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Selecting a Discrimination Algorithm for
Unexploded Ordnance Remediation

Laurens Beran and Douglas W. Oldenburg

Abstract—We review the algorithms that have been used to
discriminate between hazardous unexploded ordnance (UXO) and
harmless clutter. Statistical classifiers use model parameters esti-
mated from geophysical data to formulate a decision rule. This
rule tries to discriminate between UXO and clutter using the
available information. In contrast, library-based discrimination
algorithms make decisions using a predefined library of signatures
for expected UXO types. Given the variety of algorithms that
are available for UXO discrimination, we describe two metrics
for evaluating discrimination performance—the area under the
receiver operating characteristic and the false-alarm rate. We pro-
pose a bootstrapping algorithm for estimating these metrics when
limited data are available. Last, we demonstrate this approach on
real electromagnetic and magnetic data sets.

Index Terms—Area under the curve (AUC), bootstrapping, dis-
crimination, electromagnetics, magnetics, receiver operating char-
acteristic (ROC), statistical classification, unexploded ordnance
(UXO).

I. INTRODUCTION

THE EXTENT of unexploded ordnance (UXO) contamina-
tion within the U.S. and abroad has motivated research

into improved technologies for detection and discrimination
of UXO. Discrimination algorithms are expected to lower
remediation costs by reducing the number of clutter items
(geology, shrapnel, etc.) that must be excavated while ensuring
that all munitions of concern are identified. Classification of the
ordnance type may also be a priority when particular items must
be excavated and disposed of with extra caution (e.g., chemical
munitions).

Advanced discrimination requires the acquisition of digital
geophysical data. The current industry standard is time-domain
electromagnetic (EM) data, typically acquired with a towed
array of sensors. Simple criteria, such as signal amplitude, are
often used in production settings to prioritize detected targets
for digging [1]. Anomaly amplitude is easily extracted from
the observed data and can be quite effective when the site only
requires identification of large ordnance (e.g., 100-lb bombs).
However, when ordnance and clutter are of comparable size,
anomaly amplitude is not a particularly robust parameter for
discrimination. For example, UXO items at depth may produce
comparable anomaly amplitude to shallower clutter items.

In contrast, a wide variety of discrimination algorithms have
been proposed by researchers, and these algorithms have been
shown to outperform simple amplitude thresholding in many
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cases. However, many of these algorithms require intensive
data processing, specialized knowledge, and user experience.
For example, training a neural network to discriminate between
UXO and clutter is by no means an automatic process. The
design of the network and its inputs must be specified by
the user, and the results can widely vary depending on the
particulars of the training process.

Although comparisons of discrimination algorithms abound
(e.g., [2] and [3]), no single algorithm is a general panacea for
UXO discrimination. A given discrimination algorithm might
be suitable in a certain context, but it is unlikely to generalize
well to all situations. Indeed, one abiding lesson that can be
drawn from the reviews of pattern recognition research is that
there is no single best algorithm for discerning patterns among
data [4].

The remainder of this paper is organized as follows. First,
we provide a review of algorithms that have been used for
UXO discrimination. Second, in light of the uncertainty over
which discrimination approach will work best at a given
site, we compare two metrics of classifier performance—the
area under the receiver operating curve (AUC) and the false-
alarm rate (FAR). We propose a bootstrapping approach for
estimating these metrics as digging proceeds and show how
these estimates can be used to select a discrimination algorithm
when there is limited ground truth. Last, we demonstrate
applications of this approach to UXO discrimination with both
time-domain EM and magnetic data sets.

II. ADVANCED DISCRIMINATION: A REVIEW

In this section, we describe the processing required to apply
advanced discrimination algorithms to UXO problems. Typi-
cally, magnetic and/or EM (either time or frequency domain)
data are collected. Once anomalies have been identified in the
observed data, we can characterize each anomaly by estimating
features that will allow our discrimination algorithm to discern
UXO from clutter. These features may be directly related to the
observed data (e.g., anomaly amplitude at the first time chan-
nel), or they may be model parameters that must be estimated
via inversion.

The inverse problem in this context is overdetermined: its
solution requires minimization of a data misfit function. This
is not to say that parameter estimation is straightforward; most
problems are nonlinear and difficulties can arise because of
local minima. Although the focus of this paper is on using
model parameters for discrimination, we emphasize here
that parameter estimation, with the attendant complications
presented by real data (noise, overlapping targets, etc.), is
crucial to the success of any discrimination algorithm. A
discrimination algorithm can only be as good as our ability to
extract useful parameter estimates from the observed data.
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Fig. 1. Feature estimation for magnetic data showing (left) observed data in
plan view, (middle) data predicted with a dipole model, and (observed minus
predicted, right) residual. Points indicate data locations used in inversion.

In the case of magnetic data, the forward model is a dipole
parameterized by its location, orientation, and strength. Fig. 1
shows an example fit to observed magnetic data obtained using
a dipole forward model. For EM data, empirical models are
used to forward-model the secondary fields produced by an
arbitrary conductive body. For example, the Pasion–Oldenburg
[5] model represents a conductor as a superposition of or-
thogonal dipoles, which independently decay in time. This
model can faithfully reproduce observed time-domain data in
many situations. The parameters of this model include the
location, orientation, and polarization parameters. The polar-
ization parameters serve as proxies for the target size, the
shape, and the material composition and, hence, can be used for
discrimination.

Given the model parameters obtained from an inversion,
we must decide whether a target is likely to be UXO.
A common approach is to use the model parameters estimated
via inversion as basis vectors in an M -dimensional feature
space. A discrimination algorithm is then a function with a
domain spanning the feature space. The value of the function
may signify the probability that a given feature vector is UXO.
However, in general, the particular value of this function is of
secondary importance to the ordering of targets provided by the
function. In a production setting, we are primarily interested in
providing explosive ordnance disposal technicians in the field
with a prioritized dig list. In the next section, we describe some
important methodologies for generating this dig list.

