MULTIGRID PRECONDITIONING FOR KRYLOV METHODS FOR
TIME-HARMONIC MAXWELL’S EQUATIONS IN 3D

D.A. ARULIAH* AND U.M. ASCHER'

Abstract. We consider the rapid simulation of three-dimensional electromagnetic problems in
geophysical parameter regimes where the conductivity may vary significantly and the range of fre-
quencies is moderate. Toward developing a multigrid preconditioner, we present a Fourier analysis
based on a finite-volume discretisation of a vector potential formulation of time-harmonic Maxwell’s
equations on a staggered grid in three dimensions. We prove grid-independent bounds on the eigen-
value and singular value ranges of the system obtained using a preconditioner based on exact inversion
of the dominant diagonal blocks of the non-Hermitian coefficient matrix. This result implies that a
preconditioner that uses single multigrid cycles to effect inversion of the diagonal blocks also yields
a preconditioned system with £2-condition number bounded independent of the grid size.

We then present numerical examples for more realistic situations involving large variations in
conductivity (i.e. jump discontinuities). Block-preconditioning with one multigrid cycle using J.
Dendy’s BOXMG solver is found to yield convergence in very few iterations, apparently independent
of the grid size. The experiments show that the somewhat restrictive assumptions of the Fourier
analysis do not prohibit it from describing the essential local behaviour of the preconditioned operator
under consideration. A very efficient, practical solver is obtained.

Keywords: Multigrid preconditioning, Maxwell’s equations, finite volume, Kry-
lov methods, solution discontinuities.

1. Introduction. The need for calculating fast, accurate solutions of three-dim-
ensional electromagnetic equations arises in many important application areas includ-
ing, among others, geophysical surveys and medical imaging [6, 7, 20, 23, 28]. In
remote sensing inverse problems, e.g. in geophysics, dozens, if not hundreds, of such
systems are solved in the course of one data inversion. Consequently, there is much
current interest in finding efficient numerical algorithms [5, 15, 19, 24].

Assuming a time-dependence e~ with frequency w, Maxwell’s equations in a
three-dimensional domain 2 read

Vx E—wuH =0, (1.1a)
Vx H-(0c—we)E=J°, (1.1b)

where ¢ is the conductivity, e the electrical permittivity, u is the magnetic permeability
and J?® is a known electric source current density. The physical properties € > 0,
g > 0, and o > 0 are known. The electric field E and the magnetic field H are
unknown quantities. Throughout this paper, the permittivity is assumed spatially
constant (i.e. € = €9) while the conductivity ¢ and the permeability p are both
spatially-varying, bounded and piecewise smooth. Further, the conductivity o is
slightly regularised by the substitution

o + max(0,0,), (1.2)

with o, > 0 small (on the order of 1079 to 107¢ S/m) to ensure ¢ > 0. The frequency
range under consideration is restricted so that peow?L? < 1, where L is a typical
length scale [29]. Typical boundary conditions for (1.1) are described in [20].
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2 D.A. ARULIAH AND U.M. ASCHER

In previous work, we transformed the PDE system (1.1) to a weakly-coupled
elliptic PDE system, derived a finite-volume discretisation on a staggered grid, and
applied a preconditioned BiCGStab method (e.g., [4, 26]) to solve the resulting linear
equations (see [3, 16, 17]). The corresponding stabilised PDE system considered is

ALA +w(o —weg) (A + Vo) = —wd?®, (1.3a)
V- ((0 —wep) (A+V¢)) ==V - J*, (1.3b)

where the operator A, is defined by
ALA=V(p'V-A)—Vx (p7'Vx A). (1.3¢)

When g is spatially homogeneous (i.e., constant), uA, simplifies to the ordinary
vector Laplacian operator as in [3, 17]. The vector and scalar potential variables
A and ¢ relate to the original variables E and H by substituting the Helmholtz
decomposition [3, 14]

E=A+V¢, (1.4a)
V-A=0, (1.4b)

into (1.1). Boundary conditions and global constraints appropriate to close the PDE
system (1.3) are

n x (Vx A)lyg =0, (1.5a
n-A|89 =0, (1.5b

[0(A+VP)]loq = =1 - T*[5q (1.5¢
(

/¢dV / (p~iV- A)dV = 0.

The condition (1.5a) corresponds to n x H|;, = 0 in the original variables [2, 16].

After discretising the system (1.3,1.5), applying Incomplete-LU (ILU, see [26,
Chap. 10]) decomposition with a permissive threshold to the dominant diagonal blocks
of the non-Hermitian coefficient matrix of the corresponding linear equations leads to
a reliable preconditioner for Krylov-subspace methods [16, 17]. The possibility that
just one multigrid cycle would be sufficiently powerful as a preconditioner to yield
grid-independent convergence rates was noted earlier in other contexts by various
researchers (see, e.g., [22] and references therein). Thus, our present goal is to develop
a multigrid-preconditioning strategy for solving the problem (1.3,1.5).

