the sphere resistivities; d the sphere centre separation; and p1 the whole-space resis- 
tivity. Source point S and field point P may be located anywhere (including within the 
spheres). 

nates (ps, qs , &). Hence, only one set of matrix inversions per earth model needs to 
be performed. 

The following sections give the mathematical derivation for the more compli- 
cated two-sphere situation in detail. It is evident that the improvement in the solu- 
tion technique can also be applied to the simpler one-sphere problem. We merely 
state the relevant equations for this case, leaving the derivation for the interested 
reader. The final equations for potential given here (for both earth models) are com- 
pletely general; the current electrode position (ps , qs , +s) and the field point position 
(p, q, 4) are not artificially restricted in any way. Previous studies have incorporated 
various limitations into the final results: the source location has been restricted to 
the surface of the half-space (,us = 0), the x axis (4, = 0), or directly over the buried 
sphere centre (q, = II); the voltage receiver position has often been limited to the 
half-space surface also. Obviously, more general equations are necessary to model 
surface-to-surface, surface-to-borehole, borehole-to-surface and borehole-to-bore- 
hole potential surveys. Our results offer an improvement in this respect. 

THEORETICAL DEVELOPMENT 
The potentials in the unbounded medium and within the two spherical bodies are 
designated V,, V, (for z > 0), and V, (for z < 0), respectively. We adopt the usual 
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procedure of separating each potential into a reference (or primary) potential and a 
perturbation (or secondary) potential. An appropriate reference potential for our 
problem is that due to a point source of d.c. electric current located in a homo- 
geneous and isotropic whole-space. Hence 

v, = v w  + Vl,, 

v2 = v w  + v,,, 
v3 = v w  + v,,, 

(1) 

(2) 

(3) 
where the wholespace potential Vw is given by 

P S I  v =-. 
4nR (4) 

p s  is the resistivity of the material at the source position and R is the distance 
between source and observation points. 

The secondary potentials of (1H3) are perturbations on a background potential 
due to the presence of the two spherical bodies. Since the whole-space potential is a 
solution of Laplace's equation, application of the Laplacian operator to (1H3) 
demonstrates that these secondary potentials also satisfy Laplace's equation. Hence, 
each may be represented as spherical hermonic expansion in bispherical coordinates 
(Grant and West 1965, p. 423; Wyld 1976, chapter 3): 

m + I  

Vls(p, q, #J) = F [Alme-"+1~2)P + B lm e + ( I +  1/2)P] Y;"(q, 4), (5 )  
1=0 m =  - 1  

Y;"(q, 4) is the spherical harmonic of degree 1 and order m. The spherical harmonics 
constitute an orthonormal set of basis functions for expansion of an arbitrary func- 
tion in 2D angular coordinates. The precise definition of the spherical harmonics is 
stated in Appendix B along with some of their properties that are used in the sequel. 
Note that a single exponential term of appropriate sign is included in (6) and (7) in 
order that the potentials remain bounded as p approaches &CO. Finally, F is a 
multiplicative factor with dimensions of electric potential that occurs repeatedly in 
the formulae. It depends on both source and field point coordinates and is given by 

F = ('"' '2; ")') Jcosh ps - cos qs Jcosh p - cos q. 

The bispherical coordinate system scale factor b is determined by the sphere radii u2 
and u3 and centre separation d, and is given in Appendix A. 

An immediate reduction in the number of unknown coefficients in the above 
equations is effected by requiring the total potential to be continuous at the two 
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spherical interfaces p2 and p3 : 

VJP2 9 ?, 6) = V2@2 9 r, 41, 
vi(P3 3 q 7 ($1 = v33(P3 3 q, 4). 

C,, = A,, + Blme++'2'+1)'2, 

(94 

(9b) 

(10a) 

(lob) 

Application of these boundary conditions yields 

D - A e-(21+1)'3 + B 
Im - Im lm * 

The remaining unknown coefficients A,, and B1, are determined by applying the 
boundary condition regarding the continuity of normal current flow at the spherical 
interfaces. Once all coefficients are known, (5H7) provide a mechanism for calcu- 
lating the secondary potentials. The spherical harmonic expansions are simply 
evaluated up to the maximum degree I consistent with series convergence and the 
finite precision of a digital computer. The calculation is valid at all locations (x, y, z) 
including the source position (x, , ys , 2,); the singular behaviour associated with the 
current source is contained entirely within the whole-space potential term. 