A. Statistical Classification

UXO discrimination has been treated as a supervised learn-
ing problem. Supervised statistical classification makes dis-
crimination decisions for a test data set for which labels are
unknown. The classifier performance is optimized using a
training data set for which labels are known. Given training and
test data sets, the goal of a statistical classifier is then to find an
optimal partition of the feature space. Here, optimality can be
defined by minimizing the probability of misclassifying a test
feature vector [6].

In this framework, the problem of discriminating between
UXO and clutter is, in fact, a classification problem. This means
that we assume that there are two classes (UXO and clutter) and
assign all test feature vectors to one of these two classes. This
implies that the clutter class is composed of items with consis-
tent physical properties. For example, at some sites, small mu-
nitions (e.g., 20 mm) may be safely left in the ground and can be

considered as clutter. In this case, we would expect the clutter
to have a distribution of size-related features, which is distinct
from that of larger munitions comprising the UXO class. How-
ever, in other cases, clutter may encompass geology, garbage
(metal cans, barbed wire, etc.), or shrapnel. Lumping these
targets into one class can be detrimental to the discrimination
task, as there is likely no consistency in the model parameters
that are used as proxies for physical properties. In particular, the
overlap between UXO and clutter classes in the training data
can result in very poor generalization to the test data.

With this important caveat in mind, we can take two ap-
proaches to formulating a statistical decision rule. A gener-
ative algorithm seeks to model the underlying distributions
that produced the observed data, often assuming a parametric
distribution such as the Gaussian. A discriminative algorithm is
not concerned with underlying distributions, but rather seeks to
identify decision boundaries that provide an optimal separation
of classes [7].
1) Generative Classifiers: The starting point for any gener-

ative classifier is Bayes’ rule, i.e.,

P (ωi|x) ∝ P (x|ωi)P (ωi). (1)

The likelihood P (x|ωi) is the probability of observing the
feature vector x given the class ωi. The prior probability P (ωi)
quantifies our expectation of how likely we are to observe
class ωi before (i.e., prior to) observing any feature vector
data. Bayes’ rule translates the prior probability into a posterior
probability P (ωi|x). The posterior is the probability that we
have observed class ωi given the observed feature vector.

The application of Bayes’ rule to classification requires
knowledge of the prior probabilities and the form of the
likelihood function. The likelihood function can take either a
parametric or nonparametric form. The parametric approach
assumes a probability distribution for each class and tries to
estimate the parameters of these distributions from the training
data. The most common parametric classifier is discriminant
analysis, which assumes a Gaussian form for the likelihood
function. To implement this classifier, we estimate the mean and
the covariance of each class (UXO and clutter) in the feature
space. Quadratic discriminant analysis computes a separate
covariance for each class. In this case, the decision boundary
is a quadratic function in the feature space. Alternatively, if
the same class covariance is assumed equal for all classes, then
the classifier produces a linear decision boundary in the feature
space [linear discriminant analysis (LDA)].

A parametric classifier that was used in [8] for UXO discrim-
ination is the Gaussian likelihood ratio. This classifier considers
the ratio of posterior probabilities, i.e.,

λ =
P (x|ω1)P (ω1)
P (x|ω2)P (ω2)

(2)

so that λ = 1 corresponds to a feature vector x on the decision
boundary between classes ω1 and ω2. This classifier is a refor-
mulation of discriminant analysis (either linear or quadratic). In
the Bayesian framework, prior distributions play a central role:
they quantify our subjective expectations. When Bayes’ rule is
used in the form given in (1), the prior probabilities weight the
relative importance of classes. However, in (2), we see that the
ratio of prior probabilities is a constant multiplicative factor,
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Fig. 2. SVM formulation for linearly separable feature data belonging to two
classes (squares and circles) in a 2-D feature space. The classifier tries to
maximize the margin between support planes subject to the constraint that the
feature data are correctly classified.

and, therefore, the ordering of test vectors from most to least
probably UXO is independent of the particular choice of prior
probabilities.

In [9], the authors define a class distribution for 81-mm mor-
tars in a feature space spanned by instantaneous polarizations.
These polarizations are estimated from Multisensor Towed
Array Detection System EM data acquired at a single time
channel. The recovered distribution of polarizations follows a
lognormal distribution, and, therefore, the class distribution is
Gaussian with respect to the logarithm of the polarizations.
By thresholding on the contours of equal standard deviation of
this distribution, a prioritized dig list is generated, which sig-
nificantly improves upon the performance of simple amplitude
thresholding.

Assuming a parametric form for the likelihood function
greatly simplifies the problem of estimating class distributions.
However, this assumption may be difficult to justify if limited
training data are available. In this situation, we may turn to non-
parametric methods, which define a likelihood function directly
from the training data. A representative nonparametric classifier
that has been applied to UXO discrimination is the probabilistic
neural network (PNN). This classifier represents the class dis-
tributions as superpositions of Gaussian “kernels,” with each
kernel centered on a feature vector in the training data [3].
2) Discriminative Classifiers: Instead of estimating poste-

rior probability distributions, discriminative classifiers directly
define a decision boundary to classify test data. Finding a
decision boundary that separates the training data and gener-
alizes well to the test data can be approached as a constrained
optimization problem. A commonly used classifier of this form
is the support vector machine (SVM). The basic idea of this
classifier is illustrated in Fig. 2. We maximize the margin
between classes subject to the constraint that the training data
are correctly classified [10]. The margin is defined as the
perpendicular distance between support planes. As shown in
Fig. 2, a support plane is a line (or a plane in higher dimensions)
such that all feature vectors in a class fall to one side of that line.

A more general formulation of the SVM allows for nonlinear
decision boundaries with overlapping classes. The idea is to
map the feature data to a higher dimensional space where the
training data become separable. We then construct the decision
boundary in this space [6].

In UXO applications, the SVM was used by Zhang et al. [8]
to discriminate with the features derived from EM and magnetic

data. In this case, a nonlinear SVM trained on EM features
outperformed discriminant analysis applied to the same feature
space. In [11], an SVM and a neural network had comparable
performance when classifying targets with EM features esti-
mated from synthetic data.

