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Incorporating Uncertainty in Unexploded
Ordnance Discrimination

Laurens Beran, Stephen Billings, and Doug Oldenburg

Abstract—We examine representations of feature vector uncer-
tainty in the context of unexploded ordnance (UXO) discrimina-
tion with electromagnetic data. We compare a local uncertainty
estimate derived from the curvature of the misfit function with
global estimates of the model posterior probability density (PPD)
obtained with Markov chain sampling. For well-posed experi-
ments (i.e., with high SNR and adequate spatial coverage), the
two methods of uncertainty appraisal agree. However, when the
inverse problem is ill posed, we find out that the PPD can be multi-
modal. To incorporate these uncertainties in discrimination, we
first develop an extension of discriminant analysis which integrates
over the posterior distribution of the model. When dealing with
multimodal PPDs, we show that an effective solution is to input all
modes of the PPD—corresponding to all models at local minima of
the misfit—into discrimination and, then, to classify on the basis of
the model which is most likely a UXO.

Index Terms—Discrimination, electromagnetics, uncertainty,
unexploded ordnance (UXO).

1. INTRODUCTION

NEXPLODED ordnance (UXO) discrimination with dig-
ital geophysical data is a challenging problem which
requires careful application of inversion and decision theory.
In the inversion stage, we try to estimate the parameters of
a physical model such that the data predicted by a model
adequately reproduce the observed data acquired over a buried
target. Magnetic and electromagnetic (EM) sensors are most
commonly deployed for ordnance detection, and for these data
types, simple dipole models are usually fit to the data. A
magnetostatic dipole, parameterized in terms of a Cartesian
location and dipole moment vector, can be used to predict the
anomalous magnetic field observed over a susceptible target.
For EM data, the induced secondary field radiated by a con-
ductive target is often modeled as a superposition of orthogonal
magnetic dipoles with characteristic magnetic polarization de-
cays (or spectra in the frequency domain). The model vector m
is then comprised of extrinsic (target location and orientation)
and intrinsic (target polarizations) parameters and is related to
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the predicted data (dP™?) via the forward modeling functional
drred = F[m]. To obtain estimates of these model parameters
in an inversion, we minimize a function quantifying the misfit
between the observed (d°"®) and predicted data. A common
choice of misfit function is the least squares data misfit

1 }
¢ _ 5 HWd(dobs o dpred) (1)

I

The data weighting matrix W quantifies the uncertainty in
the data. A typical choice when dealing with geophysical data
is to assign a weighting to each datum as a percentage of the
observed datum plus a floor value. The noise floor represents a
baseline background noise level, and it can be estimated from
regions of a survey where there are no detected targets.

Parameters of empirical models used for UXO discrimination
are proxies for physical properties such as target size and shape.
For example, the strength and decay rate of the induced dipole
moment are diagnostic of target size and wall thickness [1]. As
such, the parameters estimated in an inversion can be used to
decide whether a target is likely to be an ordnance item. Rule-
based approaches can perform well when the discrimination
task is relatively simple. For example, when there is a single
ordnance type which is much larger than the metallic clutter,
shrapnel, etc., that we wish to leave in the ground, then the
EM-induced moment amplitude can be an effective metric for
distinguishing ordnance from clutter.

Statistical classification algorithms have also been employed
for UXO discrimination [2]-[6]. In this approach, a subset of
model parameters is selected to span a feature space. We also
have a training data set comprised of feature vectors for which
ground truth is known. Using this training data set, we try to
formulate a decision rule in the feature space, which we then
apply to the remaining unlabeled feature vectors (the test data).
A common approach is to fit probability distributions to the
training data and then use these distributions to predict the
probability that a test feature vector is an ordnance item.