We rescale the PDE (1.3) and review the discretisation in Section 2. In Section 3,
we suggest a preconditioning strategy and present a Fourier analysis [8, 9, 13, 18, 25]
to prove that using a preconditioner consisting of exact inverses of the dominant diag-
onal blocks yields a preconditioned linear system with eigenvalue and singular value
ranges bounded independent of the grid spacing. This result in turn implies that
using single multigrid W-cycles to approximate inversion of the diagonal blocks gives
a preconditioned linear system with a grid-independent bound on the /¢2-condition
number. Finally, in Section 4, we present results of numerical experiments using a
multigrid-preconditioned solver. For the implementation of the preconditioner, we use
Dendy’s BOXMG code [11, 12]. Even in the general case of three-dimensional prob-
lems with variable coefficients and large discontinuities, the multigrid-preconditioned
solver obtained is very efficient and practical.

)
)
)
)
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MULTIGRID PRECONDITIONING FOR MAXWELL’S EQUATIONS 3

2. Finite volume discretisation. It is convenient to introduce dimensionless
quantities in (1.3) to simplify to presentation. If L, a¢, and po are suitable scales of
length, conductivity, and permeability respectively, we define the rescaled quantities

ZT:=L7 'z, 7:=o0,"(0c —wen), [:=py i,

$:=L"1¢, T®:=05'J%, (21a)
and define the non-dimensional parameter
X := wpooo L. (2.1b)
In terms of the rescaled variables, the PDE (1.3) becomes
AzA +1x0 (A +V¢) = —ixJ?, (2.2a)
V-(7(A+Vg)) =-V-J?, (2.2b)

where bars above operators indicate differentiation with respect to the dimensionless
position T and the substitution of the dimensionless permeability 7 in the definition
(1.3c). The fields A, J* and ¢ all have the same units; all the other quantities in (2.2)
are dimensionless. Notice that the dimensionless conductivity 7 is generally complex
rather than real. In the sequel, we omit the bars except where explicitly necessary;
when left out, all scale-related information lies in the dimensionless parameter x.

To discretise the system (2.2), assume that Q" is the unit cube [0,1]® divided
into a uniform n X n X n union of non-overlapping cells of width h := 1/n (this is a
simplification of the grids considered in [3, 17]). The material properties ¢ and p are
assumed constant-valued within each cell. Further, assume that the current source
J* has no layers and that the normal components of J* across cell interfaces are
continuous.! Let (A%, AY, A*)T denote the components of the vector potential field
A in Cartesian coordinates. The discrete fields A" and ¢" are defined on a staggered
grid as illustrated in Figure 2.1. In particular, the discrete values A%; 1 ; 1, AY; ;11 4
and A%; ;.1 lie in the centres of corresponding cell faces and the discrete values
¢i,5,1 lie at the centres of cells.

As in [3, 17], the non-Hermitian coefficient matrix for the discretised equations is

o AZ+zxah ol (V)h
ae= (G5 o) 23

In (2.3), the blocks are discretisations of various operators on a staggered grid subject
to the boundary conditions (1.5) with lexicographic ordering. The operator V" is the
discretisation of the gradient operator; (V-)" is the discretisation of the divergence
operator; o” is the staggered grid discretisation of the operator oI (using harmonic
averages of values of ¢ in adjacent cells, e.g., [27]); and AZ is the discretisation of the
operator A, as in (1.3c). Within AZ in (2.3), there are two distinct discretisations
of the curl operator and the permeability operator u respectively to account for the
different spaces in which the discrete vector and scalar grid functions lie; for details,
see [2, 16]. Notice that AZ and o" are in turn 3 x 3 block matrices that act on the
space of discrete vector fields with components normal to cell faces. Further, (V)"

ITn practice, the grid is chosen such that source singularities, if they occur, are contained inside
grid cells.
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FIG. 2.1. Staggered grid discretisation. The discrete vector field A" at centres of cell faces and
the discrete scalar field ¢" at centres of cells.
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is a 3 x 1 block matrix (mapping discrete scalar fields to discrete vector fields) and
(V-)" is a 1 x 3 block matrix (mapping discrete vector fields to discrete scalar fields).