B. Library Methods

As previously mentioned, statistical classifiers require train-
ing data for UXO and clutter to make discrimination decisions.
If clutter is highly variable, defining a clutter class may not
be sensible. In this case, we can make discrimination decisions
using UXO feature vectors in the training data, with no asser-
tions made about the distribution of clutter items in the feature
space. This approach encompasses library methods, which try
to match estimated features to a predefined library of features
for ordnance items. An example of a library-based method for
magnetic data is the remanence classifier developed by Billings
[12]. Here, the estimated dipole moment is matched to a “fea-
sibility curve,” which defines the range of dipole moments a
particular ordnance type can produce. The degree to which an
estimated dipole moment matches the feasibility curve is an
indication of how likely the target is to be an ordnance item. In
this case, the distribution of UXO can be analytically computed.

A library of features for various UXO types can also be
defined using previously acquired training data. Norton and
Won [13] applied this idea to the discrimination of ordnance
using GEM-3 frequency-domain data. They recover estimates
of “orientation invariants” (eigenvalues of the polarization ten-
sor) from observed data at each frequency. The spectrum of
the eigenvalues is then compared to a library of eigenvalues for
known UXO using an L2 norm.

A similar approach was implemented by Pasion et al. [14]
for discrimination with time-domain EM data. They used EM
measurements made on a test stand to determine polarization
parameters for UXO [14]. To classify an anomaly as a particular
ordnance type, the observed data are fit with the polarization
parameters fixed at their library values (i.e., only target location
and orientation are estimated in the inversion). The data misfit
is then a feature that can be used to discriminate between UXO
(low misfit) and clutter (high misfit).

Hu et al. [15] apply a library method for the difficult problem
of discrimination in multi-object scenarios. They represent
observed frequency-domain EM data as a linear combination of
the data predicted by a specified number of unknown subsurface
sources. They then apply independent component analysis to
determine the mixture of sources from a predefined library that
can best reproduce the observed data.

III. SELECTING A DISCRIMINATION STRATEGY

As in the broader statistical classification literature, there
is no “magic bullet” algorithm in the field of UXO discrim-
ination. Comparisons of statistical discrimination algorithms
(e.g., [3] and [8]) demonstrate the performance of particular
algorithms on particular data sets; however, it is often difficult
to gauge how dependent an algorithm is upon the authors’
expertise or the difficulty of the classification task. For example,
Hart et al. [3] demonstrate the application of a PNN for the
discrimination of UXO using magnetic data. They showed that
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the PNN outperformed linear discriminant analysis at two of
three sites. However, a subsequent application of the PNN at
a different site produced very poor results compared to all
other discrimination methods, including interpretation by a
human expert [16]. These results highlight the need to care-
fully select a discrimination strategy that is appropriate to the
remediation task.

One of the key weaknesses of statistical classifiers is their
reliance upon a representative sample of training items. Recent
work by Zhang et al. [2] addresses this shortcoming with
an active learning approach to building a training set. The
authors develop a metric to identify the test feature vectors that
provide the most “information gain,” as quantified by the Fisher
information matrix. A greedy search for the target with the most
information gain is implemented to iteratively build an infor-
mative training set. This training set can then be used to train a
statistical classifier and generate predictions for the remaining
test vectors. For the application to UXO discrimination, the
authors consider a magnetometer and the GEM-3 EM data from
a Jefferson Proving Ground demonstration. The performance of
the active learning algorithm, measured by the receiver operat-
ing characteristic (ROC), is better than that of a classifier that is
trained using multiple realizations of random training data.

The active learning approach is an important contribution to
UXO research and is particularly useful when the training data
set is difficult to generate. However, our practical experience at
a number of field sites has indicated that there are often situ-
ations where a sizeable and representative training set can be
obtained both safely and quickly. The sites most in need of re-
mediation have often been used for intensive training and have
considerable clutter and ordnance on the surface. In some cases,
it may be possible to generate a large number of labeled feature
vectors by full clearance of selected areas. For example, gener-
ating a training set was comparatively easy at one of the Lowry
range presented later in this paper: clearance of some 200 tar-
gets by explosive ordnance technicians required only two days
of work. Furthermore, a component of random digging for qual-
ity assurance should always proceed in parallel with digging
directed by a discrimination algorithm. Last, any anomalies that
cannot be confidently modeled (failed inversions) should be ex-
cavated. For these reasons, our focus here is not on the efficient
generation of a training set, but rather on iterative identification
of an optimal discrimination algorithm as digging proceeds.

Given our set of statistical or library discrimination
algorithms, we must choose an approach that is appropriate to
the discrimination task at hand. One option is to combine the
outputs of all available discrimination algorithms into a single
decision. A wide variety of classifier combination schemes exist
in the statistical literature, ranging from simple schemes (e.g.,
voting or averaging) to more sophisticated approaches that seek
to optimize some weighted combination of classifier outputs
using the training data. As with classification algorithms,
comparisons of combination algorithms yield no single best
method. Combiners generally outperform the input classifiers,
but not always. A thorough comparison of combination
schemes in [4] showed that combining a set of statistical clas-
sifiers (both generative and discriminative) trained on the same
feature set can, at best, provide only marginal improvement
over the best single classifier. Combination is most appropriate
when classifiers are trained using independent feature sets.

Although platforms allowing joint acquisition of magnetic
and EM data exist for UXO applications, in this paper, we
consider the most common scenario in UXO remediation:
given the features extracted from a single data type (EM or
magnetics), how can we identify the discrimination strategy that
provides the lowest FAR? Although classifiers may use differ-
ent features, the training data are drawn from the same observed
data, and, therefore, it is preferable to try to identify a single
algorithm that can provide the best available discrimination
performance. However, we also advocate continual reevaluation
of the discrimination strategy as digging proceeds and the
training set grows. An advantage of statistical classifiers is their
ability to learn from the data and improve their performance as
more information becomes available, and we hope to exploit
this ability if it is advantageous.