In this paper, we focus upon the role of parameter uncertainty
in inversion and discrimination. Fig. 1 shows a motivating ex-
ample for the problem of discrimination, with features extracted
from time-domain EM (TEM) data (more details of the forward
modeling, inversion, and discrimination algorithms used in this
example are provided in Section III). The best-fitting model
for one target (indicated by an arrow in Fig. 1) is far removed
from the typical feature vectors that we obtain for this type of
ordnance. This outlier highlights that the TEM parameter esti-
mation problem is fundamentally ill posed: a small perturbation
in the data caused by noise can produce a large change in the
estimated model (ill conditioning), and multiple models can fit
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Fig. 1. Estimated model parameters for the ordnance and nonordnance targets

for the Camp Sibert EM63 data. The feature vector indicated by an arrow
corresponds to the fit shown in Fig. 3(a). The crosshairs show the location of
the mean of the UXO class.

the data equally well (nonuniqueness). In this example, noise
related to errors in measurement of sensor position confounds
the inversion and causes the estimated feature vector to deviate
significantly from its class (see [7] for a detailed discussion of
this target).

We can address ill-posed inversions in a number of ways.
TEM sensors developed specifically for UXO detection and
discrimination can better constrain the inverse problem by pro-
viding measurements of orthogonal components of the received
secondary magnetic field. Nonuniqueness can be somewhat
alleviated by careful parameterization of the forward model
(especially with respect to decay parameters, as in [8]), by
incorporation of prior information (e.g., bound constraints) into
the inversion [9], or by utilizing alternate criteria to assess
the quality of the numerical solution [10]. However, there will
always be uncertainty in our parameter estimates arising from
the approximate nature of the forward model and the noise
on the data. In this paper, we therefore investigate how model
uncertainty can be propagated through inversion and into a
discrimination algorithm.

In Section II, we explore two methods of uncertainty ap-
praisal: a local linearized analysis which approximates the
model parameters as Gaussian distributions and a global non-
linear appraisal which makes no assumptions regarding the
parametric form of the model probability density function
(pdf). We find in Section III that the two techniques agree for
well-constructed experiments where the data quality is high.
However, if the inversion is poorly constrained (i.e., when SNR
is low), the model pdf can be multimodal and is not accu-
rately represented by a Gaussian distribution. In Section IV,
we develop a discrimination algorithm which incorporates
uncertainties in the discrimination procedure by integrating
over the model posterior probability density (PPD). Finally,
in Section V, we demonstrate that this method can improve
discrimination performance by improving the detection of the
outlying feature vectors in real data sets.
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II. MODEL UNCERTAINTY

For a nonlinear forward modeling dP**? = F'(m), the misfit
can be minimized iteratively by solving for the model perturba-
tion 0m

Hém = J"WIW,6d (2)

with H = V2¢ the Hessian of the misfit, J the Jacobian matrix
of sensitivities, and 6d = (d°™ — F(m)). At the minimizer 1,
we can approximate the model covariance as

cov(rh) = E(smém™)
=EH '"J"W]IW,6dsd" Wi W, I TH ™)
=H J'W]E(Wsd)Wasd)" )W ITH . (3)

If the errors on the data are independent and Gaussian and the
weightings in W are the inverse standard deviations of the
noise, then the expectation of the terms in the last expression is
the identity, so that

cov(im) = H ' JTWIW, JTH . 4)

The expression can be further simplified by noting that H ~
JTWI'W 37, giving us an approximate expression for the
covariance of the model parameters [11]

cov(m) ~ H L. (5)

From this result we can see that if there is a large curvature
to the misfit function at the model estimate m, then the model
is well constrained and the variance of the model parameters
is small. The probability distribution of the model parameters
may then be approximated as a normal pdf with mean m and
covariance computed with (5) [11]. The above expression for
the model covariance is the Cramer—Rao lower bound for the
model uncertainty: the covariance of any unbiased estimator is
at least that of (5) [12], [13].