The final boundary conditions are mathematically expressed as 

Utilizing (1H3) these become 

Evaluation of the left-hand sides of these equations requires expressions for the 
derivatives of the secondary potentials V,,, V2, and V,,. These are obtained via 
straightforward, but tedious, differentiation of the expansions (5), (6) and (7). To 
evaluate the right-hand sides of the boundary condition equations, we require a 
spherical harmonic expansion of the whole-space potential. Equation (4) is trans- 
formed to bispherical coordinates by substitution from (A4HA6) : 

[(x - XJ2 + (y - yJ2 + ( z  - z,)2]-' /2 
P(XS9 Y,, z,)I 

.=( 4n ) 
= F { ~ [ c o s ~  (P - P,) - COS a]} - 1/2, 

where the angle 0 satisfies 
(13) 

cos 0 = cos q cos q, + sin q sin qs cos (4 - 6,). (14) 
The reciprocal square root term in (13) is now expanded as an infinite series in 
Legendre polynomials with argument cos 0. The ' generating function' theorem for 



316 D. F .  ALDRIDGE AND D. W.  OLDENBURG 

Legendre polynomials (B7) is used. Next, the spherical harmonic addition theorem 
((B4) and (B5)) is used to rewrite the Legendre polynomials in terms of spherical 
harmonics in source and field point coordinates. The result is 

This expression can be differentiated and the result substituted into the boundary 
condition equations. One must be careful to use the proper ‘form’ of (15) depending 
on whether the source is located in the upper sphere (p,> p2 > p3) ,  in the 
unbounded medium ( p 2  > ps > p3), or within the lower sphere (p2 > p 3  > ps). All of 
these situations are of interest in modelling studies. 

The procedure described by Large (1971) is now used to reduce the boundary 
conditions (12a) and (12b) to a system of linear equations in the unknown coeffi- 
cients A,, and BI,. After substitution of the expressions for the derivatives of the 
potentials and cancelling common factors, multiply by Yi(q, $)* sin q and integrate 
over the full range of q and 4. We exploit the orthonormality property of the spher- 
ical harmonics (B2) and the additional ‘ sum and integral ’ property given by (B6). 
Persisting through a major amount of algebraic reduction transforms (12a) and 
(12b) to 

Functions appearing in these equations are defined in Appendix C. Equations (16a) 
and (16b) are appropriate for a current source located in the unbounded medium of 
resistivity pl. If the source is placed within one of the spherical bodies, the right- 
hand side of one equation is altered slightly; the correct forms are also given in 
Appendix C. 

SYSTEMS OF LINEAR EQUATIONS 
Despite the formidable appearance of (16a) and (16b), they are structurally simple 
and similar. Suppose that the maximum degree spherical harmonic included in the 
solution for the secondary potentials is 1 = l,,,. Then, for fixed order rn, (16a) and 
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(16b) together represent a system of 2 (l,,, + 1 - I m I )  linear equations in the 
unknown constants A,, and Bl,. They are solved via standard techniques of linear 
algebra. However, we do not need to solve linear equations to obtain the expansion 
coefficients for negative orders. Analysis indicates that the constants A,, and B,, 
possess the same Hermitian symmetry/skew-symmetry as the spherical harmonics 
(B3) : 

where d, = 2 - do, and W( } indicates real part of { }. Similar results are easily 
derived for the secondary potentials V2, and V,, . 

The linear system of equations (16a) and (16b) is compactly represented in 
matrix notation as 

Cmx, = b,, (m = 0, 1, 2, lmaJ (18) 
where x, is a vector of unknowns given by {A,,, ..., A,,,,,,, B,,, ..., BIma,,,}. 
Dependence upon source and earth model parameters is given by 

Here we note the major benefit that accrues from t..e current formulation of the 
problem. The matrix C, depends only upon the assumed earth model (pl, p 2 ,  p 3 ,  
u2 ,  4, d). Source position dependence is contained entirely within the right-hand 
side column vector b,. Hence, the set of matrices C, needs to be generated and 
inverted only once per earth model. Each time the current source is relocated, only 
the vector b, is altered. Calculation of each new set of spherical harmonic expansion 
coefficients A,, and B,, reduces to a set of trivial matrix-vector multiplications. This 
provides an obvious computational advantage when modelling profiling, sounding, 
area1 or borehole resistivity surveys where the current electrodes change position 
often. Large's (1971) equations do not exhibit this characteristic, although they 
could probably be put into this form. 