A. Measuring Discrimination Performance

In UXO applications, the performance of a discrimination
strategy is often displayed using the ROC, which shows the
true-positive fraction (TPF) as a function of the false-positive
fraction (FPF). Here, the TPF is the proportion of UXO found,
and the FPF is the proportion of clutter found. The ordinate
is sometimes also displayed as the number of false alarms per
acre or, simply, the total number of clutter items that is dug.
To generate an ROC curve for a discrimination algorithm, we
compute the output of the algorithm for each unlabeled test
vector and then sort the outputs from the highest to the lowest
rank, where a higher rank indicates that a test vector is more
likely to be UXO. We then proceed to label (i.e., dig) the test
vectors according to their rank, generating an ROC curve that
indicates the proportion of UXO found as a function of the
proportion of clutter found throughout the digging process.

A metric of classifier performance that is derived from the
ROC is the AUC. The AUC is defined as the integral of the TPF
with respect to the FPF, i.e.,

AUC =

1∫

0

TPF d(FPF). (3)

If the FPF is the fraction of all test clutter items that are dug,
then an ideal discrimination algorithm will have an AUC = 1
(i.e., all UXO are found before a single clutter item is dug).
Conversely, the worst possible classifier will require us to dig all
clutter items before finding any UXO, producing an AUC = 0.
The AUC statistic is commonly used to assess medical diag-
nostic tests [17] and machine learning algorithms [18]. In these
contexts, there is extensive literature describing the equivalence
of an algorithm’s AUC and the probability that the algorithm
will correctly rank a randomly selected pair of “abnormal”
and “normal” (e.g., UXO and clutter) test feature vectors [17].
Specifically, let us denote an algorithm’s output as λ, such that
λ(a) is the output for test vector a. Furthermore, let a be ranked
as more likely to be UXO than test vector b if λ(a) > λ(b).
For example, with a generative classifier, we define λ as the
predicted probability that a test vector is UXO. If a ∈ UXO,
the set of all test vectors belonging to the UXO class, and
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b ∈ Clutter, the set of all test vectors belonging to the clutter
class, then

AUC = P (λ(a) > λ(b)) (4)

is the probability that a is ranked ahead of b [17]. For finite
samples, the AUC provides an unbiased estimate of this prob-
ability. If the generating distributions for UXO and clutter are
Gaussian, as shown in Fig. 3(a), then the TPFs and the FPFs are
respectively given by

TPF(λ) =

∞∫

λ

N(x|TP )dx = 1 − C(λ|TP )

FPF(λ) =

∞∫

λ

N(x|FP )dx = 1 − C(λ|FP ) (5)

where N(x|TP ) and C(x|TP ) denote the normal and cumu-
lative probability density functions (pdf’s) for true positives,
respectively (with the corresponding distributions for false
positives denoted by FP ). Then, from (3), the AUC can be
computed as follows:

AUC =

∞∫
−∞

TPF(λ)
d (FPF(λ))

dλ
dλ

= 1 −
∞∫

−∞

N(λ|FP )C(λ|TP )dλ. (6)

An analogous result holds for any form of the generating
distributions: the integral will always involve the product of the
false-positive pdf and the true-positive cumulative distribution
function.

An alternative metric for measuring discrimination perfor-
mance is the FAR, which we define as the proportion of clutter
that must be dug to find all UXO. The FAR is graphically
defined by the point at which the TPF first attains a value of
1 (see Fig. 6). Intuitively, we can also regard the FAR as an
estimate of a probability, i.e.,

FAR = P
(
λ(b) > min

UXO
(λ(a))

)
. (7)

This is the probability that a randomly drawn scrap item is
ranked ahead of the worst case (i.e., the minimum) prediction
for all feature vectors belonging to the UXO class. If, as shown
in Fig. 3(a), we know the generating distributions for true and
false positives, then we can compute a lower bound for the FAR
for a given sample size, i.e.,

FARmin = 1 − C(zN |FP ) (8)

where C(zN |FP ) is the cumulative distribution of false pos-
itives evaluated at the characteristic smallest value zN of the
true-positive distribution. This value is defined so that if we
draw N samples from the true-positive distribution, then we
expect the smallest of these samples to have a value of zN or
less [19]. The lower bound on the FAR is then the integral of

Fig. 3. Estimation of the FAR and the AUC for finite samples. (a) Derivation
of the minimum FAR from the distributions of true positives (dashed line) and
false positives (solid line) for a sample of size N . The minimum FAR is the inte-
gral of the false-positive distribution from the characteristic minimum value zN

to infinity (hatched area). (b) In each of 1000 trials, an equal number N
of true- and false-positive samples was drawn from Gaussian-generating dis-
tributions, as shown in (a). The resulting distributions of the estimated AUC
and FAR are shown for varying sample size N . Vertical dashed lines show the
expected AUC (upper plot, independent of N ) and the expected minimum FAR
for a sample of size N (lower plot).

the false-positive distribution from zN to infinity [hatched area
in Fig. 3(a)].

From Fig. 3(a), it is easy to see that as the sample size
increases (N → ∞), the characteristic minimum value zN goes
to −∞, so that

lim
N→∞

FAR = 1. (9)

This limiting behavior is demonstrated in Fig. 3(b), which
shows the dependence of estimates of the AUC and the FAR
on the sample size when the generating distributions are
Gaussian. As the number of samples increases, both the mean
estimated FAR and its lower bound tend toward 1. In practice,
however, our samples are of limited size, and, therefore, the
FAR may provide a useful statistic for comparing discrimina-
tion performance.

In contrast, the expected AUC is independent of the sample
size, and mean estimates converge to the expected value com-
puted with (6). Furthermore, the variance of AUC estimates
is much smaller than those of the FAR for the corresponding
sample sizes. These simulations suggest that the AUC is a
more suitable parameter for measuring discrimination perfor-
mance. However, we will demonstrate in the next sections that
bootstrap estimation of the FAR can produce a more robust
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parameter for comparing discrimination performance than does
the AUC.

