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Abstract

This paper considers problems of distributed parameter estimation from data

measurements on solutions of differential equations. A nonlinear least squares

functional isminimized to approximately recover the sought parameter function

(i.e. the model). This functional consists of a data fitting term, involving

the solution of a finite volume or finite element discretization of the forward

differential equation, and a Tikhonov-type regularization term, involving the

discretization of a mix of model derivatives.

The resulting nonlinear optimization problems can be very large and costly

to solve. Thus, we seek ways to solve as much of the problem as possible on

coarse grids. We propose to search for the regularization parameter first on a

coarse grid. Then, a gradual refinement technique to find both the forward and

inverse solutions on finer grids is developed.

The grid spacing of the model discretization, as well as the relative weight

of the entire regularization term, affect the sort of regularization achieved and

the algorithm for gradual grid refinement. We thus investigate a number of

questions which arise regarding their relationship, including the correct scaling

of the regularization matrix. For nonuniform grids we rigorously associate

the practice of using unscaled regularization matrices with approximations of

a weighted regularization functional. We also discuss interpolation for grid

refinement.

Our results are demonstrated numerically using synthetic examples in one

and three dimensions.

1. Introduction

Many inverse problems in applications involve the recovery of a coefficient function of a

system of differential equations. Instances include geophysics and medical imaging such as

3 This work was completed while the author was visiting at IMPA, Rio de Janeiro.
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DC resistivity [48], magnetotelluric inversion [42], diffraction tomography [15], impedance

tomography [6]; other applications include oil reservoir and aquifer simulation [16, 19]. The

forward problem is (a discretization of) a differential system, usually assumed linear:

A(m) u = q, (1)

where A refers to a differential operator defined on an appropriate domain � and equipped

with suitable boundary conditions. This operator depends on a model, m, which is to be

approximately recovered based on measurement data b on the solution u of (1).

Let the operator Q indicate the projection onto the locations in � to which the data are

associated. Thus, the data are viewed as a nonlinear function of the model:

b = QA(m)−1q + ǫ

where ǫ is the measurement noise. Since the data are noisy, and the inverse problem of

recovering m from it is often ill-posed even without noise [17, 49], there is no unique model

which generates the data. Therefore, a process of regularization is used to recover a relatively

smooth (or piecewise smooth) solution to a nearby problem which is unique, at least locally.

To solve the forward problem in practice it must be discretized, and we assume that this is

done using a stable, accurate finite volume or finite element method. Moreover, the model m

must be discretized as well. Thus, our forward model is written as

Au = q (2)

where the Nu × Nu matrix A is assumed nonsingular for simplicity. This matrix depends on

a parameter vector m of length Nm, A = A(m). In addition, Q becomes a matrix with Nu
columns. We have thus implicitly introduced two grids, one with which u is associated and

one for m. We assume an appropriate interpolation scheme to connect between the two grids,

which is embedded in A(m). Often in practice, these two grids are intimately and simply

related, e.g. we envision a grid of rectangular cells for u (in case that � is in 2 dimensions),

and m is then assumed to consist of the values of the model at cell centres. But here we keep

these two grids separate, as is common, for example, in control applications [46].

A regularization method often utilized in practice minimizes the Tikhonov functional

[17, 49]4

min
m

1

2
‖QA(m)−1q − b‖2 + β

2
‖W(m−mref)‖2, (3)

where W is typically a weighting matrix which does not depend on m, mref is a reference

model and β > 0 is the regularization parameter. Note that the choices ofW and mref involve

a priori information available on the model. Smoothness knowledge is incorporated into W ,

which typically consists of a mix of discretizations of the zeroth, first and second derivatives

of m [42, 50].

The optimization problem (3) can be very large indeed, involving up to a million variables

and more in three-dimensional applications. So, advantage must be taken of sparsity of A,

W and Q, and special-purpose software is called for [13, 22, 23]. Each typical iteration for

solving (3) may involve several solutions of the forward problem (2), hence the latter must be

performed very efficiently.

