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SUMMARY

Using the 2-D DC-resistivity tomography experiment as an example, we examine
some of the difficulties inherently associated with constructing a single maximally
smooth model as a solution to a geophysical inverse problem. We argue that this
conventional approach yields at best only a single model from a myriad of possible
models and at worst produces a model which, although having minimum structure,
frequently has little useful relation to the earth that gave rise to the observed data.
In fact in applied geophysics it is usual to have significant prior information which is
to be supplemented by further geophysical experiments. With this perspective we
suggest an alternate approach to geophysical inverse problems which emphasizes the
prior information and includes the data from the geophysical experiment as a
supplementary constraint. To this end we take all available prior information and
construct an inversion algorithm which, given an arbitrary starting model and the
absence of any data, will produce a preconceived earth model and then introduce
the observed data into the inversion to determine how the prior earth model is
influenced by the supplementary geophysical data.
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1 INTRODUCTION

Geophysical inverse problems are notoriously ill-posed
(Tikhonov & Arsenin 1977), primarily because of the
non-uniqueness resulting from sparse noisy data and the
need to finely parameterize the earth so that sufficient
variation is allowed in the solution. In order to overcome
this ill-posedness, many regularizing schemes have been
invented, and sometimes re-invented, all under the guise of
various physical, mathematical or empirical motivations e.g.
Marquardt (1970), maximum likelihood (Tarantola &
Valette 1982), Occam’s razor (Constable, Parker &
Constable 1987), etc. While the practitioners of a particular
regularization scheme often advocate their favourite
technique with almost religious zeal, it must be remembered
that all these techniques are simply different forms of
regularization of an ill-posed inverse problem. The common
perspective in these schemes is that the data is given and
geophysical inversion should produce a single model which
fits the data. Unfortunately, experience shows that this
conventional approach can be of limited value in applied
geophysical problems, as we shall illustrate in Section 3.
The main difficulty with the conventional approach is that
it is attempting the impossible. By producing a single model
to a fundamentally non-unique inverse problem the bias of

the geophysicist is inevitably introduced. The sentiment of
may geophysicists is echoed by Menke (1984, p. 49) ‘There
is something unsatisfying about having to add a priori
information to an inverse problem to single out a solution’.
One alternative is to give up the idea of generating a single
model, perhaps using appraisal and inference methods (e.g.
Backus & Gilbert 1976) or the method of funnel functions
(Oldenburg 1983). While these methods are highly
recommended they are computationally cumbersome for
realistic applied inverse problems.

In this paper we advocate an alternative to the
conventional approach. Our approach looks at the inverse
problem from a different perspective. In applied geophysics
we often have significant prior knowledge about the earth
under investigation. Such information may come, for
example, from the local geology or other geophysical
experiments. In fact, it seems rather rare for a geophysical
survey to be conducted over a region about which nothing is
known. Consequently, we suggest looking at the applied
geophysical inverse problem from the following perspective:
given certain prior information about the earth then how
does the observed geophysical data constrain or modify that
prior information? This perspective can be converted into an
inversion algorithm by minimizing an objective function
based on prior model character with an additional
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data-misfit constraint. Such an inversion algorithm is briefly
outlined in Section 2 and its utility is shown in Sections 4
and 5.

In order to put our advocacy in context with existing
methods, it is useful to classify conventional inverse theory
into three categories (Menke 1984); length methods,
generalized inverse methods, and maximum likelihood
methods. The perspective that we advocate falls under the
category of length methods and what makes it distinct from
the conventional length method is the amount of emphasis
placed on the prior information, or equivalently, the
model-weighting function. The examples presented later will
clarify this distinction.

A primary motivation for our work has been the need to
be able to incorporate prior information from geological or
geotechnical constraints, often of a geometric nature, into
an inversion scheme. For example, if a conductivity
variation is known to be constrained geometrically, this
information must be incorporated into the inversion. The
naive ‘smoothest’ model is usually rather unsatisfactory.