Estimation of the AUC and FAR metrics given an ordered list
of true and false positives is straightforward. We can construct
the receiver operating curve from our ordered list and then
estimate the AUC via numerical integration of this curve. In
the following examples, we estimate the AUC by trapezoidal
integration of the empirical ROC. The FAR is estimated as the
point at which the ROC first attains TPF = 1.

B. Bootstrap Estimation of Discrimination Performance

Any potential application of the performance metrics dis-
cussed in the previous section to UXO discrimination requires
their estimation, ideally with an independent test data set.
Generating such a test set may be possible when all anomalies
in selected areas are cleared in an initial digging stage. In
this case, we may estimate performance using our previously
trained classifiers on the newly labeled test feature vectors.

In many real situations, however, we have limited labeled
data with which to train our discrimination algorithms and
validate their performance. We would like to train and assess
our discrimination algorithms as digging proceeds and identify
the best algorithm using the available information. Arbitrary di-
vision of labeled data into training and test sets is undesirable in
this case: there is potential to learn from all feature vectors, and,
therefore, we want to include all labeled data in the training set.
However, estimating performance is problematic if there are no
independent test data. An algorithm that perfectly discriminates
the training data may not generalize well to an unseen test set.
This is analogous to overfitting the data in regression, where
fitting a noisy function too closely can produce poor estimates
of the function parameters.

A standard way to estimate discrimination performance
when no independent test data are available is with cross-
validation. In leave-one-out cross-validation, a single vector
is left out of the training set, and the algorithm is trained on
the remaining vectors. A discrimination prediction can then
be made for the holdout vector, and the process is repeated
for all training vectors. The AUC or the FAR can then be
estimated from the set of cross-validation predictions. However,
the training samples in this approach are substantially the same,
and, therefore, if the classifier overfits this training set, then
we will obtain an overly optimistic estimate of discrimination
performance [6]. We can address this difficulty with bootstrap
estimation. If the full set of labeled data L comprises N feature
vectors, then we can approximate the true (unknown) class
distributions as discrete distributions with all labeled vectors
in L attributed equal weight 1/N . We can estimate any desired
statistic by drawing samples from these empirical distributions.
In practice, bootstrapping generates a training realization by
sampling with replacement N times from L. This procedure
will generate repeated feature vectors in the training realization,
so that the expected number of unique feature vectors is then
given by

E(Nbootstrap) =
[
1 − (1 − 1/N)N

]
N ≈ 0.632 N. (10)

The remaining feature vectors (on average, 1 − 0.632 = 0.368
of the vectors in L) can then be used as a holdout test set for the

estimation of the performance metrics. In discrimination prob-
lems, the “0.632” bootstrap estimator is the preferred estimator
of discrimination performance statistics [6]. This estimate is
computed using the following steps.

1) Generating a bootstrap realization of training and test sets
by sampling with replacement from the full set of la-
beled data.

2) Training the discrimination algorithm on the bootstrap
training set.

3) Generating predictions for the bootstrap training and
test sets.

4) Estimating the performance statistic φ (e.g., the FAR and
the AUC) of interest, again for bootstrap training and test
sets. For a given bootstrap realization B, this produces the
estimates φ̂B

test and φ̂B
train.

5) Averaging the bootstrap performance statistics ac-
cording to

φ̂0.632 = 0.632φ̂B
test + 0.368φ̂B

train. (11)

6) Repeating steps 1)–5) to obtain a distribution for φ̂0.632.
Intuitively, the weighting of training and test estimates in (11)
corrects for the unequal sizes of bootstrap training and test sets
and ensures that all labeled feature vectors are included in each
estimate φ̂0.632.

To select a discrimination algorithm as digging proceeds,
we propose a method that iteratively re-evaluates the available
algorithms using the bootstrap estimates of the AUC or the
FAR. At each iteration, we estimate the mean metric and
select the discrimination algorithm with the best expected per-
formance (i.e., the largest AUC or the smallest FAR) as the
active algorithm. We then dig a given number (e.g., 20) of
the highest priority targets that are identified by this algorithm.
These newly excavated items now become part of an updated
training data set, with which we can retrain and reevaluate
our available discrimination algorithms. With this approach,
we do not explicitly include the uncertainty in our bootstrap
estimates. However, by continually evaluating algorithms with
the available information, we allow ourselves to correct for
errors in the selection of an algorithm that may be caused by
the variance in bootstrap estimates.

IV. APPLICATION TO EM AND MAGNETIC DATA SETS

As a first example of this procedure applied to UXO dis-
crimination, we compare the performance of discrimination
algorithms at the 20-mm Range Fan of the Former Lowry
Bombing and Gunnery Range, Arapahoe County, Colorado.
At this site, our aim was to discriminate 37-mm projectiles
from ubiquitous 20-mm projectiles and 50-caliber bullets using
Geonics EM-63 time-domain EM data. The data were acquired
along lines spaced at 50 cm with a single sensor mounted
on a fiberglass pushcart. A Leica robotic total station and an
inertial motion unit were used for positioning and orienta-
tion measurements and were merged with the sensor data in
postprocessing. Digging proceeded in two phases, with the
first phase involving the excavation of all targets identified in
the EM-63 data within a training grid. Twenty-five emplaced
37-mm projectiles, 22 20-mm projectiles, and 73 50-caliber
bullets were recovered in this first phase. The emplaced 37-mm
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Fig. 4. Training data for 20-mm Range Fan discrimination. Grayscale image
shows the decision surface for a nonlinear support vector classifier trained to
discriminate between 20- and 37-mm projectiles.

projectiles were buried at depths ranging from 5 to 40 cm. The
smaller 20-mm and 50-caliber items, which were not emplaced
but were left in the ground after live training, were typically
found at shallow depths (< 10 cm). The second digging phase
produced an independent test set that was used to evaluate the
final performance of discrimination strategies. This test set is
composed of 7 37-mm projectiles, 29 20-mm projectiles, and
50 50-caliber bullets.