The feature vector x used in a discrimination algorithm is
typically a function of the model m. For a transformation
x = g(m) operating on the model vector, the first-order ap-
proximation to the transformed model covariance .S is

cov(x) = GTcov(m)G (6)

with the elements of the sensitivity matrix (or Jacobian) of the
transformation G computed as

Gij = 3?;7(771) @)
mj

A linearized uncertainty analysis may not be valid if the
objective function is nonconvex. In this case, the local quadratic
approximation provides a poor approximation to the actual
objective function, and uncertainties estimated with (5) may
not be reflective of the actual uncertainties in the model. An
alternative approach to estimating uncertainties is to use a
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Bayesian framework [14], [15] to estimate the model posterior
probability distribution

p(m[d°"®) o« p(d°"*|m)p(m). (8)

The posterior p(m|d°") is the product of a likelihood func-
tion p(d°**|m) and a prior probability p(m). For continuous
models, the likelihood function is often assumed to have
the form

p(d°P*|m) o exp[—¢q] )

with ¢, the least squares misfit function. The posterior proba-
bility is then computed as

aldebs) — exp[—dq]p(m)
Pl = o dp(m)dm’

Here, the normalizing integral is over all of model space. For
a nonlinear forward problem, the normalizing integral is often
difficult to evaluate analytically, especially in high-dimensional
model spaces. However, the PPD for a nonlinear problem
can be estimated numerically using the Metropolis—Hastings
algorithm. This algorithm works by randomly perturbing the
current model m°" ™ to a proposed model mP*P°sed and
by accepting the proposed model according to the Metropolis
criterion [16]

(10)

n < exp[—Ag]

= exp [_ (d)(mproposed) _ ¢(mcurrent))] . (11)

If exp[—Ag] is less than or equal to 7, then the per-
turbation is accepted and the proposed model becomes the
current model. Perturbations that decrease the misfit function
are always accepted, while perturbations that increase ¢ are
accepted randomly according to the aforementioned criterion.
At each model perturbation, 7 is drawn from a uniform random
distribution on the interval [0 1].

This scheme is a Markov chain. Acceptance of the proposed
model depends only on the current model. After a sufficient
number of samples, the chain of accepted models will converge
to a stationary distribution, which is the posterior distribution.
We adopt the fast sampler algorithm developed in [17] to
estimate the posterior distribution of the model parameters. A
key feature of this algorithm is the use of two independent sam-
plers. Convergence of these samplers to the same distribution,
as measured by the maximum difference in their cumulative
distributions, ensures that the sample provides a reasonable
estimate of the PPD.

The PPD is a function in an N-dimensional model space,
with N the number of model parameters. It is therefore useful
to consider the 1-D marginal distribution of each parameter

p(mi|d0bs) = /p(m|d°bs)dm1dm2 .

dmi,ldel e dmN. (12)
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III. COMPARISON OF LINEARIZED AND NONLINEAR
UNCERTAINTY APPRAISALS FOR TEM
DI1POLE MODEL PARAMETERS

As an example of feature vector estimation and uncertainty
propagation in the context of UXO discrimination, we first
consider TEM data acquired with Geonics EM61 and EM63
sensors at Camp Sibert, AL [7]. The discrimination task for
this demonstration project was to distinguish between emplaced
4.2-in mortars and nonhazardous clutter (munitions related
scrap, cultural items, etc.).

A. Forward Modeling and Inversion

In this paper, we model the observed data using a dipole
forward model [9]. The secondary magnetic field is com-
puted as

13)

with 7 the separation between the target and the observation
location and m(¢) a time-varying dipole moment

1
m(t) = —M(t) - Bo.
o
The induced dipole is the projection of the primary field
B, onto the target’s polarization tensor M(t). The polarization
tensor can be decomposed as

(14)

M(t) = ATL(t)A (15)
with A as an orthogonal matrix which rotates the coordi-
nate system from the geographic coordinates to a local body-
centered coordinate system. In body-centered coordinates, the
tensor is diagonal

Li(t) 0 0
Lt)=| 0 ILy# 0 (16)
0 0 Ls(t)

with the eigenvalues ordered by convention so that L;(t) >
Lo(t) > L3(t). When inverting EM61 data, we estimate a
15-element model vector comprised of target location (x, y, and
z), orientation (¢, 8, and 1), and the instantaneous amplitudes
of the polarization tensor at three time channels (L;(¢;), i =
1, 2, 3,and j = 1, 2, 3). In this example, we have computed
2-D feature vectors (x) spanned by the polarization amplitude
and the polarization decay