Under the assumption of constant permeability, the dimensionless 7 = 1 and so
AZ reduces to a standard 7-point discretisation of the vector Laplacian operator. In
this case, considering (2.3) as a 4 x 4 block matrix, the operators in the first block

row of A are

1
h
[AhAw ]i+l L TXOi Lk = 3 (Awi+%,j,k A% e AT e
PRV
+ Azi_%niyk + A$i+%7]‘_1ak + Aa}i—"_%’j’k_l
+ (=6+ th20i+%,j,k)Azi+%,j,k) ’ (24a)
1
(@ (V") y 1 5k = 7 i+ bk (PirL ik = D) - (24)

For the more general variable-y case, see [2, 17] for details. The second and third
block rows are defined analogously. The last block row details equations that are
centered at cell centres and defined by

1
[(V‘)hUhAh] ik = h (ai+%,j,kAzi+%,j,k - Uz’—%,j,kAzz'—%,j,k
+ i Ak — Oigo 1 kAo 1k

+ Ui,j,k-}-%Azi,j,k-i-é =0y, —éAzi,j,k—%) ; (2.53,)
[(V-)hah(V)h&]i’j,k =52 <0i+%,j,k¢i+1,j,k + 05tk Pigr1k + 04 kg 1 ikt
+ Ui,%,j,k¢i—1,j,k + Uz’,jfé,k(ﬁi,j—l,k + Ui,j,kfé(ﬁi,j,k—l
- (a'i+%,j,k tOijrie 1 0ijktl
+Oi 1kt o1kt Um-,k_%) ¢i,j,k) : (2.5b)
1
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3. Fourier Analysis. Given the coefficient matrix A as in (2.3), we wish to
find suitable preconditioners for solving associated linear systems. The matrix A
decomposes naturally as

A= A1 + ZXA2 (31&)

where

and (3.1b)
Ay = (”h Uh(V)h) . (3.1¢)

The matrices A; and A, are generally complex unless the term iweq is ignored in
7 (the quasi-static assumption [29]). For h sufficiently small, the diagonal blocks of
A; dominate all other blocks; hence, a logical choice of preconditioners is the block-
diagonal matrix M given by

Mo (Aﬁ (3.2)

(V-)”U"(V)”> '
Indeed, the matrix M is an optimal preconditioner for the matrix A; in that all the
eigenvalues of M~ A; are one and its minimal polynomial is of degree two. Thus, it
follows that using M as a preconditioner for A will also be useful provided that x is
sufficiently small.

To get a more quantitative understanding of the efficacy of M as a preconditioner
for A, we now consider the system (2.2) and its discretisation (2.3) under simplifying
assumptions that ensure that the eigenvectors of all the blocks of A4 in (2.3) are Fourier
modes [8, 9]. In particular, for discrete wavenumbers 0 < a, 3,7 < n — 1, we want
the grid function ¥*8" given by

¢iaji’y — e(27raih)ze(2wﬁjh)ze(27r'ykh)z (iaja k= 0, 1, = 1) (33)

to be an eigenvector of all the blocks of A in (2.3). This is true under the assumptions
that

1. the grid is uniform;

2. the boundary conditions are periodic?; and

3. the dimensionless coefficients are constant, i.e.,d =1 and z = 1.

Under the second assumption, upon discretisation, the indexing in (2.4) and (2.5)
is done in arithmetic modulo n. For instance, grid points on, say, the top boundary are
identified with opposite points on the bottom boundary, and centers of cells touching
the top boundary are considered as neighbours of centers of cells opposite touching
the bottom boundary. The scalar grid functions A*", Av" A#" and ¢" each consist
of N := n® unknowns, the matrix blocks in (2.3) are square of dimension N x N, and
the resulting system to be solved has dimension 4N x 4N.

2For a class of realistic geophysical problems, the fields are expected to vanish or decay in the
absence of source currents, and the sources are frequently of compact support. Thus, for a sufficiently
large domain 2, the effect of boundary data on the fields inside the domain is often negligible. In
such cases, the assumption of periodicity in the analysis is particularly reasonable and does not
compromise the model.
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The quasi-static assumption is implicit in the third assumption, i.e., the term
wwep is dropped in the definition @ in (2.1a). This simplifies the presentation without
loss of essence in the obtained theoretical results. Thus, with the third assumption
above, the block matrix ¢” is replaced by I3y and AZ is replaced by A" in (2.3). In
the experiments reported in Section 4, we drop most of the restrictive assumptions of
the analysis of the present section.

Thus, with these assumptions, the coefficient matrix in (2.3) is

AP +axIy i D!
AP +axIn 1 D!
A= 3.4
h h At 2hXIN zXth .
_(Dz)* _(Dy)* _(Dz)* A

In (3.4), the matrices D!, D, and D} correspond to discretisations of first-order
derivative operators with periodic boundary conditions. Assuming standard lexico-
graphic ordering for the unknowns describing the grid functions,

Dh:=1,®I,9 D" € CN*N,

Dy:=I,@D @I, e C"*", and

DlM=D " ®I,®1I, € CN*V,
Here,
1 -1

e Ccrn (3.5)
-1 1

is the matrix for the periodic primitive backward difference operator in one dimension,

and ® denotes the conventional Kronecker product (e.g. [10, p. 274]). Likewise, the
matrices —(D})*, —(D})*, and —(D?)* in the fourth block row of (3.4) correspond to

forward difference operators. Finally, the discretisation A" of the Laplacian operator
A with periodic boundary conditions satisfies

h _ h(ph)* h(h\* h( yh\*

The eigenvalues of the difference operators in (3.4) are

d, %P7 .= 1 (1 - e—@aﬂhﬁ) for D", (3.6a)
d, " == p ! (1 - e*W’fh)’) for D", (3.6b)
d,*?7 .= p! (1 - e_(zwh)’) for D and (3.6¢)
4
5P = —13 (sin®(amh) + sin®(B7h) + sin®(yrh)) for A, (3.6d)
with common eigenvector ¢¥*#7 as in (3.3) (a, 8,7 =0,...,n — 1). In particular, the
nonzero eigenvalues %47 of A" satisfy
h? 1 h? 1
0< (3.7