In this paper we consider a complementary approach for further significant reduction in

computational cost, namely, that of solving as much of the problem as possible on coarse grids

in u andm. Note that for problems where� ⊂ R
3 a solution of the forward problem on a grid

with 163 cells, say, typically costs less than 1% of the cost of solving the same problem on 643

cells. Thus, we consider the following algorithmic framework:

4 Throughout this paper the least squares norm is assumed unless specifically indicated otherwise.
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(1) Solve problems (3) on as coarse a grid as possible in both u and m to determine an

appropriate value for the parameter β.

(2) Onceβ has been determined, refine the grid gradually, i.e. solve a sequence of problems (3)

with the same value of β on finer and finer grids, using the solution of the most recently

solved problem, appropriately interpolated, as the first iterate for the solution process

of (3) on the next finer level.

(3) On the finer grid, adjust the value of β if necessary.

The idea of grid continuation in m or in u is hardly new (e.g. [2, 20, 35, 52]), but the

combination of finding β on a coarse grid and subsequently refining in both m and u is, and it

has a great potential for efficiency gain. Note that, as long as the u-grid is fine enough, the grid

refinement in u is not expected to make a marked difference in terms of regularization; yet, the

refinement in both m and u is crucial for achieving a significant reduction in computational

effort. A number of questions arise when attempting to carry out this approach in practice,

including the scaling of W and β on different grids and the interpolation between grids. We

examine these questions in what follows.

A significant volume of literature has been generated regarding the regularization

process (3), including the practical estimation of the regularization parameter β [17, 23, 24,

27, 32, 37, 42, 45, 49, 50]. It is also well known that this regularization functional tends to

smear discontinuities in the model, so if such discontinuities are known to be present and the

quality and abundance of the data is sufficient to recover them, then one may resort to other

regularizations such as total variation (TV) or the Huber norm [8, 18, 31]. However, these

latter regularization functionals tend to yield optimization problems which in practice are

much harder to solve [9], and the determination of β may be less clear as well. We consider (3)

for the discussion following.

In this paper we use the Morozov discrepancy principle [17,37,42] in order to determine

a value for β on a specific grid. Although this principle is not always the most practical,

it is the simplest for the purpose of our illustrations. For other methods to evaluate β,

see [17, 24, 28, 42, 50]. Any of these methods involves solving (3) for a few β-values, and

a standard continuation in the parameter β, while keeping the grids fixed, is applied. In

order to be able to do this successfully, as well as use results from different grids, we assume

that the model m depends continuously on β. This assumption does not always hold for

nonlinear problems, especially if the TV norm is used and m may have jump discontinuities.

However, there are many cases of practical interest where this assumption appears to hold;

see, e.g. [12, 17, 37, 47, 50] and references therein. Indeed, if continuity does not appear to

hold then, rather than further pursuing the search for a value for β, we must conclude that the

modelling process is inadequate and replace the discrepancy principle.

In fact, the discretization inm is also a form of regularization (e.g. [17,28] and references

therein). Assuming a uniform grid with spacing h for m, the regularization effect is stronger

the larger h is. However, the dependence of the model’s regularity on h is often more erratic,

and h itself, unlike β, cannot be varied at will during an efficient multilevel computation.

The plan of the paper is as follows. We gather preliminaries in section 2. These include

a sketch of the continuation process in β for a fixed grid. We also indicate why, although

parameter continuation as outlined above appears natural, for small values of β which occur

in practice care must be taken during the continuation process, both in β and in the grids.