2 THE INVERSION ALGORITHM

We have advocated that applied geophysical inversion
should be approached from the perspective of prior
information constrained by observed data rather than the
more usual approach of observed data inverted with a
regularization scheme. In order to solve an inverse problem
in this manner it is frequently convenient to begin by
parameterizing the model space using a set of M basis
vectors. The ‘model’, m, is then simply an element of R™.
In the absence of any geophysical data, we require that
the inversion algorithm takes an arbitrary starting model
and produces a model consistent with the prior information.
This can be accomplished by defining an objective function,

¢m[m] = [|W,,,(m— mo)”2 (1

where m,, is a base model and W, is a weighting matrix
which is designed so that a model is produced with specific
characteristics consistent with prior information. The matrix
W, and the base model, m, contain the prior information
and, in realistic applied problems, will be extremely
complicated requiring a major effort to be expended at the
beginning of the inversion. For example, some of the
considerations which must be addressed at this stage are:

(1) generating a base model. A base model may come
from analysis of other geophysical data, from drill-hole logs,
from geological constraints, etc.

(2) Determining regions where the true earth is likely to
be close to the base model and regions where the
discrepancies might be large.

(3) Deciding what type of ‘smoothness’ is required, e.g.
whether horizontal smoothness is required as might be the
case for sedimentary basins, or vertical smoothness in
heavily faulted regions. Further consideration should be
given as to whether an /;-norm should be used to produce
blocky models, or an /,-norm for smoother models, and
whether first- or second-model derivatives should be used,
etc.

(4) Deciding if there are areas where smoothing should
be relaxed, e.g. in a region near a fault.

(5) Determining the relative weights of the components
of W, which allow a relative trade-off between the different
components in the model norm.

The minimization of ¢,, yields a model that is close to m,,
with the metric defined by W, and so the characteristics of
the recovered model are directly controlled by these two
quantities. The minimization of ¢, is our primary objective
and, in the absence of data constraints, should produce the
prior model.

Data constraints can be incorporated in the following
manner. In a typical geophysical inverse problem we are
supplied with N observations d;’hs and their estimated
uncertainties, and we wish to use these observations as
constraints on the minimization problem of eq. (1). The
relationship between the jth datum and the model is
d; = g;[m]. The functionals g; are assumed known. The data
misfit may be characterized by

Pa(d) = |Wy(d — d°™)| 2

were W, is an N X N matrix. If the noise contaminating the
jth observation is an uncorrelated Gaussian random
variable, having zero mean and standard deviation o; then
an appropriate form for W, is Wy = diag{1/0,, ..., 1/0,}.
With such assumptions, ¢4 is a random variable distributed
as chi-squared with N degrees of freedom. The expected
value of ¢, is therefore approximately equal to N and
accordingly, the model sought from the inversion algorithm
should reproduce the observations to about this value. The
inverse problem then becomes

minimize ¢,[m] = [|W,,(m —m,)||?

3
such that ¢ = ||W,(d — d°")|) ©

where ¢} represents the expected x> data misfit.

The constrained minimization problem, eq. (3), may be
solved using the method of Lagrange multipliers. The
appropriate objective function to be minimized is

¢[m] = ¢ o[m] + p[Pyld] - &3] 4

where p is the Lagrange multipler. The inverse problem is
non-linear and is attacked by linearizing eq. (4) about the
current model m® and iterating. If ém is a model
perturbation, then a Taylor expansion that has terms only
up to second order is

1
PIm + 6m] = b, + 1, om + 2 SmH, m

+pu{pyt vq  Om+ % émTHd om— @3} (5)

where y..=V_ ¢, and y,=V_ ¢, are gradient vectors,
H,=V.V.¢.,and H; =V, V_¢, are Hessian matrices and
V., is the operator (3/8m,, 3/3m,, ..., 3/8m,,)T. In eq.
(5) ¢.. is understood to be ¢, [m™] and ¢, [d].