Target feature extraction was carried out with a two-dipole
model parameterized by instantaneous polarizations (Li(tj),
i = 1, 2) estimated at each time channel tj . The EM-63 instru-
ment records 26 time channels ranging from 0.18 to 25 ms.
Inclusion of late-time low SNR channels in the inversion can
produce poor fits to the observed data and unreliable polariza-
tion estimates. Consequently, for each target, we fit a subset of
channels with an estimated SNR above an estimated noise floor
(see Fig. 5). The estimated polarizations were then fit with a
parametric function of the form

Li(t) = kit
−βi exp(−t/γi). (12)

As mentioned in Section II, the parameters of this function
(or others with similar parameterizations) have been shown to
be indicative of the target size and shape. A useful diagnostic
derived from this parameterization is the integral of the polar-
ization, i.e.,

(Integrated polarization)i =

25∫

0.18

kit
−βi exp(−t/γi)dt. (13)

The integral of the polarization is an approximation to the
magnetostatic polarization, which can, in turn, be related to
the target size [20]. After careful experimentation with the
available training features, we selected a feature space spanned
by the largest integrated polarization and the associated decay
parameters β and γ. All statistical classifiers considered in
the subsequent bootstrap analysis are trained with this feature
space. Fig. 4 shows the training features, as well as the decision
surface computed for a nonlinear SVM. In this feature space,

Fig. 5. Sounding at the anomaly maximum for EM-63 anomalies (with
ground truth) in 20-mm Range Fan training data, along with theoretical (t−1/2)
and calculated (obtained through analysis of a signal-free part of the data set)
noise floors (from [21]).

we note that the pervasive 50-caliber bullets have a very large
feature variance relative to the 37- and 20-mm classes. This is
somewhat surprising given that the bullets are much smaller,
and were generally shallower, than the other ordnance classes.

The variability of the features for the 50-caliber bullets can
be understood by examining maximum observed decays for the
different classes of ordnance (Fig. 5). We see that 50-caliber
bullets tend to have a lower SNR than the larger ordnance,
and, therefore, fewer time channels are available to constrain
the inversion for these items. Furthermore, multivariate analysis
of variance indicates that there is not a significant separation
between class distributions for 50-caliber bullets and 37-mm
projectiles, whereas the separation between 37 and 20 mm is
significant (both at a 95% confidence level). For these reasons,
we decided that the training features for 50-caliber bullets
were unreliable, and these items should not be treated as a
class in the training data. Although they were not used for the
training process, the 50-caliber bullets are still included in the
estimation of ROC performance metrics (i.e., true positive de-
notes 37 mm, and false positive denotes 20 mm and 50 caliber).
This result emphasizes our earlier remark that inversion is a
crucial step in the application of advanced discrimination, and a
careful assessment of fits is always necessary if we are to make
useful inferences with the training features.

Our goal in this retrospective analysis is then to iden-
tify the best available algorithm for discriminating between
37- and 20-mm projectiles using bootstrapped performance
metrics estimated after the first phase of digging is complete
(and before an independent test set becomes available).

Table I shows the mean AUC and FAR of 100 bootstrap
samples for four discrimination algorithms, as well as the
performance metrics independently computed from the test
data set. To ensure that the reported differences between per-
formance metrics are significant for the independent data, we
test the ROC curves using a two-sample Kolmogorov–Smirnov
test [22]. At a 95% confidence level, there is a significant differ-
ence between all ROC curves for the discrimination algorithms
considered in Table I. This ensures that there is a significant
difference between the generating distributions of true and false
positives, so that the reported metrics on the independent test
data can be deemed significant.
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TABLE I
BOOTSTRAP ESTIMATES OF AUC0.632 AND FAR0.632 FOR

DISCRIMINATION ALGORITHMS APPLIED TO 20-mm RANGE FAN

TRAINING DATA. AUC AND FAR DENOTE THE PERFORMANCE

METRICS EVALUATED ON INDEPENDENT TEST DATA. AMPLITUDE

DENOTES THRESHOLDING ON ANOMALY AMPLITUDE

The resulting ranking of discrimination algorithms provided
by the bootstrap analysis is consistent with that obtained
from the independent test data set. The SVM has the best
performance, whereas thresholding on the amplitude of the
target anomaly provides poor performance relative to all sta-
tistical classifiers. Although both performance metrics agree
on the preferred order of algorithms, the bootstrap estimates
overestimate performance relative to the values obtained from
the test data. This is consistent with the simulations of
Yousef et al. [23], who found that the 0.632 estimator of
the AUC was optimistically biased. Although more elaborate
estimators can be employed to correct for this bias, our aim
is to prioritize discrimination algorithms, and the estimator
employed here appears adequate for this purpose.

In our second example, we consider a reassessment of the
discrimination strategy through several digging iterations. Here,
we compare the performance of three discrimination algorithms
applied to magnetic data from Guthrie Road, MT. Analysis of
these data is presented in detail in [12]. The discrimination
task at this site was to identify a total of 80 live and emplaced
76-mm projectiles and 81-mm mortars. Magnetostatic dipole
fits were successfully estimated for 724 anomalies in the data.
The model is parameterized by the location of the magnetic
dipole moment and its vector components. For magnetostatic
data, the induced dipole is time independent, and, therefore, a
time-varying polarization such as in (12) is not required. The
76- and 81-mm items comprise the UXO class, whereas the
remaining 644 targets (encompassing shrapnel, ferrous scrap,
and geologic false alarms) define the clutter class. As shown in
Fig. 6, in both training and test data, clutter are characterized by
small dipole moments that are oriented at large angles with the
Earth’s magnetic field, whereas ordnance have large moments
oriented at small angles. It is, therefore, appropriate in this
case to treat all nonordnance items as a single class and train
statistical classifiers to discriminate between UXO and clutter.

