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SUMMARY

In this work we propose a new approach for the upscaling
problem of electrical conductivity in the context of electro-
magnetic methods. We pose the upscaling problem as a pa-
rameter estimation problem, which allow us to develop a goal-
oriented, quantitative framework that combines widely used
simulation tools such as Mimetic Finite Volume, inversion and
optimization techniques. We thus create a flexible methodol-
ogy that allows the users to estimate, in an affordable manner,
coarse-scale conductivity models that approximate, in some
sense, the fine-scale ones. Our framework is based on the ob-
servation that for any conductivity model a number of different
criteria can be considered for the homogenization problem. In
particular, different physical fields and fluxes can be consid-
ered. Our framework allows the choice of the criteria that is
the most appropriate for the goal of the simulation. Results are
illustrated with a couple of simulations that demonstrate the
capabilities of our method as well as the challenges that this
different perspective offers.

INTRODUCTION

Electromagnetic (EM) methods have a variety of applications
in resource exploration, particularly, in mining and oil and gas.
The behavior of an EM field is controlled by three primary
properties of the medium, the electrical conductivity, S, the di-
electric permittivity, e , and the magnetic susceptibility, µ , as
well as the location of the sources and the frequencies. For a
given source, and within the frequency range typical of most
EM geophysical surveys, variations in electrical conductivity
are generally the main controlling factor in the response of the
EM fields (Ward and Hohmann, 1988; Oldenburg and Pratt,
2007; Zhdanov, 2010). As such, EM methods are powerful
tools for characterizing the electrical conductivity of a geo-
logic setting.

Numerical modeling and inversion techniques provide a means
of understanding the connection between the EM responses
observed and the underlying electrical conductivity structures
(e.g. Oldenburg and Pratt (2007)). Finite Volume and Fi-
nite Element methods, as well as integral equations, have been
studied extensively and applied in many geophysical applica-
tions of EM. However, these methods are limited in their abil-
ity to accurately simulate realistic situations. True geologic
settings are heterogeneous over a range of length scales and
their physical properties may vary over orders of magnitude,
from millimeters to hundreds of meters, requiring very fine
meshes. Such meshes are difficult, if not impossible, to work
with and lead to simulations which are extremely expensive to
compute Durlofsky (2003).

Numerical upscaling is a computational procedure that strives
to develop coarse scale models that accurately approximate
fine scale ones. These models attempt to capture the physi-
cal response due to the fine-scale heterogeneities while reduc-
ing the size of the problem thus, alleviating the computational
cost.

In this paper, we adopt and extend the numerical upscaling
techniques developed in the context of flow in porous me-
dia (Durlofsky, 1998, 2003; Gerritsen and Durlofsky, 2005) to
EM. We propose a framework, within the context of parame-
ter estimation problems, to upscale the electrical conductivity
for a heterogeneous medium using the Quasi-Static Maxwell’s
Equations in Frequency Domain. We do this by selecting a
physical response on the fine scale which we aim to reproduce
on the coarse scale. As we show, the solution to the parameter
estimation problem is highly dependent on, and specific to, the
choice in boundary conditions and the upscaling criteria cho-
sen. These factors determine how the system is excited and
which physical response we measure. This feature allows for
physical behaviors of interest on the fine scale to be preserved
on a coarse scale.

MATHEMATICAL MODELING

Finite Volume Discretization of Maxwell’s Equations
Let W be a finite three-dimensional cuboid region with bound-
ary ∂W. We consider the quasi-static, first order form of Max-
well’s equations in the frequency domain with non-homogeneous
Dirichlet boundary conditions

—⇥ ~E + iw~B = ~0, 8x 2 W, (1)
—⇥ µ�1~B�S~E = ~s, 8x 2 W, (2)

(—⇥ ~E)⇥~n = ~E0, 8x 2 ∂W, (3)

where ~E is the electric field, ~B is the magnetic flux density, ~s
is the source term, w is the angular frequency and~n is the uni-
tary outward-pointing normal vector. The material parameters,
µ and S, are the magnetic permeability and electrical conduc-
tivity, respectively. In general, both the permeability and con-
ductivity are given by 3⇥3 symmetric positive definite (SPD)
tensors.