The general solution proceeds by differentiating eq. (5)
with respect to ém and p to obtain an M X M system of
equations to be solved for dm, and a constraint equation
used to evaluate the misfit and hence adjust the value of u.
Recent investigations have shown that the subspace method
(Oldenburg, McGilliviay & Ellis 1992; Kennett &
Williamson 1988; Skilling & Bryan 1984) is an efficient
method of solution for large-scale systems. In a subspace
approach, the ‘model’ perturbation ém e R* is restricted to



lie in a g-dimensional subspace of R* which is spanned by
the vectors {v;} i=1, q. The model perturbation can be
written as

q
dm= > av,=Va (6)
i=1
and is therefore specified once the parameters «; are
determined. One particular advantage to this approach is
that, by judicious choice of the basis vectors, prior
information can be incorporated into the inversion. For
example, if the basis vectors span only a subspace of the
model space then the inversion result will be constrained to
lie in that subspace. This type of control over the
final-inversion result is a useful adjunct to control via the
model norm W,,.
The equations for the subspace formulation are generated
by substituting (6) into (5) to yield

$m™ + Va]= ¢, + yiVa +2a"V'H, Va
+u{pa+ riVe +3a"ViHVa — ¢35}, (7)

This is a quadratic objective function to be solved for the
parameter vector a. Differentiating (7) with respect to & and
setting the resultant equation equal to zero yields

V'H, + uH)Va = —puVTy, —VTy,,. (8)

This system of equations is solved iteratively. At each
iteration the solution of this system requires that a line
search be carried out to find the value of the Lagrange
multipler p so that a specific target value ¢ is achieved.
This involves an initial guess for u, solving eq. (8) by SVD
for the vector @, computing the perturbation ém, carrying
out the forward modelling to evaluate the true responses
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and misfit, then adjusting u. The estimation of an acceptable
value of p typically requires 3 or 4 forward modellings. Final
convergence is reached when the data misfit equals the final
target misfit and the model norm is minimized.

3 CONVENTIONAL FLATTEST MODEL
INVERSION

The difficulties inherent in the conventional inversion
perspective that take the observed data and invert it to find
a ‘flattest” model, are clearly illustrated by the following
example which was motivated by tomographic DC-resistivity
monitoring done in conjunction with an in situ vitrification
(ISV) experiment (Oma, Farnworth & Russin 1982)
conducted by ORNL and the University of Tennessee. As a
2-D simulation of the melt phase of the ISV experiment, let
us consider a pole—pole DC-resistivity experiment over an
earth model consisting of two conductors buried in a
resistive host, see Fig. 1, with boreholes located at
x=-=55m and x = +5.5m. Electrodes are placed in the
boreholes at depths z =0.50, 1.72, 2.95, 4.15 and 5.95 m.
Each electrode is used in turn as a current electrode and the
potential is recorded at all other electrodes. This
arrangement produces 90 potential measurements, to which
1 per cent unbiased Gaussian noise has been added; these
noisy potentials form the observed data for the following
inversions.

The observed data were inverted in the conventional
sense to find the flattest model. This inversion embodies the
spirit of the archetypal Occam inversion (Constable, Parker
& Constable 1987, p. 293, above eq. 6)

minimize ¢ = ||V(m —mo)’[| + p 7" [Wa(d —a°™)%.  (9)

Figure 1. The true 2-D conductivity model used to generate the synthetic data. The resistive host has a conductivity of 0.01 Sm™" and the large

and small conductors have conductivities 1. Sm™! and 0.1Sm™!

horizontal axes are in metres.

respectively. The scale on the right-hand-side gives log,, ¢, the vertical and
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- 1.76

-1.80

—1.84

- 1.87%

Figure 2. The result of the conventional Mlattest model inversion of data generated by 2-D forward modelling the modcel shown in Fig. 1. The
scale on the right-hand-side gives log,;, o, the vertical and horizontal axes are in metrces.