Following [3], we train a PNN in a feature space spanned
by the logarithm of the moment magnitude and the angle of
the dipole moment with respect to the Earth’s magnetic field.
Training data were generated as a random sample of 100 feature
vectors drawn from the full set of estimated feature vectors.
In addition, we train a nonlinear SVM with Gaussian kernels
using the same realization of training data. Last, we use the
remanence algorithm originally applied to these data in [12].

Fig. 6 shows the feature data that are used to train and test
the PNN and SVM algorithms. The grayscale images in these
plots are displayed such that darker regions correspond to the
decision boundary (e.g., P (UXO) = 0.5 for the PNN). Again,
the decision threshold is not fixed in the feature space, but is

Fig. 6. Application of statistical classifiers to Guthrie Road magnetic data.
(a) ROCs for three discrimination algorithms applied to Guthrie Road data.
Solid circles show the FAR for each algorithm. (b) Training and test feature
vectors used to generate ROCs for statistical classifiers in (a). Squares represent
UXO, and circles represent clutter. Grayscale images are the classifier outputs
for the PNN (top row) and the SVM (bottom row).

TABLE II
AUC AND FAR FOR ALGORITHMS APPLIED TO GUTHRIE ROAD DATA

swept through the space to generate the ROC. No feature space
is displayed for the remanence discriminant because it does not
require training data, and because this algorithm is a nonlinear
transformation of the 2-D feature space in Fig. 6 into a single
feature, i.e., remanence. Fig. 6 also shows the ROC curves
generated by the two statistical classifiers and remanence. The
ROC curves in this plot are all significantly different at the
95% confidence level. In this case, remanence requires us to
dig the fewest clutter items to find all UXO. This observation
can be quantified by the AUC and the FAR shown in Table II.
As expected, there is a negative correlation between the AUC
and the FAR, with both parameters indicating that remanence
provides the best discrimination performance for these data.
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Fig. 7. Selection of a discrimination algorithm using bootstrap estimates of
the FAR and the AUC. (a) ROC curves generated by the remanence and SVM
algorithms alone compared with ROCs generated by iterative selection of an
active algorithm using the AUC and FAR performance metrics. Circle and
cross-markers on the ROC curves indicate which algorithm (the PNN and the
remanence, respectively) is active at each iteration of digging, as shown in (b).
(b, left) Estimates of the mean FAR as a function of iteration. The algorithm
with the smallest FAR at each iteration is considered optimal. (b, bottom right)
Estimates of the mean AUC as a function of iteration. The algorithm with the
largest AUC at each iteration is considered optimal.

Can we identify remanence as the optimal available algo-
rithm using the limited information in the initial training set?
Fig. 7 shows the bootstrap estimates of the AUC and the FAR
as digging proceeds and the resulting ROCs produced by our
iterative selection of the active algorithm. We consider the mean
AUC and the mean FAR as criteria for selecting the active
algorithm. In this simulation, each iteration of bootstrapping
follows digging the 20 highest priority items predicted by the
active algorithm. This interval is fairly small since dig teams
can sometimes excavate hundreds of items in a single day.
However, this interval is chosen to demonstrate the evolution
of the bootstrapped performance metrics as the training data
set grows. Simulations with larger intervals produced similar
results. We account for the dig interval in Fig. 7(a) by evaluating
the TPF and the FPF only at the end of each iteration of digging,
producing an ROC curve evaluated at only a few operating

points. For comparison, the best and worst ROC curves in Fig. 6
produced using remanence and the SVM are shown in Fig. 7(a).
At the 95% confidence level, there is no significant difference
between the ROCs generated by the mean FAR algorithm and
remanence. However, the ROCs generated by the mean AUC
and remanence are significantly different, indicating that, in this
case, the AUC metric was unable to reproduce the best observed
performance for these data.

At the first iteration, we set the active classifier to be the
SVM. This choice tests the ability of our approach to correct
for a poor discrimination strategy. As shown in Fig. 6, this
algorithm has the worst performance of all algorithms when
applied to the test data using the initial training data. However,
the SVM is often a reasonable choice in the initial stages of
digging since it makes no distributional assumptions and is,
therefore, appropriate when there are insufficient training data
to estimate the parameters of generative distributions.

Notable in Fig. 7(b) is the result that the mean AUC ranks
remanence behind the PNN for a substantial portion of the
digging process. It is only toward the end of digging that rema-
nence finally emerges as the optimal algorithm. Although the
bootstrapped AUC fails to identify remanence as the best avail-
able algorithm, the ROC produced using the AUC as the se-
lection criterion is an improvement on the ROCs for individual
statistical classifiers shown in Fig. 6. This is because the statis-
tical classifiers are retrained after each iteration of digging, and
their performance accordingly improves as they learn from the
growing training set.

In contrast, the mean FAR provides a consistent ranking of
remanence ahead of the statistical classifiers after the first two
iterations. The mean FAR quickly corrects for our poor initial
choice of discrimination strategy and switches at the second
iteration to the PNN. Thereafter, the optimal discriminant is
remanence, and the resulting ROC produced by the selection
algorithm using the FAR is not significantly different from the
ROC curve for remanence alone.

The failure of the bootstrapped AUC to identify the optimal
available algorithm in this example stems from its formulation
as an average metric of discrimination performance. In the
early stages of digging, we primarily recover UXO, so that
the overlap between UXO and clutter classes in the training
data is small. As the training data set grows, we see increased
overlap between UXO and clutter. We, therefore, expect the
FAR to grow and the AUC to decrease as the discrimination task
becomes more challenging. The limiting behavior of the FAR
[see (9)] also dictates that this parameter should grow as the
bootstrap test sets increase in size. This dependence is evident
in Fig. 7(b).

However, the addition of a few difficult UXO items to the
training data will not greatly affect the average performance
of the algorithm, as quantified by the bootstrapped AUC.
Consequently, in the early to intermediate stages of digging,
bootstrapping overestimates the AUC, and our procedure fails
to identify remanence as the best available algorithm.