Several special cases serve as useful checks on the lengthy algebra of the deriva- 
tion. Hence, if p1 = pz # p 3 ,  then (16a) and (16b) indicate that the B,, elements of 
the solution vector are zero. Thus, V2, = V,, , as expected. Similarly, if p1 = p3 # pz , 
then A,, = 0 and V3, = Vls. The trivial solution x, = 0 is generated by p1 = p2 = 
p 3 ;  all secondary potentials reduce to zero and V, = V2 = V3 = V,. Finally, the case 
of a current source located on the axis of symmetry x = y = 0 is examined. In this 
situation cos qs = f 1 and the spherical harmonics evaluated at the source coordi- 
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nates are equal to zero for all orders m not equal to zero. Equation (C4), together 
with the previous equations, indicates that the solution vector x, = 0 for all orders 
m # 0. Only the zero-order spherical harmonic enters into the solution for the sec- 
ondary potentials. But, as indicated in Appendix A, the zero-order spherical harmo- 
nics are independent of the azimuthal angle 4. This axial symmetry in the calculated 
potentials is entirely appropriate for the assumed location of the current source and 
arises quite naturally from the system of equations derived here. One need not 
appeal to a 'degeneracy' in the system to obtain this result (Large 1971). 

SINGLE SPHERE I N  A HALF-SPACE 
A limiting case of this general potential solution is valid for an earth model consist- 
ing of a single spherical inclusion within a uniform half-space. In terms of Fig. 1, the 
sphere centre is located on the positive z axis and the half-space z < 0 is considered 
to be a vacuum. The appropriate expressions are obtained by passing to the limit as 
a3 --f CO, d - a3 --f h where h is the centre depth of the buried sphere, and p3 + 00. 

The procedural details are omitted here. If V,, and V,, are the secondary potentials 
exterior to and interior to the buried sphere, and V3, is the secondary potential 
within the insulating half-space, then we obtain 

[' '1 (23) - - 7 . 
m I  

V3,(p, q, 4) = 2F 1 C d, e+(1+'12)PW{B,, YY(q, 4)} + 
1=0 m=O 4x R R 

The expression for the scalar b (in the factor F) obtained by taking the limit of (A9) 
agrees with that given by Large (1971). These perturbation potentials are specified 
relative to a half-space reference potential given by 

R is the usual source to receiver distance and R' is the distance from the image 
source position to the field point P. 

The expansion coefficients B,, satisfy the following set of linear equations : 

Quantities a,,, b I ,  cI, and dI ,  are defined in Appendix C. This system of equations 
also has the favourable property that dependence on the source coordinates (ps, qs , 

is contained solely within the right-hand side quantities dl ,  . 
Our first use of these equations for modelling purposes is displayed in Fig. 2. 

Each frame depicts the secondary potential measured along a line on the surface of 
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FIG. 2. Comparison of exact (-) and image (- --) methods for calculating secondary 
potential on the surface of a half-space containing a buried sphere. h is centre depth and a is 
radius of sphere. p1 = loo0 Rm; p1/p2 = 100; a = 10 m. Current source is located directly 
over sphere centre at x = 0 and emits 1 A. 

a half-space directly over a buried spherical conductor. Successive frames are 
labelled with the centre depth-to-radius ratio for the sphere. The solid curves are 
exact calculations of the potential anomaly via (21) and (25); the dashed curves are 
approximate calculations using an elementary image method. The image solution 
technique involves superposing two ' sphere in a whole-space ' solutions in their 
correct geometrical relation. Where the current source and voltage receiver are both 
located on the half-space surface, this superposition amounts to multiplying the 
whole-space calculation by four (one factor of two accounts for the difference in 
earth models and the other factor of two accounts for the different reference poten- 
tials adopted). The image method of solution is useful because it is much easier to 
implement than the exact calculation. 