Thus, it is important in practice to obtain the best initial iterate possible, especially when

the continuation process involves grid refinement, where the cost of each iteration increases

significantly. This, in turn, necessitates paying special attention to the question of scaling in

terms of β and the m-grid.
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In section 3 we discuss the ingredients necessary for a successful grid continuation

process. At first we discuss the scaling of the discrete regularization matrix W . Practitioners

in data inversion often tend to employ unscaled differences in W , even if the grid in m is

nonuniform [4, 18, 23, 42, 45]. We recall in section 3.1 the correct scaling of W so that β

remain constant as the grid is refined, both for uniform and for nonuniform grids (cf [17,41]).

For several uniform grids, the regularization parameters of an unscaledW must be modified so

that the scaled β remains constant for an effective grid-continuation process—see example 3.1.

Even for one uniform grid it can be argued that a correct scaling can be important to observe,

because this allows obtaining a good guess for the value of β for one problem based on a prior

investigation of another, similar problem, independent of the grid involved and the combination

of different derivatives used inW .

Nonuniform grids are often used in remote sensing applications [23, 39, 42], frequently

with unscaled differences. This practice does not appear to have been rigorously explained

before; rather, heuristic justifications have been given. We consider in section 3.3 a grid

transformation which allows a rigorous explanation for employing an unscaled W , even for

a nonuniform grid. We do not attempt, though, to propose or completely justify the actual

choice of such a grid.

In section 3.4 we further consider continuation approaches in the grid. When refining the

grid and using the solution on a coarser grid to define a starting iterate for the finer grid, the

simplest approach is to use a piecewise constant interpolation. This is natural ifm is interpreted

as a piecewise constant grid function, which makes sense when the regularization functional

contains no derivatives of m. However, in other cases piecewise constant interpolation can be

improved upon, as we demonstrate in example 3.3.

Examples in one dimension are used in section 3 to demonstrate various aspects of the

proposed techniques and analysis in a tractable way. However, grid continuation becomes

much more practically important in more space dimensions. In section 4 we experiment with

a three-dimensional example, where grid continuation both in u and inm is used to advantage,

reducing the total computational cost by a factor of more than 4.

Conclusions and further discussion are offered in section 5.

2. Preliminaries

In this section we recall some well known facts and procedures regarding the determination

of a value for β along with a solution of (3). We then make an observation regarding a simple

continuation approach, in either β or the grid, for small β values.

2.1. Reducing β gradually to fit the data

Let

J = −QA−1G where G = ∂(A(m)u)

∂m
. (4)

The sensitivity matrix J describes the change of the predicted data Qu(m) with respect to

changes in the modelm. Assume that a tolerance Tol is known and that the inverse problem is

solved using the discrepancy principle, that is, the inverse problem is posed as that of findingm

such that (2) holds and

‖Qu− b‖ 6 Tol. (5)

If the data vector has length Nb and contains noise with known standard deviation σ then set

Tol = Nbσ (6)
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and require (approximate) equality in (5).

Next, consider the constrained optimization problem

min 1
2
‖W(m−mref)‖2 (7a)

s.t. ‖QA−1q − b‖2 6 Tol2. (7b)

Forming the Lagrangian of (7) and differentiating to obtain the necessary conditions for an

optimum, and then comparing to similar necessary conditions of (3), it becomes clear that β

should in fact approximate the inverse of the Lagrange multiplier of the data fitting constraint.

Since this multiplier is typically increased from zero until equality is reached in (7b), it is

natural to consider a practical procedure in which β is started at a large positive value and is

then subsequently decreased until (5) is satisfied. The value of β is thus related to the noise

level in the data. It should not be ‘too small’, to avoid fitting the noise rather than the data.

Moreover, for small values of β the nonlinear problem ofminimizing (3) can be difficult to

solve, because J is typically rank-deficient and/or ill-conditioned, while for large values of β

this problem becomes easier, because the simple quadratic term β

2
‖W(m−mref)‖2 dominates.

Thus, the continuation procedure of gradually reducing β also has the effect of gradually

increasing the nonlinearity of the problem, allowing the option of considering only local

convergence properties of optimization strategies.