5 1/2
x1 = Polarization amplitude = <Z L? (t1)> 17)

i=1
3 12 , 4 1/2
29 = Polarization decay = (Z L? (tm)> / (Z L? (t1)> .
i=1 i=1
(18)

The polarization amplitude is then proportional to the mag-
nitude of the induced dipole moment at the first time channel,
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and the polarization decay is the ratio of the magnitude of the
induced dipole at the first time channel and some later time ¢,,,.
For the EM61, t; = 0.22 ms, and we use t,, = t3 = 0.66 ms.
The EM63 measures the decay of the secondary field at 26 time
channels spanning a wider range of off-times, and for these
data, Pasion [9] shows that a suitable parameterization of the
polarization decays is

Li(t;) = kit;" exp(—t;/g;),  i=1,2,3. (19)
The model vector for inverting EM63 data is then the target
location, orientation, and polarization parameters (k;, b;, and
gi» © =1, 2, 3). The recovered parameters can then be used
to compute polarization amplitude and decay using (17) and
(18), witht; = 0.18 ms and ¢,,, = t15 = 2.17 ms for the EM63.
An intermediate time channel is used for this sensor because
early times do not yet allow discrimination between slow-
decaying UXO and fast-decaying clutter, while late times are
contaminated by noise [7].

B. Uncertainty Appraisal

Fig. 2(a) shows the distributions of ordnance and nonord-
nance feature vectors for the EM61 data set. In Fig. 2(b), we
zoom in on the region of the feature space populated with
ordnance feature vectors and show the linearized uncertainties
in the model parameters. We note that the predicted uncertainty
of the individual ordnance target parameters is generally much
smaller than the overall variance of the ordnance class, with a
little correlation between parameter uncertainty and the devia-
tion of a feature vector from the class mean.

To validate the computation of uncertainties shown in Fig. 2,
Fig. 3 compares the variances of model parameters estimated
by linearized and nonlinear uncertainty appraisals for a single
ordnance item in the Camp Sibert EM61 data. This target
is indicated by the leftmost arrow in Fig. 2(b). The non-
linear appraisal is run with uniform priors on the model so
that agreement between linearized and nonlinear appraisals
is expected. Consistent with results in [9] obtained with the
neighborhood sampling algorithm [18], the parameter uncer-
tainties propagated to the feature vectors using (6) agree well
with those estimated by nonlinear appraisal. The nonlinear
marginal pdf of the polarization amplitude has a slight positive
skew, resulting in a shift of the mean of this distribution to a
slightly larger value than what is obtained with the linearized
appraisal.

Fig. 4 shows a second example of model uncertainty for an
ordnance item, indicated by the rightmost arrow in Fig. 2(b).
In this case, the distribution of model parameters is a multi-
modal distribution. Linearized uncertainty analysis is a good
approximation to one mode of this distribution centered about
the minimum misfit model. However, the second mode of the
nonlinear model pdf is in better agreement with the expected
features for targets belonging to this ordnance class. To further
understand this result, in Fig. 5 we show the misfit versus
depth (MVD) curve for this inversion. This curve is generated
by carrying out multiple inversions of the same data set, with
each inversion constrained to lie within a narrow interval of
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Fig. 2. Feature vectors estimated from the Camp Sibert EM61 data.
(a) Estimated feature vectors. The dashed area indicates the plotted region
in (b), and the crosshairs show the location of the mean of the UXO class.
(b) Estimated feature vectors with local standard deviations along the principal
axes. The principal axes do not appear orthogonal because of the unequal
scalings of the plot axes. The arrows indicate the targets appraised in Figs. 3
and 4.

target depth [19]. In Fig. 5(a), we display the relative misfit,
i.e., the misfit relative to the global minimum value on the
MVD curve. Two minima are identified on the MVD curve, and
they correspond to the modes of the model pdf in Fig. 4. The
shallower local minimum of the MVD curve is a better estimate
of true target depth for this case. We can see in Fig. 5(b)
that polarization amplitude increases monotonically with depth
so that the optimal model at depth overestimates polarization
amplitude. This is a consequence of the inverse relationship
between target—sensor separation and dipole moment amplitude
in (13). Fig. 5(c) shows that for models on the MVD curve,
the polarization decay varies nonlinearly with polarization
amplitude.