The resulting model is shown in Fig. 2 and gives predicted
data which have a »*=90 misfit compared with the
observed data. Note that ¥” =90 corresponds to a plobal
percentage rms error of 1 per cent. The desired misfit was
achieved using a line search to find the appropriate value of
the trade-off parameter u~' The reference model was
chosen to be a constant with the background conductivity.
mo(x, 2)=0.01Sm~', howcver, the reference model has
very little influence on the fnal-inversion result sinee it is
annihilated by the operator V. If the square root of the first
term in the objective function, eq. (9), is used as a measure
of the ‘flatness’ of the model, then the flatness of the
original model which was used to gencrate the synthetic data
is 663, while the ‘Batness’ of the model shown in Fig. 2 is
6.4. Whilst the flattest model is extremely fiat, note that the
conductivity variation is predominantly around the bore-
holes and that the conductivity distribution is bounded by
0.008 < o(x, z)<<0.0188m™'. Clearly this inversion result
shows very little resemblance 1o the true model, This is a
demoenstration of the limitation of producing a single model
with minimum structure, in the face of the non-uniqueness
inherent in most geophysical experiments with a finite
number of noisy data and poor angular coverage. In
particular, we emphasize that the result of this inversion is
entirely subjective: an arbitrary (although plasuible) choice
of regularization has been made which leuds to an arbitrary
(flat) model being produced.

4 INCORPORATING PRIOR INFORMATION
USING MODEL NORMS

There arc a number of ways of obtaining reliable
information from noisy inaccurate data, for example, the
work of DBackus & Gilbert (1976) on appraisal and

inference, or the method of funnel functions (Oldenburg
1983), however, such mecthods are loo numerically
demanding to be applied to 2-D inverse problems. Yet,
geophysicists must do more than simply computing the
fattest model in the conventional style. This has led us to
formulate an alternative perspective for the geophysical
inverse  problem. which we now apply to the DC-
tomography experiment, The first step is to collect prior
information and to design a weighting matrix W, To be
specific we know that the 1SV melt zone is confined to the
region between the borehole and it is conjectured, on the
basis of thermodynamic arguments, that the melt zone
consists of a conducting core of molten material surrounded
by a resistive halo of desiccated earth all enveloped by a
warm moist conducting shell. Whether the overall response
of the melt zone is conductive or a resistive is unknown.
Hence we assume:

(1) the conductivity should vary smoothly.

(2) Conductivity variation is more likely to occur in the
region centred between the boreholes.

(3) The background conductivily is in the vicinity of
0.01Sm™",

From this prior information a weighting matrix W_, and a
reference model m, are consirucled., Since we will be
working on a 2-D (r, z) inverse problem, it is convenient to
restrict the objective function to be the sum of three terms

P = W, (m — m,,)||?
=t g,
=, || W (m —my)[* + a, [|W,(m — m,)|i*
+a, |W,.(m- mu)”2
=(m—m,)" (e, WW, +a,WIW, + o, WIW,)
X (m— m,) (10)



where W, W, W_ will be used to separately control
smallness of the model relative to the reference model, the
x-variation of the model, and the z-variation of the model,
respectively, For this case, W_ is a diagonal matrix with
elements }'},-\/ATAZ,- where Ax, is the length of the éjth cell
and Az; is its Lhickness, W, has elements +f;VAz/dy,
where dy; is the distance between the centres of horizontally
adjacent cells, and W, has elements +f] VAx, /dz, where dz;
is the distance belween the centres of vertically adjacent
cells.

In order to incorporate the prior information that the
conductivity variation should be manifest between the
borcholes we have incorporated spatial weighting functions
[ into W, It'[;“-/,: 1 then the deviation of the final model
from the base model for any cell has the same penalty.
Instead, for the ISV cxample, choosing f}, piven by