2.2. An observation on simple continuation with small β

In practice, when using a Newton or a Gauss–Newton method for solving the nonlinear least

squares problem (3), it has often been our experience that continuation in either the grid or

in β is straightforward and effective when β is so large that the regularization term βW TW

dominates the Jacobian matrix. For instance, the Jacobian matrix for the Gauss–Newton case

is

C = J T J + βW TW. (8)

However, for small β, we have observed that more Newton-like iterations are needed for each

continuation step.

In fact, often the Newton-like correction appears to be not particularly small in norm for

the first iterate (i.e. starting with the iterate provided by the continuation process), even if the

objective function value appears to be close to minimum. This may occur because C typically

has a small singular value when β is small. Correspondingly, the residual norm of the gradient

of (3) may rise at first before starting to descend (for the latter to occur the variation in C

must not be large), and the whole process requires a few iterations per grid or the β-value to

converge.

Thus, for small values of β, we must attempt to find a first iterate at each continuation

step which is particularly close to the minimizer if we want the process to terminate after only

one or two iterations per continuation step.

3. The scaling of W and β, and grid continuation

Throughout this section we consider inverse problems in one space dimension, i.e. the

differential equation (1) is defined on an interval [0, xf ]. The results generalize directly

to multi-dimensional problems.
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3.1. Discretizing a continuous regularization term

Here we introduce notation and quickly derive some known results which prove useful in

what follows. Following [17, 41] and many others, let us consider the Tikhonov term as

a discretization of a continuous regularization term, which in one dimension on an interval

[0, xf ] may be written as

T = 1
2

∫ xf

0

{β0(m−mref)
2 + β1((m−mref)

′)2 + β2((m−mref)
′′)2} dx.

The weights βi all relate to one parameter β by assuming that there are fixed values k0, k1 = 1

and k2 such that βi = kiβ, i = 0, 1, 2. Assuming for the time being that β2 = 0, and setting

mref = 0 to save on notation, we will concentrate below on the functional

T = 1
2

∫ xf

0

{β0(m)2 + β1(m′)2} dx. (9)

Next we discretize (9) on a generally nonuniform grid:

0 = x0 < x1 < · · · < xNm−1 < xNm = xf . (10)

Note that in principle this grid has nothing to do with the grid on which u is discretized. (In

practice, however, the u-grid and the m-grid often coincide.) Let

hi−1/2 = xi − xi−1, 1 6 i 6 Nm,

hi = (xi+1 − xi−1)/2 = (hi+1/2 + hi−1/2)/2, 0 6 i 6 Nm,

(x−1 = −x1, xNm+1 = 2xf − xNm−1)

h = max
16i6Nm

hi−1/2,

h̄ = xf /Nm = mean (h).

(11)

The vector of unknowns m has elements which are considered as approximations to m at

midpoints,

mi−1/2 ≈ m(xi − hi−1/2/2), 1 6 i 6 Nm. (12)

We obtain

Th = β0

2

Nm
∑

i=1
hi−1/2m

2
i−1/2 +

β1

2

Nm
∑

i=0
cihi

(

mi+1/2 −mi−1/2
hi

)2

, (13)

where ci = 1, 1 6 i 6 Nm − 1, c0 = cNm = 1/2. We set either Dirichlet or Neumann

homogeneous boundary conditions form−1/2 andmNm+1/2: in the absence of more information
we prefer Neumann:

m−1/2 = m1/2, mNm+1/2 = mNm−1/2. (14)

When we write (13), (14) in matrix-vector form, the matrixW , which appears in the term

‖W(m−mref)‖2 in (3) and (7a), is given by

W =
(√

k0W0

W1

)

(15a)

W0 = diag
{√

hi−1/2
}

(15b)

W1 = diag
{
√

hi
}









−1/h1 1/h1
−1/h2 1/h2

. . .
. . .