Although there is nothing particularly novel about either type of curve, they do 
allow us to make a quantitative evaluation of the accuracy of the image solution 
technique. A frequently stated rule of thumb is that the image technique yields an 
accurate solution if the ratio of centre depth-to-radius exceeds 1.3 (Grant and West 
1965, p. 425; Telford et al. 1976, p. 649). Furthermore, this rule is often taken to 
apply in an approximate sense to various non-spherical bodies of geological interest. 
Since the absolute value of the potential anomaly increases dramatically as the 
sphere becomes shallower, we show the percentage difference between the two 
curves in Fig. 3a. An alternative representation of the error in terms of apparent 
resistivity (p. = 2nRVl/Z where V, is total potential) is depicted in Fig. 3b. These 
plots indicate that the accuracy of the image method of solution is influenced by the 
depth-to-radius ratio h/a and the measurement position x. Similar modelling with a 
sphere with reduced resistivity contrast demonstrates that the overall level of the 
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FIG. 3. (a) Percentage difference between the secondary potential curves of Fig. 2. Plotted 
curves are p = 100(Va/Ve - 1) where V" and V" are approximate and exact calculations. 
From top to bottom, curves are for h/a = 1.1, 1.2, 1.3, 1.5, 2, 3. (b) Percentage difference 
between apparent resistivity curves implied by the approximate and exact secondary poten- 
tials of Fig. 2. Plotted curves are p = 100(pa/pe - 1) where pp and pe are approximate and 
exact calculations. From top to bottom curves are for h/a = 3, 2, 1.5, 1.3, 1.2, 1.1. First two 
curves plot virtually on top of 0% axis. 

error curves is depressed; hence the resistivity ratio p 1 / p 2  also has an effect. We can 
easily see that these error curves will be altered in detail if the current source is 
relocated or a more complicated electrode geometry is employed. Again, modelling 
can provide a quantitative assessment of the relative error. 

An analogous procedure is used to quantify the effect of electrical interaction 
between two spherical conductors embedded in a whole-space. We are interested in 
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FIG. 4. Resolution study for two spheres of equal radii (az = a3 = 10 m) and equal 
resistivities ( p z  = p 3  = 10 slm) embedded within a whole-space (pl = loo0 am). Line of 
voltage receivers is offset h = 20 m from the z-axis. Current source (emitting 1 A) is fixed at 
centre of recording line. 

those conditions whereby simple superposition of two ‘sphere in a whole-space ’ 
solutions yields an inaccurate result at a specified tolerance level. For the special 
case of two spherical bodies of equal radii and equal resistivities, the error curves of 
Fig. 3 are reproduced exactly (assuming, of course, identical parameter values and 
electrode geometry). The curves are merely relabelled with the ratio of centre 
separation to twice the common radius d/2a. 

RESOLVING Two SPHERES 

Resolution refers to the ability of an experimental or interpretational procedure to 
distinguish the presence of separate entities in a measured composite response. The 
ability of d.c. electrical conduction methods to resolve two distinct ore bodies can be 
examined via modelling experiments based on the above equations for secondary 
potentials. We do not attempt to derive general theoretical conditions under 
which two buried spherical bodies may or may not be resolved; there are too many 
variables (sphere radii, resistivities and separation; electrode geometry). Rather, we 
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FIG. 5. Resolution study for two spheres of unequal radii (U, = 5 m, U ,  = 10 m) and unequal 
resistivities (p,  = 10 h, p3 = 75 Qm) embedded within a whole-space (p l  = loo0 h). For 
each frame, the line of voltage receivers is reoriented to maintain h,/u, = h,/u, = 2. h, and h, 
are perpendicular distances from voltage recording line to sphere centres within z > 0 and 
z < 0, respectively. Frames are labelled with the distance between sphere centres projected on 
to this recording line. Current source (emitting 1 A) is maintained at centre of recording line. 

formulate a modelling technique whereby the resolvability of two spherical bodies 
can be quantitatively evaluated for specified, but nevertheless arbitrary, earth model 
parameters and source/receiver configurations. 