[, = max {0.02. l—-1.5exp (f [(X'IA_;“)Z + (Z’IA_ZZ”)ZD}
(11}

corresponds to the likelihood of greater model deviation
from the base model in the region surrounding x,,, z, The
scale factors 0.02 and 1.5 control the amount of deviation
and Av, Az, x,, and z, control the geometry of the deviation
from the prior model. For this example we choose Ax,
Az=3, 3 and (x,, z,) = (0., 2.) m corresponding to modeli
deviation between the boreholes. Since we expect model
variation to occur in the vicinity of model deviation we set
f =f"=f. It remains to choose a base modcl, and since
the background conductivity is assumed to be 0.01Sm™'
and the conductivity in the melt zone is too complex to
model a priori, we set m,=0.015m~'. With these choices
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any starling model will converge to the constant model
o=0.01Sm™ " in the absence of data constraints,

Using eq. (10), and incorporating data constraints in the
inversion outlined in Section 2, gives the result shown in
Fig. 3. This modecl gives predicted data which fits the
observed data to y? =90 with an objective function eq. (10)
measure of V¢, =2.5 which is to be compared with the
Vi =25 for the true model. The contributions to the
model norm and misfits are shown in Table 1. Notice that a
major improvemeut has been achieved towards an inversion
result, which in some general sense, rcproduces the true
madel. What is more important is the following: we can
conclude that, given the prior information listed above then
a conducting zone belween the borehole is implied by the
observed data, This might be compared 1o the conventional
flattest model inversion which implics that there exists at
least one mode! that fits the data and has cflectively no
structure in the inter-borehole region.

By varving the weight function, f,, a variety of models
with equal misfit may be constructed. For example, if the
prior information is modificd slightly so that the conductivity
variation is expected anywhere in the region between the
electrodes with equal likelihood, we could repeat the
inversion with a model norm of the form

L (x.z)e9R

f*'z{u.oz (r, 2y eor Lo nz)im2Ex=Ed zad)

(12}

This choice of f, produces the model shown in Fig, 4 with
the inversion statistics shown in Table 2.
We now have three models which give predicted data that

-0.69

-0.688

- 146

- 1.64

-2.21

2.41

(LTI r®

Figure 3. The resultant maodel after incorporation of prior information in the inversion of observed data. For this example a Ax, Az =3, 3and
(x. z,) = (0.. 2.) Gaussian-model norm were used. The scale on the right-hand side gives log,, o, the vertical and honizontal axes are in

melres.
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Figere 5. The results of the subspace inversion of data generated by 2-D forward modelling the model shown in Fig 1. For this ¢cxample a
constant-model-norm weighting was used, with block-basis vectors in the inter-borchole zone. See Table 3. Notice that the madel has structure
in the melt zone, althoupgh comparison with Fig. 1 indicates that the structure is somewhat 100 shaltow, too localized and doces not reproduce
the geometry of the true model. The scale on the right-hand side gives log,, o and is the same as in Fig. 1. The vertical and horizontal axes are

in metres,

Table 3. The y* and model-norm mcasures for the model shown in

Fig. &
Model ! ¢ ¢ P &
rue 37 63 1.76 186. 474,
inversion 90 66.1 1.24 435 244

inversion. Typically in the conventional approach, the need
for prior information to regularize an inversion is regarded
as an unforiunate but necessary fact of life. In this paper we
have advocated attaching a much greater significance to
prior information. In fact by looking at the inverse problem
from the perspective of prior information constrained by
observed data, we have shown that useful information can
be extracted. In practical terms, it is rare for the applied
geophysicist to be interested in knowing how the carth
deviates from ‘flatness’, more often he or she already
knows the carth is not ‘flat’ but rather, wishes to know
whether the observed data modify or constrain a prior
model. Given this perspective it is natural to construct an
inversion algorithm with the prior information incorporated
from the beginning and to include the obscrved data as
constraints.

The inversion cxamples that we presented were based on
the tomographic 2-D DC-resistivity inverse problem and
were motivated by a geotechnical conductivity-monitoring
experiment. The actual details of the field experiment are
not relevant to the ideas presented in this paper and for
clarity we have confined our attention to noisy synthetic
data. Further we emphasize that our theme is not specific to
the tomographic DC-resistivity inverse problem, but will
apply to any tll-posed inverse problem.
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