< < <L
12 —  §oBry — 4Sin2(7rh) =16
(@,8,v=0,...,n—1;0> + % ++* > 0)
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for n > 2. The upper bound of 1/16 on —1/§%57 is obtained for a very coarse mesh
when n = 2; as n increases, the actual maximum decreases.

Knowing the eigenvalues (3.6) of the blocks of A in (3.4), we want to determine
the eigenvalues and singular values of the preconditioned iteration matrix M 1A,
where M from (3.2) now has the form

M = diag(A", A" Al AP, (3.8)

Under the assumptions of the current section, the matrix M is real and consists of
the dominant diagonal blocks of the matrix A; in (3.1).

Note that the solution u of Au = b with periodic boundary conditions is deter-
mined only up to a constant. Thus, M in (3.8) has a zero eigenvalue of multiplicity
four (the corresponding eigenvectors are columns of I, ®1°%°). Likewise, A has a zero
eigenvalue of multiplicity one. However, as in [13], if Sy denotes the space spanned by
the constant grid function 1/°°° € CV and Sy denotes the orthogonal complement of
So in CN, then A" s¢ is invertible. Further, the operator (A" s&) ! extends to an
operator (A");! defined over all of CV by defining it to be 0 on Sy. Thus, it makes
sense to consider eigenvalue ranges for M and A which exclude the zero eigenvalues.
This is achieved by imposing the condition

a? + 8% ++%>0,

as in (3.7). Under this condition, with a slight abuse of notation, we subsequently
refer to A and M as being nonsingular.

Having established that the blocks of A in (3.4) all share common eigenvectors
and that considering the operator M ~! A makes sense, we wish to derive bounds on
the eigenvalue range and the £>-condition number of M ~1A. To explicitly determine
and bound k2(M ! A), we determine the singular values of M ~1A since

HQ(MﬁlA) — nmax,

TImin

where Nimax and fmi, are the largest and smallest singular values of M ~! A respectively.
The eigenvalues and singular values of this matrix can be determined by considering
the eigenvalues of a 4 X 4 matrix with the same structure, as Lemma 3.1 indicates.

LEMMA 3.1. Let C € Cmn)x(mn) pe o block matriz with blocks C;; € Cvn
(i,j = 1,...,m). Let the blocks C;; all share a common eigenvector v € C* with
corresponding eigenvalues v;; € C (i,j = 1,...,m). Furthermore, let G = (v;5) €
C™*™ have the eigenvalues v;; as its elements, and let A be an eigenvalue of G with
an eigenvector u € C™. Then X is also an eigenvalue of C' with an eigenvector u ® v.

For a proof of this lemma, see [2] or [31, p.136].

Next, we find the eigenvalues and singular values of the 4 x 4 matrix corresponding
to M 1A in Fourier space. Recall the notation (2.1b).

LEMMA 3.2. Let dz,dy,dz € C be prescribed scalars such that § := —dzdz™ —
dydy* — dzdz* < 0. Given o,x > 0, define the complex 4 x 4 matriz M 1A, where

) 0+ 1x wxdzx
~ 1) ~ 0+ ixdy
’ 1) ’ 0 +1x wxdz

) —dz* —dy* —d" )
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Then, the eigenvalues hy of M4 are

Ai=1+4 2% (X +Vx(x - 461)) , (3.9a)
Yo =g =14 %z, (3.9b)
~ ?

Ai=1+4 % (x —vx(x - 45z)) . (3.9¢)

Further, the singular values 1 of M4 are

i : [1 + % + %\/c(c n 4)] , (3.10a)

[N

X2 2
~ c 1 3
N4 1= |:]. + 5 - 5 C(C + 4):| , (310(3)

where ¢ = ¢(—%,x) == (—3) (1+x*(1—3)) >0.

Proof. Although the derivation of (3.9) and (3.10) requires tedious algebraic
manipulations, the formulae are verifiable directly by inspection. O

Note that the eigenvalues and singular values of M ~'A4 in Lemma 3.2 depend
only on the parameters § < 0 and x > 0. We next derive bounds for the moduli of
the eigenvalues |A| in (3.9) and the singular values 7 in (3.10), hence bounding their
respective ranges. L

LEMMA 3.3. Assume 0 < —1/6 < %. Then, the eigenvalues A\ of M1 A given
in (3.9) all satisfy

0< Xmin S ‘X‘ S Xma.x
and the singular values 7 given in (3.10) all satisfy
0< ﬁmin S ﬁ S ﬁmax:

where Xmin, Xmax, Nmins 0nd Tmax are positive constants that depend on x but not on
6. Further,

imax = 0(x?) and ky(M~'4) = Tmax o).