Figures 4 and 5 present the results of resolution studies for the two-sphere 
problem. A single fixed current electrode (emitting 1 A) is used. The potential 
anomaly measured along a line of voltage receivers extending 100 m on either side 
of the source is plotted. These secondary potentials simulate what would be detected 
in a deep borehole in the vicinity of the two spheres when all other perturbing 
influences (including the surface) are far away. Alternatively, if we rotate our per- 
spective by 90" and scale the potentials by a factor of four, they approximate the 
anomalies that would be detected on the surface of a halfspace due to a surface 
current source. Although we cannot solve exactly for the potential field associated 
with the 'two spheres in a half-space' model, Figs 2 and 3 suggest that the image 
method of solution will yield a reasonably accurate result if the depth-to-radius 
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ratio for the spheres exceeds two. We adhere to this criterion in all of the following 
resolution studies. Since the absolute value of the potential anomaly increases sig- 
nificantly as separation distance decreases, a different voltage scale is assigned to 
each frame of the figures. The shape of the curves is thus emphasized at the expense 
of the overall amplitude of the anomaly. 

Figure 4 depicts the voltage anomaly as centre separation changes for a sym- 
metrical situation consisting of two spheres of equal radii and equal resistivities. If 
peaks or troughs in the composite response are used to infer the presence of 
separate buried bodies, then the resolution limit for this case occurs somewhere 
between 30 m and 25 m separation distance. Note that a borehole drilled on the 
central portion of the anomaly would not encounter the target; even at 25 m centre 
separation, there still exists a 5 m gap between the sphere boundaries. The theoreti- 
cal limit of resolution corresponds to a separation where the centre of the potential 
anomaly exhibits zero curvature or a “flat spot ” (Elkins and Hammer 1938). This is 
precisely the same as the so-called Ricker resolution limit (Ricker 1953; Kallweit 
and Wood 1982) for thin bed detection in seismic reflection prospecting. In prin- 
ciple, analysis of the shape and amplitude of the anomaly could resolve bodies 
separated by less than this Ricker limit. In practice, the ability to accomplish this 
will be inhibited by noise contamination and amplitude calibration problems for the 
small secondary potentials involved. 

A resolution study for a completely asymmetrical model consisting of two spher- 
ical bodies of unequal radii and unequal resistivities is shown in Fig. 5. We attempt 
to equalize the amplitude of the anomaly produced by each body by equating: (1) 
the product of sphere volume and relative conductivity 4/3na3 (a - ul), and (2) the 
centre depth-to-radius ratio h/a, for each of the two spheres. As the centre separa- 
tion distance is reduced, the line of voltage receivers must be reoriented in the xyz 
coordinate system to maintain this second condition. Hence, when viewed from this 
recording line, the earth model appears to be two spheres of different sizes at differ- 
ent (but fixed) depths. Each frame is labelled with the distance between the sphere 
centres projected on to this line. The smaller sphere produces a sharper kick on the 
composite voltage anomaly curve than the larger sphere; each curve also possesses a 
distinct asymmetry. However, at the smaller separation distances, it is doubtful that 
this asymmetry would be recognized, and its significance correctly ascertained, in a 
real prospectng context. The practical limit of resolution for this earth model prob- 
ably also lies somewhere between 30 m and 25 m separation. This still leaves a 10 m 
gap between sphere boundaries (projected on to the recording line). 

We have re-executed the above two resolution studies where the line of voltage 
receivers is positioned nearer (h/a = 1.5) and farther (h/a = 3) from the sphere 
centres. In each case a different resolution limit is inferred from the voltage anomaly 
curves. Obviously, the location of the electrodes relative to the assumed earth model 
plays a basic role in resolvability. Furthermore, our electrode configuration is delib- 
erately chosen to be simple in order to illustrate the resolution phenomenon. Here 
we do not address the important issue of which current source and voltage receiver 
geometry possesses the highest resolving power, for a given earth model. However, 
such a study could be conducted utilizing the potential solution derived above. 
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Our final examples illustrate the effect of altering the current electrode position 
within a fixed earth model. Mise la masse methods are often used to assess the 
spatial extent of a buried mineral deposit. Any lack of lateral continuity in the 
deposit should have an expression in terms of the measured potential anomaly at 
the surface. However, these gaps in mineralization may be unresolved by the mea- 
surement geometry. Figure 6 displays the mise a la masse response of two spherical 
conductors separated by a narrow 5 m gap. A point current electrode is located 
within one of the spheres 2 m below its upper boundary. The voltage recording 