Fig. 6 shows estimated feature vectors and associated lin-
earized uncertainties for the Camp Sibert EM63 data. Parameter
uncertainties are generally smaller for the EM63 than for the
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EMG61. The EM63 data were acquired in high-quality cued
interrogation surveys over previously identified targets, and so,
we expect smaller errors on both the data and the model than
on the EM61 detection mode data set.

A similar result to that in Fig. 4 is obtained in Fig. 7 for
appraisal of the EM63 target highlighted in Fig. 6: local minima
of the misfit function produce a multimodal pdf. In both of
these cases, however, the individual modes are approximately
Gaussian and the linearized model pdf is a good approximation
to its respective mode. The MVD curve for this target has
a false global minimum at a shallow depth, resulting in an
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Fig. 6. Feature vectors and linearized uncertainties estimated from the Camp
Sibert EM63 data. The arrow indicates the target appraised in Fig. 7.

underestimate of the polarization amplitude expected for this
class (Fig. 8).

When data are acquired in a controlled experiment (e.g., test
stand measurements), then we expect that the global minimum
of the misfit function will correspond to the true model. How-
ever, when inverting field measurements, we generally have
only the naive estimates of the noise on the observed data, and
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the weightings (W) that we choose have a direct effect on
determining the minimum misfit model through (1). For this
paper, we have assigned errors as 10% of each observed datum
plus a floor value estimated at each time channel. While this
choice generally allows us to recover useful estimates of model
parameters, in these last two examples, the data are weighted
so that a “false” minimum at an incorrect depth becomes the
global minimum. From these examples, we therefore conclude
the following.

1) The minimum misfit model is not always the best model
to use for discrimination.

2) The linearized uncertainty appraisal cannot always ac-
count for the deviation of an estimated feature vector
from the expected value of that target class.

We can address this problem in a number of ways. First, we
might investigate different choices of data weightings or data
norm. For example, in [20], robust inversion techniques were
applied to the same TEM data sets presented here. We found
that robust norms can sometimes reweight minima of the misfit
so that the desired minimum (i.e., closest to the true target
depth) becomes the global minimum. Robustness, however,
does not imply a foolproof inversion procedure, and it may
not always unambiguously eliminate local minima as possible
solutions to the inverse problem. Similarly, different choices of
noise standard deviations can correctly reweight the minima of
the misfit, but again, no noise estimation procedure is likely to
be universally successful. In light of this ambiguity, here we
instead investigate how the estimates of model uncertainty can
be incorporated into the discrimination process.
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IV. INCORPORATING UNCERTAINTIES IN DISCRIMINATION

As mentioned previously, feature vectors are normally
treated as point estimates when they are used as an input into
a discrimination algorithm. Shivaswamy et al. [21] developed
a support vector machine algorithm which accounts for uncer-
tainty in training feature vectors. Uncertainty is characterized
by an ellipsoid about each training feature vector, and the
algorithm tries to find a separating hyperplane such that all
points in an ellipsoid lie on the correct side of the hyperplane.
However, this method does not account for the uncertainty in
test vectors in the prediction stage.

Here, we account for uncertainties in both test and training
data. We adopt a generative approach to classification where we
model the probability distributions of classes and then use these
probability distributions to make predictions for the uncertain
test data. In this development, we assume for simplicity that
the posterior distributions of individual training and test feature
vectors are Gaussian. Multimodal distributions, as encountered
in the previous section, can be approximated as a mixture of
Gaussians [22], and so, this algorithm can readily be extended
to classification with nonparametric pdfs.