Amin Tlmin

Proof. Denote ¢ = v/x? + 1662 > x. From (3.9), we find

[N

=

A =[4i§2(x+c+\/ﬁ\/M)—‘é£;‘\/H+1] : (3.11a)

o = |X3‘ - [1+§—22] (3.11b)

M| = [% (X+C—\/E\/C+X)+‘é£;‘\/c—x+1r. (3.11c¢)
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It follows from the analytic expressions in (3.11) that
A1l > [A2| = [As] > [Ad]

for any valid choices of x and 8. Examining |A;| and |X\4| as & varies over the interval
(—00,—16), we find

Xmax = max{‘xl‘ 10 € (—oo,—16)} = ‘Xl‘(;:,w’ and
Anin = min{‘L‘ 10 € (—oo,—lﬁ)} = ‘L‘é:—w'
Thus,
Y Y 2
el (I A

Examining the singular values (3.10) in the same manner, we find

> T2 =13 > Na.

Thus,
ﬁmax = max {ﬁl S (_OOJ _16)} = n1|6:—16 ) and
Tmin ;= min {7y : 6 € (—00, —16)} = Nals—_14 -
Hence,
ﬁmax 17 2 2
= — o(1)=0 .
e 5+ 0(1) = 00x?)
0

The preceding lemmata give us the desired eigenvalues and singular values of the
underlying matrix M~ A for the preconditioned system. Combining these results, we
obtain Theorem 3.4.

THEOREM 3.4. For o,8,7v=0,1,...,n—1 and o® + B2 + +2 > 0, the nonzero
eigenvalues and the singular values of M—1A are given by

NP =14 aiﬁv (x +/x(x - 45“‘”%)) : (3.12a)

)\gﬁﬁ — )\géﬂ’Y =1+ 5(3657 ., (3.12b)

a 1
N =14 s (x —x(x - 45“‘”%)) : (3.12c)

and

P B 1 3
n*PY = [1 + 5 + 3 [ coBY (coBY + 4)] , (3.13a)

5 5 IRE
nefT = 2 = [1 + 5(1572_] , (3.13b)

by P 1 3
noPY = [1 + 55 [ coBY (coBY + 4)] (3.13c)
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respectively, where ¢®®7 = ¢(—5357,X) := (—5a57) (1 +x* (1 — 535)) > 0. Further-
more, for n > 2, the nonzero eigenvalues and singular values of M~'A are bounded
above and below independent of the grid size h. Defining

Amin = min{|A;| : 1 <4 <4}, Amax = max{| ;| : 1 < i <4},
Nmin = min{n; : 1 <i <4}, Nmax = max{n; : 1 < i <4},

the eigenvalue range Amax/Amin and the l2-condition number ka(M ' A) = Nmax/Mmin
are bounded independent of the grid, but increase quadratically with the parameter
X = LU/,L()O'()LQ.'

Amax < Amax _ 0(X2) and f"iz( IA) Tmax < "Zmax _ O(X2)'

)\min )\ : Tlmin MNmin
min

Proof. The eigenvalues (3.12) and singular values (3.13) of M~1A are derived
directly from the eigenvalues (3.9) and singular values (3.10) of M4 in Lemma 3.2
by applying Lemma 3.1. Then, the bounds Xmax/ Amin and Tmax/Timin follow from
Lemma 3.3. O

In Figure 3.1, we plot the curves based on the above estimates for the eigenvalue
range and the Ez condltlon number of M1 4 as a function of X (which are in fact the
bounds )\max / )\mm and Mmax/Mmin from Lemma 3.3). We also plot the actual values
of Amax/Amin and Tmax/Mmin as computed from Theorem 3.4 in the case n = 10%.

F1g. 3.1. Eigenvalue range Xmax/Xmin and the £2-condition number Nmax /Mmin @S o function of
X based on the formulae in Lemma 3.3. Also plotted are actual values (Amax/Amin @Nnd Nmax/Mmin,

respectively) for n = 10%.
7

10 ]
. o e
10 = nmax/nmin ’ 3
10°t O Tmax/Mmin (n = 10%) © i
,
,
)\max/)\mm /\’b
4 .
10 ¢ K 3
)\max/)\min (n == 104) ,\'
3 ‘0
10°¢ ‘,\' 3
4
,
10% 0 :
\l
4
1 kS
10°F 9 E
=20
100 =07 =@ =0 =TT ‘
10° 10° 10° 10*

X = wuoaoL2

Notice that Lemma 3.3 also indicates that the ratio of the largest to smallest
eigenvalues significantly underestimates the ratio of the largest to smallest singular
values (which is the #>-condition number) in the case that x is large. This is also
reflected in a lower degree of diagonal dominance in A and M~1A (for a fixed mesh
size h) as w increases.
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The practical implication of Theorem 3.4 is that the number of iterations required
for convergence (up to a set positive tolerance) of a Krylov method for (3.4) precon-
ditioned by exact inversions of the real parts of the leading blocks is expected to be
small and independent of the grid size. As the frequency w increases in a range where
wpoooL? > 1, the number of iterations required for convergence may be expected to
increase like w?.