( a )  Secondary Potential 
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FIG. 6. Mise d la masse modelling for two buried spherical bodies. (a) Secondary potentials. 
(b) Apparent resistivities. U ,  = u3 = 10 m; d = 25 m; p 2  = p 3  = 50 a m ;  p1 = loo0 Rm. Line 
of voltage receivers is offset h = 20 m from z-axis. Each curve refers to a specific current 
source location within the buried sphere in the half-space z > 0. Curves 1-3 are for z, = 20.5, 
12.5,4.5 m; x, = 4,8,4 m; y, = 0, respectively. 
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FIG. 7. Synthetic crosshole potential data. (a) Secondary potentials. (b) Apparent resistivities. 
a, = u3 = 10 m; d = 25 m; p z  = 100 Rm; p 3  = loo00 a m ;  p1 = loo0 Rm. Source and recei- 
ver holes are offset h = 20 m from z-axis. Curves 1-3 refer to z, = 12.5, 0, - 12.5 m, respec- 
tively. 

spread is fixed to the ground and centred over the gap. Repositioning the source 
within the sphere produces only minor changes in the secondary potential curves. 
The apparent resistivity curves ( p ,  = 4nnRVI/I where V, is total potential) show a 
much greater sensitivity to the current source location, but are not unambiguously 
interpreted in terms of a resistive zone cutting through a conductive ore deposit. 
Finally, Fig. 7 displays a synthetic crosshole potential data set. Two spherical bodies 
of equal radii are again separated by a 5 m gap and are located between the source 
and receiver holes. The secondary potential and apparent resistivity responses are 
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strongly influenced by the current electrode location. A naive interpretation of the 
apparent resistivity values would mislocate both the resistive and conductive bodies 
between the holes. 

CONCLUSION 
A theoretical solution for the electric potential field associated with two spherical 
conductors embedded within a uniform whole-space has been given. The form of the 
solution is a spherical harmonic expansion in bispherical coordinates ; coefficients in 
the expansion are obtained by solving sets of linear equations. Although the analyti- 
cal technique used for solution is an extension of a previously known method, an 
improved structure of the governing equations that allows for enhanced computa- 
tional efficiency has been demonstrated. This feature is of particular importance for 
generating large-scale synthetic data sets for use in inversion studies. The improve- 
ment in solution technique applies equally well to a simpler earth model consisting 
of a single spherical body in a half-space. When implemented on a digital computer, 
the potential solution is not exact in a mathematical sense because the spherical 
harmonic expansions must be truncated at a finite number of terms. Numerical 
testing indicates that ten terms (in the degree I )  is usually more than adequate to 
obtain series convergence with a relative precision of 0.5%. 

The final equations for potential (for each earth model) are of sufficient gener- 
ality to enable modelling of numerous interesting situations in d.c. resistivity pro- 
specting involving bounded bodies in 3D space. Two such problems have been 
briefly addressed: (1) quantification of the accuracy of image (or superposition) 
methods for solving potential problems, and (2) resolution capabilities of prospect- 
ing methods based on d.c. electric conduction. We view the resolution phenomenon 
as an archetypal problem that can be examined via this potential solution. Crude 
resolution limits can be posed in terms of pickable extrema or inflection points on a 
voltage anomaly curve. More refined analysis would involve detailed measurements 
of the amplitude, width, and shape of the potential or apparent resistivity response 
as a selected parameter is varied. A quantitative appraisal of the resolving power of 
the technique, with or without the addition of measurement noise or positioning 
uncertainty, can thus be conducted. Finally, the capabilities of the potential solution 
for conducting forward modelling of mise a la masse and crosshole potential surveys 
has been demonstrated. Such versatility is naturally inherent in a general solution to 
the problem. 
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APPENDIX A : BISPHERICAL COORDINATES 
The transformation from rectangular coordinates (x, y, z) to bispherical coordinates 
(p, q, 4) is (Large 1971): 

Y ,  4 = i In x, + y, + ( z  - 9 ( - C O < p < + 0 0 )  r2 + y 2  + (z  + b)2 1 
(0 I q I E) x2 2bJx2 + y 2  + + z2 y 2  - b2 1 ' q(x, y, z) = tan-' 