In a conventional generative classifier, we typically fit a
parametric distribution, such as a Gaussian, to the empirical
distribution of feature vectors in each class. Consider a sample
of N training vectors (‘") in one dimension, all belonging
to the same class w (e.g., w € {T, F'}, with T denoting a UXO
and F' denoting a clutter). In the absence of uncertainty, the
empirical distribution of these data can be represented as a
superposition of delta functions

1 & .
p(zlw) = N 2(5 (:U — xﬁra‘“) .

i=1

(20)

The mean and variance of this distribution are the sample
mean and variance

1 N
p= ) = Dt
i=1

1 N
o* =E((x—1’) = 5 ; (zm — )® . 21
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For the sample variance, the normalization must be changed
to N — 1 to obtain an unbiased estimator. When feature vectors
are uncertain, the empirical distribution becomes

Z ptraln
N

(22)

where pi*#i" is the posterior distribution p;(z|d°") obtained

from uncertainty appraisal of the ith target. Assuming the

pirait are normally distributed with means 2" and variances

(J?a‘“) , the mean and standard deviation of p(z|w) are

1 N
— — train
w=FE(z)= N E_l x;

iy ( [ @pirn(a) — 2auplrina)
i=1
p—
Al tram 1 train) 2
; - *NZ(% )
=op +o1 (23)

with the expression for the variance following from the identity
E(2?) = 0 + p%. Again, the normalization on the first term
of the variance is modified to obtain an unbiased estimator
of the variance of the training vectors. We can see that the
total variance of the class distribution can be decomposed
into contributions arising from the variability between feature
vectors (o) and the local uncertainties about feature vectors
(o). When there is no uncertainty in the feature vectors, we
again obtain the expressions in (21). This is analogous to the
variance decomposition which is employed in analysis of vari-
ance or canonical analysis [23]. The estimates of the mean and
standard deviation from the aforementioned expressions can
then be used as the moments of the class distribution p(z|w).
In the generalization of discriminant analysis developed here,
we approximate the mixture of Gaussians in (22) by a single
Gaussian, with mean and variance given by (23). When dealing
with multivariate data, we can replace the variances in (23) with
covariances.

We now turn to classification of uncertain test feature vec-
tors, generalized to multidimensional feature spaces. A binary
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discrimination algorithm computes the probability of member-
ship of an estimated vector X in class w using Bayes’ rule

p(X|T)p(T)
p(X|T)p(T) + p(X|F)p(F)
p(F|x) =1—p(T|x)

p(Tx) =
(24)

where p(X|T') is the T class distribution estimated from the
training data and p(7T') is the prior probability of the T class
(and similarly for class F').

When x is uncertain with posterior probability distribution

p(x|d°"®), then the joint probability distribution can be factored

p(d°, x,w) = p(d°™|x)p(x|w)p(w). (25)
This factorization implies that given the feature vector x (via
the model m), the observed data are independent from the class
w. We assume this because the mapping from the model to

observed data
d°™ = F[m] + ¢ (26)

is independent of class w (here, € is the additive random noise).
Applying Bayes rule to (25), we have

p(x,w[d™) oc p(x|d)p(x|w)p(w). 27
Marginalizing over the uncertain feature vector x gives
p(]d°™) o / (x| )p(xlw)p(@)dx.  (28)

Normalizing p(w|d°P®) over all values of w yields the posterior
probabilities of the class membership, shown at the bottom
of the page. Intuitively, expression (29) evaluates the Bayes
rule over all possible values of x, weighted by the proba-
bility of each respective value. When there is no uncertainty
(p(x|d°") = 6(x — %)), the expressions in (29) reduce to (24).
The required integrals must be evaluated over the entire feature
space. For multivariate normal distributions with means p; and
covariances .9;, the integral can be solved analytically, with the
result that the integral of two Gaussians is itself a Gaussian
distribution with moments [24]

=51 1+ Sy o

S= (S +850) 7" (30)
We therefore term a classifier employing (29) with Gaussian
distributions for both classes and feature vectors a “Gaussian
product” (GP) classifier.