The full inversions of the main diagonal blocks of M are prohibitively expensive for
a preconditioner. Instead, we now consider applying just one multigrid cycle. Denote
by B the approximate inverse for M obtained in this way. It is well-known (e.g.,
[18, 30]) that for a W-cycle using standard grid transfer and coarse grid operators
and a sufficiently good smoothing rate (which may be achieved, e.g., by two (point)
red-black Gauss-Seidel sweeps before and after the coarse grid correction), there is a
constant ¢ independent of the grid size such that

|[I —BM|| <c< 1.
This implies that the £2-condition number of BM is bounded. Writing
ko(BA) < ko(BM) ke(M™tA)

and applying Theorem 3.4 now yields a similar result for the one-multigrid-cycle
preconditioner.

COROLLARY 3.5. The ly-condition number of BA, where B is the preconditioning
matriz effecting one multigrid W-cycle, is bounded independent of the grid size h.
The bound on the condition number increases quadratically with the parameter x =
wpoooL2.

4. Numerical Experiments. In the following experiments, the permeability
€ = € = 8.8542 x 10712 F/m and the permittivity 4 = po = 47 x 1077 H/m
are fixed constants. The domain € is the cube [—1,1]% and the length scale L =
1m. The homogeneous boundary conditions (1.5) are imposed on 9 as described in
Section 2; although the use of the boundary conditions (1.5) requires a domain {2 that
is sufficiently large, the experiments here focus on the performance of iterative solvers
based on multigrid algorithms; this is unrelated to the specific boundary conditions
implemented [8].

As in [3, 16, 17], the grids used are either uniform or exponentially-widening,
and preconditioned BiCGStab [4] is used to solve the linear systems generated by
the discretisation. As a convergence criterion for all BiCGStab iterations, we require
a reduction of the relative residual to within a tolerance of 10~7. Results from all
experiments are given in terms of iteration counts.

We contrast the performances of several preconditioning strategies.

1. Exact solves of diagonal blocks (Mg): The real parts of the diagonal blocks,
namely

diag (A" + w?el, A" + w?el, AM + w2l (V- )" (V)"),

are inverted exactly (by iterating a multigrid solver to convergence) in each
iteration. For the magnitudes of w?e considered, the difference between this
preconditioning strategy and the one analyzed in Section 3 is negligible.

2. Multigrid preconditioning (Mps): Single V(2,1)-cycles [8, 18] are applied for
each of the diagonal blocks to approximate the effect of Mg. For the (1,1),
(2,2), and (3,3) blocks, we use point red-black Gauss-Seidel smoothing if the
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grid is uniform, and alternating-plane smoothing otherwise. For the (4,4)
block, we use alternating-plane smoothing regardless of the grid.

3. ILU preconditioning (Mr): An incomplete-LU factorisation is computed (see
[4, 26]) using the real part of the diagonal blocks of the coefficient matrix A.
We use 1072 for the drop tolerance.

4. SSOR preconditioning (Mg): We use the value 1.0 for the over-relaxation
parameter [4].

The multigrid solver used is Dendy’s code BOXMG (a black-box multigrid solver,
see [11, 12]). For Poisson or simple Helmholtz problems on uniform grids, point red-
black Gauss-Seidel smoothing cheaply inverts the (1, 1), (2,2), and (3, 3) blocks. For
the inhomogeneous diffusion operator in the (4,4) block and for problems on non-
uniform grids, alternating-plane smoothing is required to achieve reasonable multi-
grid performance, as observed in [1, 11, 12]. This gives a slight cause for concern,
since the implementation of alternating-plane smoothing is quite costly; however,
for large, highly inhomogeneous problems, the multigrid preconditioner applied with
alternating-plane smoothing yields a robust solver.

0, =107 S/m
Oc
ge =107% S/m

F1G. 4.1. Cross-section of a conducting block in o half-space
For the conductivity o in 2, we choose

0o, 2> 0;
o(z,y,2) = {0, 2| < 5,0yl < 5 —5 <2 <05
o, Otherwise,

for the experiments. This models a conducting block of conductivity o. embedded in
a half-space (i.e. at the interface between ground and air). The conductivity o, of the
earth is 0, = 1072 S/m and the conductivity o, of the air is o, = 1077 S/m (which
regularises o as in (1.2)).