The FAR, on the other hand, is most sensitive to those
items that are most difficult to identify. Although bootstrapping
requires that we average over multiple training and test real-
izations, the FAR is an average of worst-case scenarios and,
therefore, provides a more reliable ranking of algorithms when
the training data are of limited size.
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V. DISCUSSION

Discrimination algorithms that are specifically designed for
a particular application will often outperform more general
statistical approaches. In case of magnetic data, the remanence
algorithm uses the known dipole responses for expected ord-
nance items to reliably identify buried items. Statistical algo-
rithms, in contrast, rely upon a representative training sample
to generate the decision rule. The initial training data set in the
magnetics simulation was generated as a small random sample
of the full set of feature vectors, and, therefore, the particular
realization of training data can have important implications
for expected performance. However, even with large train-
ing sets and continual retraining, our simulations consistently
showed that remanence will outperform competing statistical
algorithms for these data. This is not to say that remanence is
the best algorithm for UXO discrimination with magnetic data;
its applicability depends upon the validity of its assumptions
for a particular data set. The method proposed here provides a
mechanism for evaluating whether an algorithm is appropriate
for the data set at hand.

The variable performance of statistical classifiers in these
examples highlights the requirement for a careful assessment of
discrimination algorithms at each site. In the case of discrimina-
tion using features extracted from EM data, the SVM provided
the best performance. However, this same classifier produced
the worst performance of all algorithms when applied to mag-
netic data. The discrepancy in SVM performance in these
examples can be attributed to the difficulty of the discrimination
tasks: EM features provided a very clear separation between
37- and 20-mm classes, whereas magnetic features produced
more overlap between classes. These differences are attribut-
able to different site characteristics (i.e., different ordnance
classes are present), as well as the nonuniqueness inherent to
magnetic features described in [12].

Recent work in [24] presents an algorithm for optimizing
the performance of statistical classifiers using an approximation
to the AUC. The method is applicable to algorithms whose
predictions are differentiable functions of the classifier parame-
ters (e.g., kernel smoothings in a neural network). By directly
optimizing these parameters with respect to the AUC, the
authors obtained improved performance (i.e., a lower FAR) rel-
ative to classifiers optimized with respect to the probability of
misclassification. This method has the potential to significantly
improve the performance of some statistical classifiers (the
PNN and the SVM) in our examples. However, optimization
of the AUC is not possible for library methods, and, therefore,
the bootstrapping technique described here should still be used
to compare the expected performance of all discrimination
algorithms.

Our examples are limited to binary hypothesis cases. That is,
we have considered discrimination between two classes—UXO
and clutter. In general, however, we may be faced with a
classification problem that requires us to identify several classes
of ordnance as well as clutter. The metrics presented here
can easily be adapted to the multiclass case by combining the
classification predictions for all UXO classes into a single UXO
class. This can be accomplished by summing the predictions for
a test vector over all UXO subclasses and then generating an
ROC with these merged predictions. If we are concerned with

our ability to distinguish between different ordnance classes,
we can similarly pool predictions and separately generate an
ROC for each UXO class. AUC or FAR metrics can be averaged
over all classes to obtain an estimate of overall classification
performance.

The interval at which algorithms are evaluated is dictated
by the speed at which field work proceeds and by the need
for thorough quality control of all feature vectors. If our
discrimination algorithms are at all useful, then much of the
initial excavation effort will be spent on digging UXO. These
items are likely dangerous, and, therefore, the early stages of
remediation will slowly proceed. This gives the data analyst
time to carefully evaluate data fits and retrain algorithms.
As the training set grows, we have more confidence in the
choice of the active algorithm, and, therefore, the retraining
interval can be increased.

Bootstrapping is a computationally intensive operation, and
this approach is only suitable for algorithms that can be rel-
atively quickly trained. Bootstrapping with library methods
such as remanence is fast, as these algorithms do not require
retraining with each realization. The SVM, on the other hand,
requires that we solve a quadratic programming problem for
each bootstrap realization. However, the simulations presented
here took a few minutes to run for each iteration of digging on
a 3.4-GHz Pentium IV desktop, and, therefore, this is a viable
procedure for data sets of this size (approximately 103 feature
vectors).

When adding new feature vectors to the training data set,
it is crucial that parameter estimates are reliable. To this end,
it may be necessary to reacquire and reinvert new training
items in a controlled test-pit setup to ensure adequate spatial
coverage and low noise. This is particularly a consideration
for EM data, where the added complexity of the model makes
the data requirements more stringent than for magnetic data.
Again, we emphasize that parameter estimation is the most
important step in the application of advanced discrimination
algorithms. Furthermore, the effect of parameter uncertainty on
discrimination has not yet been addressed in the UXO literature,
and we plan to investigate this in future research.

Any application of our proposed method for identifying an
optimal algorithm requires close coordination between field
technicians and geophysicists. This is consistent with the “Total
Quality Management” model of field operations adopted by
Billings and Youmans [25]. They emphasize the need for con-
tinual performance monitoring and feedback, and our approach
explicitly includes this monitoring using statistical performance
metrics. This method can be applied for the evaluation of
any kind of a discrimination algorithm, including algorithms
derived from different types of geophysical data or trained on
different subsets of features. Estimation of performance metrics
in the initial geophysical prove-out may help to select a sensor
that can provide the best available performance at a site.

VI. CONCLUSION

In this paper, we have provided a brief review of algorithms
that have been used to discriminate between UXO and clutter.
The performance of algorithms can be measured using the AUC
or the FAR. When independent validation data are available,
these performance statistics can be used to identify an optimal
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algorithm from a suite of available algorithms. However, when
the set of labeled data is small, we must resort to bootstrap
estimates of performance. Our simulations indicate that the
bootstrapped FAR is a more robust metric for ranking perfor-
mance than the AUC when sample sizes are small, and there is
significant overlap between classes in the feature space.
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