The GP algorithm incorporates the covariance of a test fea-
ture vector in classification. As illustrated in Fig. 9, the relative

p(T|d*) =

[ p(x|debs)p(x
p(F|d°™) =1~ p(T|d°™)

T)p(

[ p(x|d°™*)p(x|T)p(T)dx
I T)p(T)dx + [ p( XIdOb“)p(X\F)p(F)dX

(29)
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Fig. 9. Classification with the GP in two dimensions. (a) Two class discrim-
ination problem with one standard deviation ellipses of classes shown as solid
and dashed lines. Grayscale image is the decision surface of the Gaussian
product classifier for a test feature vector with equal standard deviations along
principal axes (dotted line). (b) As in (a) but with the decision surface com-
puted for a test feature vector with o1 = 2042, as indicated by dotted line.
(c) Decision surface for .0 = 207,1.

sizes of the variances along principal directions of test vector
covariance affect the orientation of the decision boundary. The
decision surface for a classifier is generated by evaluating the
maximum probability output by the classifier

Prmax(x) = max (p(Tx), p(F|x)) 31)
over a grid of points. This generates an image of the classifier
output in the feature space, with P(T|x) = P(F|x) =0.5
corresponding to the decision boundary. For the GP classifier,
a separate decision surface is generated for each possible test
vector covariance. In Fig. 9, we show three decision surfaces
corresponding to three different specifications of test vector
covariances. In Fig. 9(a), the covariance is isotropic, and so,
a linear decision boundary, identical to that generated when
there is no uncertainty, is obtained. In Fig. 9(b) and (c), we
successively increase the variance of the test vector along each
orthogonal direction in the feature space. This rotates the deci-
sion boundary such that its normal is closer to orthogonal to the
direction of the maximal test vector uncertainty. This implies
that when we make classification decisions for an individual
test vector, we rely most upon the element in that vector which
is least uncertain. The rotation of the decision boundary shown
here is similar to the result in [21]: their support vector machine
formulation rotates the decision boundary so that the covariance
ellipses of the training data lie on the correct side of the
boundary. In this case, however, the orientation of the boundary
is determined by uncertainties in both test and training data.

V. APPLICATION TO THE CAMP SIBERT DATA SETS

Application of the GP classifier requires estimation of the
uncertainty for all inverted targets. As demonstrated above, lin-
earized uncertainty evaluated about the minimum misfit model
does not adequately characterize the multimodal pdfs encoun-
tered for TEM model parameters. While nonlinear appraisal
can be carried out for all targets, here we find that an efficient
solution is to approximate the multimodal distributions with
an ensemble of models obtained by repeatedly minimizing the
misfit with an iterative algorithm. We initialize these inversions
with a number of models selected over a range of possible
target depths. To define the feature vectors for test items, we
consider the set of converged models from our repeated iterative
inversions. If a subset of these models is within a range of 5 cm

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 8, AUGUST 2011

0.7 T T T T T T T

e o o ot
w IS 3 =)
T T T T

1

Polarization decay

e
N
T

o©
=
T

o UXO
¢ non-UXO
0 1 X 1 1 1

0 0.5 1 1.5 2 25 3 35 4
log,(Polarization amplitude)

Fig. 10. EMS61 test data showing multiple feature vectors per target. The
feature vectors for a given target are connected by a line, with the largest marker
indicating the minimum misfit model.
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Fig. 11. Feature vectors estimated from the Camp Sibert EM63 data. The
feature vectors for a given target are connected by a line, with the largest
marker indicating the minimum misfit model. The highlighted feature vector
is an outlier to the ordnance class.

in depth, then we select the minimum misfit model from this
subset to use for discrimination. Most targets have at least two
unique feature vectors identified in this manner (from a total
of ten converged inversions per target). Figs. 10 and 11 show
EM61 and EM63 test data generated with this approach.