Thus, in our experiments, we vary the parameters o, and w to compare perfor-
mances of various preconditioners. We also vary the source term J*® in (1.3). The
applied electromagnetic sources are electric dipoles or magnetic current loops as in
[16, 29]3

Consider first varying w over the moderate range [10°, 10*] Hz, and varying o over
the range [1072,10%] S/m. These ranges translate to the parameter x in (2.1b) lying

3Using traditional discretisations of Maxwell’s equations (1.1), convergence rates for Krylov-
subspace iterations tend to be far worse for experiments with electric sources than with magnetic
sources (see [16, 21]).
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in the interval [47 x 107% 47 x 10~!]. The jump discontinuities in ¢ for this range of
o. are between 5 and 9 orders of magnitude. For an electric dipole source, the results
when discretised on uniform and non-uniform grids are tabulated in Tables 4.1 and
4.2 respectively. Tables 4.3 and 4.4 present results from similar trials on uniform and
non-uniform grids respectively with a magnetic (divergence-free) source term instead.

Uniform grids

oc # of w = 10%Hz w = 107Hz w = 10%Hz
(S/m) | cells | Mg My My Mg | Mg My My Mg | Mg My My Mg
103 1 3 7 19 3 3 7 19 6 6 11 20
203 2 2 13 34 2 2 13 34 5 5 22 35
10—2 303 2 2 20 44 3 3 20 44 5 5 34 50
403 3 3 27 58 3 3 27 61 5 5 46 70
50° 3 3 33 72 3 3 33 79 5 5 61 86
103 3 3 9 25 3 3 9 25 6 6 12 25
203 3 3 18 44 3 3 19 44 5 5 35 48
100 308 3 3 30 66 3 3 30 50 5 5 56 63
403 3 3 41 73 3 3 41 73 5 5 66 82
503 3 3 44 100 3 3 44 100 5 5 100 111
103 3 3 9 20 3 3 9 25 6 6 12 25
203 3 3 20 44 3 3 20 44 6 6 37 48
102 308 3 3 30 67 3 3 27 59 6 6 55 67
403 3 3 40 73 3 3 40 73 6 6 76 86
503 3 3 49 95 3 3 48 96 6 6 97 109

TABLE 4.1

BiCGStab iterations with an electric dipole source and uniform grids.

Non-uniform grids

oc # of w = 10Hz w = 107Hz w = 10%Hz
(S/m) | cells | Mg My My Ms | Mg My  M; Mg | Mg My My Mg
303 1 3 18 47 3 3 18 49 5 5 34 52
102 403 4 4 27 59 4 4 26 64 7 7 40 68
503 2 2 28 76 2 2 28 71 4 4 48 84
303 3 3 26 65 3 3 26 62 5 5 55 76
100 403 4 4 31 76 4 4 34 78 7 7 76 91
508 2 2 43 101 2 2 43 102 4 4 98 139
303 3 3 25 65 3 3 25 64 6 6 53 76
102 403 4 4 31 79 4 4 34 80 7 7 76 102
503 2 2 43 105 2 2 43 102 5 5 100 132

TABLE 4.2

BiCGStab iterations with an electric dipole source and non-uniform grids.

All of the trials summarised in Tables 4.1-4.4 clearly show evidence of grid-
independent rates of convergence of the BiCGStab method when preconditioned by
Mg or Mys as opposed to My or Mg. In spite of the seemingly strong restrictions
of the Fourier analysis of Section 3, the convergence behaviour of the exact block in-
version Mg measures up to theoretical predictions. That is, the analysis succeeds in
capturing the essential local behaviour of discrete operators for reasonable problems
unhindered by the additional complications of non-uniform grids, of different bound-
ary conditions, and, most significantly, of highly discontinuous conductivity models.

The results also show virtually identical performance in terms of iteration counts
for the exact preconditioner Mg versus the single multigrid V(2,1)-cycle M. This
observation suggests that solving the diagonal blocks exactly is unnecessary, at least
within this frequency range. In particular, single V(2,1)-cycles work as effectively as
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Uniform grids

oc # of w = 10"Hz w = 107Hz w = 10"Hz
(S/m) | cells | Mg My My Ms | Mg My My Mg | Mg My Mp Mg
103 1 4 6 13 4 4 6 13 4 4 6 13
203 4 4 13 25 4 4 13 25 4 4 15 25
10—2 308 4 4 19 32 4 4 19 32 4 4 21 32
403 4 4 27 42 4 4 27 42 4 4 32 41
503 4 4 32 51 4 4 32 53 4 4 36 53
103 4 4 6 13 4 4 6 13 4 4 6 13
203 4 4 13 25 4 4 13 25 4 4 15 25
100 308 4 4 19 32 4 4 19 32 4 4 21 32
403 4 4 27 43 4 4 27 41 4 4 32 43
503 4 4 32 51 4 4 32 51 4 4 37 48
102 5 5 7 13 5 5 7 13 5 5 7 13
208 5 5 13 26 5 5 13 26 5 5 15 26
102 303 4 4 19 32 4 4 19 32 4 4 22 32
403 5 5 27 42 5 5 27 42 5 5 32 43
508 5 5 31 52 5 5 31 50 5 5 37 56