We apply the Mimetic Finite Volume method (MFV) to dis-
cretize the weak form of the system (1)-(3). MFV is an exten-
sion of Yee’s method that allows for highly heterogeneous and
anisotropic media to be discretized in a conservative manner,
leading to symmetric linear systems (Yee, 1966; Hyman and
Shashkov, 1999a,b). We use a Yee grid (staggered 3D tensor
mesh) and discretize ~E on the edges, ~B on the faces and the ma-
terial properties µ and S at the cell-centers of the mesh. Hence,
we obtain the second order discretization for our system given
by A(SSS)e =�iw(q+qbc) (4)
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with

A(SSS) = CURL>M f (µµµ�1)CURL+ iwMe(SSS), (5)

qbc = CURL> M f (µµµ�1)Pe
��
∂W, (6)

where SSS, µµµ , e, q and qbc represent the discrete approxima-
tion at the corresponding mesh points for S, µ , ~E, ~s, and the
boundary conditions (3), respectively. Additionally, CURL,
M f (µµµ�1) and Me(SSS) are the corresponding discrete operators
for the continuous operator —⇥ and the mass matrices for the
material properties µ and S. Finally, P is the matrix that takes
the boundary conditions and prolongs the vector to the right
dimensions and signs.

From (4), we observe that the discrete electric field e can be
expressed as e(SSS), that is, we must solve a forward problem
in order to compute e. This system of equations can be solved
using direct or iterative methods, see Haber and Ascher (2001).

Numerical Upscaling Method
Our numerical approach poses upscaling as a parameter es-
timation problem. Given a mathematical model which has
been discretized on a fine mesh, we aim to find a model of
the upscaled conductivity which varies on a coarse mesh and
is equivalent, in some sense, to the fine scale model. We for-
mulate the search for the upscaled model as an optimization
problem in terms of the upscaled conductivity. One of the main
advantages of this approach is that it is general enough to deal
with a broad variety of fine scale conductivity structures.

We consider a very large, finely discretized 3D tensor mesh
and some nested partition of a coarser mesh. Let W0 be a
coarse-mesh cell. In addition, let Wh and WH be the discretiza-
tion of W0. Consider the upscaling problem for a single coarse-
mesh cell, W0, which is composed of many fine mesh cells with
heterogeneous conductivity, see Figure 1. Such a coarse-mesh
cell resides within our large mesh.

We denote the discrete fine mesh conductivity and the discrete
upscaled coarse mesh conductivity as SSSh and SSSH , respectively.
In addition, let (eh,bh, jh) and (eH ,bH , jH) be the discrete ap-
proximations to the electric fields, magnetic fluxes and electric
current densities in W0 that correspond to the fine and upscaled
conductivities, respectively.

The goal of our method is to construct an upscaled electri-
cal conductivity, SSSH , for each coarse-mesh cell W0 such that
the corresponding downscaled physical responses (eH ,bH , jH )
accurately approximate the fields and fluxes (eh,bh, jh) gener-
ated by the fine model conductivity, SSSh. The upscaled quantity,
SSSH , must be able to capture some of the existing heterogene-
ity in SSSh, as well as having a smaller number of parameters
compared to SSSh. Thus, for the coarse-mesh cell W0, discretized
into n3 fine mesh cells of size h3, we parametrize SSSH as a SPD
tensor, composed of only 6 real values,

SSSH(s1,s2,s3,s4,s5,s6) =

2

4
s1 s4 s5
s4 s2 s6
s5 s6 s3

3

5 . (7)

In order to upscale the variable conductivity SSSh into SSSH , we
envision a number of possible experiments where boundary

eH

SSSH

WWWH

eh

sssh

WWWH

Figure 1: Left: 2D view of the coarse-mesh cell WH . The
discrete coarse electric fields eH are allocated on the edges,
and the coarse electric conductivity SSSH is located at the cell-
center. Right: 2D view of a coarse-scale cell WH composed of
fine scale mesh cells (dashed black line) with heterogeneous
conductivity, sssh, and the discrete fine electric fields (eh) on
the edges at the boundary of WH .

conditions on the electric or magnetic fields around W0 induce
a physical response. We do not include a source term in the
model, although this can be easily added if needed. The choice
of boundary conditions as well as the physical response we in-
tend to simulate, influence how the fields and fluxes sample
the fine-scale conductivity structure and how they should be
upscaled. Hence the selection of an appropriate set of bound-
ary conditions and physical responses is crucial.

Here, we impose a set of N = 12 boundary conditions on the
modeling domain. This allows us to solve for the discrete elec-
tric fields locally inside W0 using (4), while taking into consid-
eration the structure of the fine-scale electrical conductivity.
Each boundary condition takes the value 1 on a given edge,
and decays linearly to 0 in the other two directions, see Fig-
ure 2. This set of boundary conditions samples the fine-scale
conductivity structure from multiple directions, allowing us to
observe coarse-scale anisotropy. Our model can easily be ex-
tended to consider more general boundary conditions (see dis-
cussion in the summary).