4(x, y, z) = tan-' (0 I 4 < 271) (A31 

The inverse transformation is (Grant and West 1965, p. 421): 

b sinh p . ( - C O < z z + + )  
"' " ') = cosh p - cos q 

From (Al), it is easy to demonstrate that a surface constant p is a sphere with 
centre located on the z-axis at (0, 0, b coth p) and radius b/ 1 sinh p I. Hence, the 
bispherical coordinates p, and p 3  of the two spherical interfaces are: 

,U, = sinh-' (b/a2) = In 

p 3  = -sinh-' (b/a3) = -In 

The scale factor b determines the location of the two poles of the bispherical coordi- 
nate system. We must have 

d = b(coth 1.12 - coth p3), 

b = a, sinh p,, 

b = -a3 sinh p 3 .  

Solution of this system of equations for b yields 

1 
2d 

b = - { [ d 2  - U$ - U:], - 4 4  
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APPENDIX B : SPHERICAL HARMONICS 
A definition of the spherical harmonics and a description of their basic properties 
can be found in most textbooks on mathematical physics. Since there exist a variety 
of ways to define and normalize these functions, we explicitly state the forms utilized 
in the derivation here. Our formulae are taken mainly from Wyld (1976). The spher- 
ical harmonic of degree I and order m is defined as 

1 = 0, 1 , 2 , .  . . and m = -1, - 1  + 1 , .  . . , 1 - 1 , l .  E ,  = (-1)'" form 2 0 and€, = 1 
for m c 0. Pj"l(cos 0) is the associated Legendre polynomial of degree 1 and order m. 
Obviously, the zero-order harmonic is independent of the azimuthal angle 4. 

The spherical harmonics are orthonormal in the following sense 
r 2 n  r n  

Yy(0, 4)Y;(O, 4)* sin 8 de d 4  = B k l B m n .  Jo Jo 
The choice of phase in (Bl) implies that even/odd ordered spherical harmonics 
possess Hermitian symmetry/anti-symmetry : 

y ( e ,  4) = (- i)myy(e, 4)*. (B3) 
Suppose 0 is the angle between the two directions in space specified by the 

angular coordinates (01, bl) and (0, , 4,). The spherical harmonic addition theorem 
is an expansion of the Legendre polynomial P,(cos 0) in terms of the spherical 
harmonics with arguments defining these two directions : 

with 

cos 0 = COS O1 cos 8, + sin 8, sin 13, COS (& - 4,). (B5) 
The following ' sum and integral ' property of the spherical harmonics is a gener- 

alization of the integral theorem for the associated Legendre polynomials stated by 
Large (1971): 

f $ qIm lff [y;(e, 4)r;(e, 4)* sin e cos e de d 4  
I = O  m= - I  

where qlm is any quantity that does not depend on 0 or 4. 
Finally, the generating function theorem for the Legendre polynomials is 

W 



D.C. ELECTRIC POTENTIAL FIELD 329 

APPENDIX C : FUNCTION DEFINITIONS 
The functions appearing on the left-hand sides of (16a) and (16b) are defined as 
follows: 

The function B is evaluated at two arguments given by 

The right-hand side function of (16a) and (16b) is 

Equations (16a) and (16b) are appropriate for a current electrode located in the 
unbounded medium. If the source is placed in the upper sphere bS > ,u2) then the 
function on the right-hand side of (16a) is replaced by -aIm( - p 2  ,us; q s y  6J. If the 
source is placed in the lower sphere (,us < p 3 )  then the right-hand side function of 
(16b) is altered to 

For the single sphere in a half-space problem, the coefficients in (25) are 
expressed in terms of previously defined functions : 

-,us; q s ,  &). 

These coefficients can be reduced to forms similar to those of Large (1971) by substi- 
tuting in the definitions of the functions a, /? and y. The correspondence is not exact 
however, because Large's equations contain some source position dependence on 
the left-hand side. 
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Where the current electrode is located outside the buried sphere, the right-hand 
side quantity d,,  in (25)  is 

If the current source is within the spherical conductor, then 

Expressing the coefficients in the linear equations as such functions greatly facili- 
tates programming of the solution on a computer. Values can be easily generated by 
utilizing FORTRAN FUNCTION subroutines. 
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