TABLE 4.3
BiCGStab iterations with a magnetic source and uniform grids.
Non-uniform grids

Oc # of w = 109Hz w = 107Hz w = 10%Hz
(S/m) | cells | Mg My My Mg | Mg My My Mg | Mg My Mp Mg
303 1 3 23 41 3 3 23 42 3 3 25 42
102 403 3 3 30 45 3 3 30 50 3 3 36 51
503 2 2 37 61 2 2 37 60 2 2 47 62
303 3 3 23 42 3 3 23 41 3 3 26 41
100 408 3 3 30 47 3 3 30 44 3 3 37 48
503 3 3 37 60 3 3 37 65 3 3 47 65
308 3 3 21 41 3 3 21 41 4 4 27 48
102 403 4 4 30 54 4 4 30 49 4 4 37 49
508 3 3 37 57 3 3 37 57 4 4 47 59

TABLE 4.4

BiCGStab iterations with a magnetic source and non-uniform grids.

the preconditioner Mg with considerable savings in computational work.

Another interesting aspect of these results is that the iteration counts for all the
preconditioners do not appear to depend strongly on w or o.. Looking at Figure 3.1,
we see that the spread of eigenvalues and the f>-condition number is quite flat until
x ~ 10'. Once x gets larger, however, the quadratic dependence of both quantities
on x becomes apparent and we can see the bound on the £5-condition number getting
far worse. Since x is at most 47 x 10~! in the trials so far, we do not observe the
iterations changing much as o, and w are varied within this range.

# of w (Hz)

cells [ 10T 1027 108 10% 10° 10°
303 3 3 3 6 12 98

My, | 408 3 3 3 6 13 116
503 3 3 3 6 12 128
303 30 27 31 55 166 642
My 403 40 40 42 76 210 1180
503 | 46 48 51 97 273 1551

TABLE 4.5
BiCGStab iterations for o. = 102 S/m for a range of frequencies.
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To better observe the effect of increasing the parameter x, we fix the underlying
conductivity model with o, = 102 S/m and vary the frequency w over a larger range.
For these trials, we use an electric dipole source and count the number of iterations
to convergence with problems discretised on uniform grids. We restrict our attention
to the multigrid preconditioner Mj; and the ILU preconditioner M. The results are
summarised in Table 4.5.

The results of Table 4.5 demonstrate the degradation of both preconditioning
strategies Mys and My with increasing frequency. As in the other trials, iteration
counts for the ILU-preconditioned system grow as the grid is refined as opposed to
the grid-independent iteration counts observed for the multigrid-preconditioned sys-
tem. At the highest frequency w = 10% Hz, x = 4w. The performance of both
preconditioners worsens significantly in increasing w from 10% Hz to 10 Hz. This
transition in convergence behaviour is consistent with the sharp rise we observe in
| Amax|/[Amin| and Timax/Tmin in Figure 3.1 near x ~ 10'. For general problems, the
threshold frequency at which this transition occurs depends on the geometry of the
problem (in particular, on the scales L, uo and o). However, the observations for
higher frequencies agree well with the predictions of our Fourier analysis. This exam-
ple is set over a short length scale but the same quantitative results apply in terms of
iteration counts on larger domains.

The CPU-time required for each iteration* of the multigrid preconditioner is
roughly 4 times more than that for the ILU preconditioner in case of a uniform grid,
and roughly 8.5 times more in the case of the exponentially-widening grid (due to the
additional cost of alternating-plane relaxations). Thus, using the ILU preconditioner
M7 actually results in a faster algorithm than using the multigrid preconditioner My,
for coarse discretisations. But for fine discretisations (e.g., all cases recorded in Ta-
ble 4.5) the multigrid preconditioner is to be significantly more efficient. Obviously,
there is a crossover point beyond which the multigrid preconditioner is more efficient
since it achieves convergence to a fixed tolerance within a constant number of itera-
tions independent of the grid spacing h. In this example we see, moreover, that the
crossover point occurs for grid sizes which are well within practical range. We feel that
a more specific implementation of the multigrid cycle could improve the efficiency of
the preconditioner further, and lead to an earlier crossover point.

The results presented here are based on a single geophysical model. We have also
performed tests with other models as in [2, 16, 17] with qualitatively similar results.

Perhaps the greatest beauty of our multigrid approach as such is that the part
which is hard to program is within a black box code already written by someone else.
This is to be contrasted with all-out multigrid efforts such as [19] which achieve rapid
convergence results but at a price in transparency and modularity (see also [5, 15]).
A complete multigrid approach may perform better in cases where p has large jump
discontinuities, however, and we plan to address this in the future.
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