Figure 2: Example of three out of the twelve boundary con-
ditions imposed to locally interpolate and sample the electric
fields inside W0.

Given the boundary conditions, we define the best upscaled
conductivity on W0 as

SSS⇤
H = arg min

SSSH2S +
3

f(SSSH) =
1
2

NX

k=1

��� f pred
k (SSSH)� f obs

k

���
2

2
,

subject to SSSH � 000,

(8)
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where S +
3 is the set of 3⇥3 SPD matrices, SSSH is given by (7)

and N is the number of boundary conditions (i.e. the number
of ways we excite the system (4)). The physical response is
captured by the function f , which is evaluated at the points of
comparison using a projection of the discrete electric or mag-
netic fields or fluxes. For example, the total current flux or
magnetic flux density though a particular face of W0. In par-
ticular, f obs is the physical response due to the true fine scale
conductivity structure, SSSh, and f pred

k (SSSH) is that due to the up-
scaled conductivity structure, SSSH . These quantities are com-
puted by solving N forward problems of the form (4). This
optimization problem can be solved using the projected Gauss-
Newton method (Kelley, 1999; Lin and Moré, 1999; Nocedal
and Wright, 2006).

We refer to the function f(SSSH) as the upscaling criterion. It is
a ruler that assesses the quality of a particular SSSH . We want to
emphasize that the formulation given in (8) provides a large va-
riety of upscaling criterion options. Consequently, the results
will strongly depend upon the choices made in the definition
of f(SSSH).

SYNTHETIC EXAMPLES

To demonstrate the upscaling procedure and the impact of the
choice in upscaling criterion, we consider two synthetic exam-
ples, as shown in Figure 3: the canonical model of an isolated
block (a), and that of a sheet (b). In both cases, we consider the
upscaling domain (W0) to be given by a cuboid region with di-
mensions 100m⇥100m⇥100m. We extend the forward mod-
eling domain a further 50m in each direction such that W0 is
positioned in the center. We discretize the entire domain us-
ing uniform fine mesh cells which are 12.5m⇥12.5m⇥12.5m.
Hence the total number of fine cells is 163 and W0 includes 83

fine cells. We assume the fine scale conductivity model, SSSh, to
be isotropic, and allow the upscaled conductivity model, SSSH ,
to be parametrized by 6 values as in (7). The magnetic perme-
ability is taken to be that of free space, namely µ = 4p⇥10�7.

Figure 3: Cross sections of the fine scale conductivity model
for (a) the isolated block and (b) the sheet. Conductive bodies
are displayed in red. The resistive background is displayed in
blue. The coarse-mesh cell, W0, which we aim to upscale is
outlined in white.

For the upscaling, we must select a criterion by which we judge
the quality of the upscaled conductivity, SSSH . For the following

examples, we consider two criteria on W0: 1) j�criterion: the
total current density flux on each of the six faces of W0, and 2)
b�criterion: the total magnetic flux on each of the six faces
of W0. The total flux (either current density or magnetic field)
over each face is evaluated by computing the surface integral
of the flux through that face.

E1: Conductive block in a resistive background
First, we study the case of a conductive block in a resistive
background. Assume that inside W0 there is a 50m⇥ 50m⇥
50m conductive block, located at its center, as shown in Figure
3 (a). The surrounding material is resistive (10�4 S/m). For
this example, we use a frequency of 1Hz and consider three
different conductivities of the block, 10�2, 10�1 and 1 S/m.

We applied the b and j upscaling criteria described above, and
obtained the upscaled conductivity values shown in Figure 4.
Note that we recovered an isotropic (scalar-valued) SSS⇤

H in each
scenario, as expected due to the symmetry of the model.

Figure 4: Upscaled conductivity results found using the j and
b criteria for the block model shown in Figure 3 (a). Note
that the upscaled conductivity in this case can be defined by a
scalar, as the tensor recovered was diagonal, with all diagonal
elements being equal.

Clearly, there is a large discrepancy between the upscaled con-
ductivities recovered using the b and j upscaling criteria for
each of the three block conductivities. Physically, this discrep-
ancy can be reconciled by recognizing that the current den-
sity ~J, and magnetic flux density ~B reflect different physical
processes. Current is the flow of charges through a material.
In the case of a conductive block in a resistive background,
the current must be driven through the resistive background
irrespective of the conductivity of the block. Thus, the resis-
tive background dominates the upscaled conductivity recov-
ered using the j-criterion. On the other hand, magnetic flux is
produced as a result of induced currents. Currents can be in-
duced in the conductive block regardless of the conductivity of
the background. Therefore, we see that the conductivity of the
block dominates the upscaled conductivity recovered using the
b-criterion.