We then evaluate the linearized uncertainty about each of
these feature vectors, using (5). This provides us with NV kernels
of a Gaussian mixture model which approximates the PPD as

N
p(x]|d°™) & Y wig(x|pi, 5;) (32)
=1

with w; the kernel weights and g¢(x|u;,S;) a multivariate
Gaussian with mean p; and covariance .S;. Expectation max-
imization is typically used to obtain the maximum likelihood
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Fig. 12. ROC:s for the classifiers applied to the (left) EM61 and (right) EM63
test data.

estimates of weights, means, and covariances of Gaussian
mixtures [22]. However, in the absence of a sample from the
full nonlinear pdf, we cannot estimate the weights w;. While
various approximations for the weights might be pursued, we
find that a simple and effective solution is to classify each
target on the basis of the feature vector which is most likely a
UXO. That is, we evaluate the Gaussian product (29) using the
linearized uncertainty about each model in our ensemble (i.e.,
each kernel in the mixture model). The kernel with maximal
probability of membership in the UXO class is then used to
classify the respective target.

Fig. 12 compares receiver operating characteristics (ROCs)
obtained with this approach with conventional quadratic dis-
criminant analysis using only the minimum misfit feature vector
to classify each target. For both EM61 and EM63 data sets,
the area under the ROC and the false alarm rate at Pd = 1
(i.e., the proportion of false positives required to identify all
true positives) are improved by the GP classifier. While the
improvement for the EM63 data appears negligible, the identi-
fication of one outlying 4.2-in mortar is a significant result from
the perspective of a regulator charged with site remediation.
Similarly, the significant reduction in false alarm rate at Pd = 1
for the EM61 data improves the likelihood that all ordnance will
be identified with this sensor.

VI. CONCLUSION

In this paper, we have investigated uncertainty in the dipole
model parameters estimated from TEM data. We found that
linearized uncertainty estimates are a good approximation to
the distribution of the model parameters about local minima.
However, in many cases, the data misfit has multiple minima,
and a linearized uncertainty appraisal about the global mini-
mum alone cannot fully capture the variability of the model.
A nonlinear appraisal with Markov sampling can be used to
explore model space and to estimate a multimodal density. The
multimodal form of the model probability density may have
implications for sensor and survey design. For example, [25]
minimized local uncertainty of dipole model parameters as a
function of receiver placement and orientation. This analysis
could be repeated with an aim to eliminating local minima of
the MVD curve, thereby improving parameter estimation and
subsequent discrimination. Initial results with multistatic sys-
tems which can measure multiple components of the secondary
magnetic field already suggest that these systems overcome
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many of the complications encountered here with monostatic
Sensors.

To account for model uncertainty in discrimination, we have
developed the GP classifier. This algorithm is a generalization
of discriminant analysis, which incorporates uncertainty in both
test and training feature vectors. Rather than carrying out a
full nonlinear appraisal for all targets in the Camp Sibert
test data, we characterized model uncertainties via repeated
iterative inversions with different initializations. This approach
identified modes of the model pdf, and linearized appraisal was
used to characterize the uncertainty about each mode. Targets
were then classified with the GP algorithm using the mode that
was most probably a UXO. This technique improved detec-
tion of the outlying feature vectors in both EM61 and EM63
data sets.

Aliamiri et al. [26] investigated dipole parameter uncertainty
by forward modeling data for a range of target locations and
orientations and then inverted these synthetic data to obtain
expected parameter distributions for a given target class in
the feature space. These class distributions were non-Gaussian,
and so, a nonparametric model of class distributions was used
for discrimination. In this paper, we have used discriminant
analysis (or its GP generalization). This algorithm assumes that
class distributions are normally distributed. While this assump-
tion is certainly not true for the distribution of clutter in the
feature space, discriminant analysis can often be successfully
employed on non-Gaussian data [22], and it gave good results
for the data sets considered here. There is no difficulty, however,
in generalizing the GP classifier to represent arbitrary class
distributions as mixtures of Gaussian kernels.

The concept of using multiple feature vectors when classify-
ing test data can be regarded as an extension of the technique
in [26] to the test data. While synthetics can augment training
data and help to gain a sense of the variability of features, it
is impossible to fully anticipate the complications (i.e., noise)
which will be encountered in field data. By allowing a test
target to be represented by a number of possible models, we
can classify the target conditional upon the observed data
and possibly detect outliers which are not represented in the
training data.
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