E2: Conductive sheet in a resistive background
Next, we examine the case of a conductive sheet in a resis-
tive background (10�4 S/m) positioned at the center of W0, as
shown in Figure 3 (b). It has dimensions 150m⇥150m⇥50m.
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Note that the sheet is extended outside of the cell we are up-
scaling, W0, in order to reduce the impact of edge effects. It is
stopped short of the boundary of the modeling domain in or-
der to avoid applying the boundary conditions directly on the
sheet. For this simulation, we use a frequency of 1Hz.

Now that the model is no longer identical in each direction,
we expect to recover an anisotropic upscaled conductivity. In
particular, we expect a diagonal tensor, where s⇤

1 = s⇤
2 which

is distinct from s⇤
3 .

Typically, one would draw the analogy between layered con-
ductors and a simple circuit model. In this case, we would
expect that the components of the upscaled conductivity ten-
sor, s⇤

1 and s⇤
2 would conform closely the approximation of

conductors in parallel, while s⇤
3 would be similar to the ap-

proximation of conductors in series. Note however, that this
approximation accounts for only one physical behavior, gal-
vanic current flow, to which the j-criterion is sensitive. It does
not account for any inductive currents, to which the b-criterion
is sensitive.

To investigate, we again assign the electrical conductivity of
the background to be 10�4S/m and examine three conductiv-
ities for the sheet, 10�2S/m, 10�1S/m and 1S/m. Using both
the b and j criteria, we perform the upscaling, and recover the
upscaled conductivities shown in Figure 5.

(a)

(b)

Figure 5: Upscaled conductivity results found using the j and b
criteria for the sheet model shown in Figure 3 (b). Note that the
upscaled conductivity tensor can be described by two values,
as it is a diagonal tensor and s⇤

1 = s⇤
2 . s⇤

1 = s⇤
2 is shown in

plot (a), and s⇤
3 is shown in plot (b).

In this case, the recovered upscaled conductivity SSS⇤
H is a di-

agonal tensor with two unique components: s⇤
1 = s⇤

2 and s⇤
3 ,

see equation (7). Figure 5 (a) shows the s⇤
1 ,s

⇤
2 components

of the tensor and Figure 5 (b) shows the s⇤
3 component. The

values recovered using the j-criterion conform well to the par-
allel and series circuit approximations for s⇤

1 = s⇤
2 , and s⇤

3 ,
respectively. For each scenario the s⇤

3 recovered using the j-
criterion is nearly identical to the resistive background, as is to
be expected using a series circuit approximation. Similar to the
block model results, this is as a consequence of having to drive
the current through the resistive background in the z-direction,
regardless of the conductivity of the sheet. However, for the
s⇤

1 , s⇤
2 , the conductivity of the sheet has a large impact on the

value we recover. In this case, the conductive sheet forms a
connected pathway from one side of the cell we aim to upscale
to the other along both horizontal directions. As a result, cur-
rent is channeled along this pathway, causing the conductivity
of the sheet to have a large impact on the s⇤

1 , s⇤
2 components

of the upscaled conductivity, as shown in Figure 5.

Using the b-criterion, we see that the conductivity of the sheet
has a significant impact on both the s⇤

1 = s⇤
2 (Figure 5 (a))

components and the s⇤
3 component (Figure 5 (b)), contrary to

the parallel-series circuit approximations. This is again be-
cause the magnetic flux density is sensitive to inductive cur-
rents. Since the sheet has a finite thickness, these currents can
be induced in any direction, and therefore contribute to the up-
scaled values s⇤

1 ,s⇤
2 and s⇤

3 we recover using the b-criterion.

CONCLUSIONS

The upscaled conductivity model is specific to, and highly de-
pendent on, the experiment posed. As a result, it allows for
physical behaviors of interest on the fine scale to be preserved
on a coarse scale.

As discussed in the block and sheet examples, the current den-
sity and magnetic flux density each sample the conductivity
structure differently, and are therefore sensitive to different
features of the model. As a result, the recovered upscaled con-
ductivities using either method may vary over orders of mag-
nitude. Therefore, for a given fine scale conductivity struc-
ture, there is no a unique upscaled model which completely
describes it.

Through the simulations we have performed, we have demon-
strated the significance of choice of boundary conditions and
upscaling criterion on the resulting upscaled conductivity. This
is a reflection of the fact that an upscaled quantity is a property
we construct, and it will take on different values, depending
on how we formulate the problem. This is a powerful idea,
and can be used to tackle problems with a different perspec-
tive when care is taken to properly define the question being
asked.
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