−1/hNm−1 1/hNm−1









. (15c)
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Note thatW0 is Nm ×Nm, whereasW1 is (Nm − 1)×Nm.

Consider a uniform grid, where hi = h, hi−1/2 = h, for all relevant i. Then W1 is in a

divided difference form, and bothW0 andW1 are scaled by
√
h. Similarly, if β2 6= 0 we keep

k2 = β2/β1 independent of the grid and obtain a matrixW2 of size (Nm − 2)×Nm consisting

of discretizations of the second derivative in divided form and scaled by
√
h.

Remark 3.1. In d space dimensions the scaling factor
√
h = h1/2 becomes hd/2, as can be

easily verified; see also section 4.

With this scaling ofW it is expected that β be independent of the grid spacing, provided

that m is smooth and the grid is sufficiently fine, because Th in (13) clearly tends to a well-

defined limit. Indeed, the two terms of the integrand in (9) are approximated in (13) using

midpoint and trapezoidal quadrature, respectively:

Theorem 3.1. If m ∈ C1[0, xf ] then, with β0 and β1 held fixed in (9) and (13),

T − Th = O(h2).

If m contains a jump discontinuity, however, then T of (9) is unbounded. If Th were

to remain faithful then, as the grid is refined, there would be an index i = j such that
mj+1/2−mj−1/2

hj
= O(h−1

j ), so Th would blow up too as h → 0. To keep T and Th both finite and

close, we must change the regularization functional, e.g., switch to the l1 (TV) norm in (9).

Thus, keeping β fixed with the above scaling of W should generate similarly looking

solution profiles on different grids, provided the coarser grid is already sufficiently fine for the

model.

For a uniform grid it may be argued that the general regularization matrix

W =
(

√
β0W0√
β1W1√
β2W2

)

may be written in an unscaled form, i.e. with W0 = I , and W1 and W2 written using

unscaled differences. The dependence on h is then relegated to the constants, namely,

β0 ∝ h, β1 ∝ h−1, β2 ∝ h−3. However, in practice the determination of these coefficients is
often a hard, open problem, and their dependence on the grid (i.e. the scaling involved) must

therefore be kept in mind.

3.2. A numerical example

For the numerical examples in this paper we have implemented versions of two Newton-like

iterations, see [23], for the nonlinear optimization problems obtained upon setting the grids in

u and m and determining a value for β. The first, denoted GN, is the Gauss–Newton method

for the nonlinear least squares problem (3).

The second method, denoted NP, uses a two-phase iteration: (i) apply a full Newton step

to the nonlinear equations

grad L = 0, (16a)

where

L = L(u,m, λ) = 1

2
‖Qu− b‖2 + β

2
‖W(m−mref)‖2 + λT (A(m)u− q) (16b)

is the Lagrangian of the constrained formulation for the same optimization problem,

min
m,u

1

2
‖Qu− b‖2 + β

2
‖W(m−mref)‖2

s.t. A(m)u = q. (17)
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Table 1. Numerical experiment 1: iteration counts and misfit levels. Uniform grid spacings

hu = 2−7 for u and h for m are used.

Noise β h Method Iterations ‖Qu− b‖

5% 3.0e−6 2−4 GN 7 2.80e−2
2−5 7 2.81e−2
2−6 7 2.80e−2
2−7 7 2.80e−2

5% 3.0e−6 2−4 NP 5 2.80e−2
2−5 5 2.81e−2
2−6 5 2.80e−2
2−7 5 2.80e−2

5% 2−3 × 3.0e−6 2−7 NP 6 2.61e−2
23 × 3.0e−6 2−7 5 3.43e−2

10% 8.0e−6 2−4 GN 7 5.59e−2
2−7 7 5.60e−2

10% 8.0e−6 2−4 NP 5 5.59e−2
2−7 5 5.60e−2

(ii) Set

u = A(m)−1q, (18)

once m has been updated.

See [23] for additional details and discussion. The objective function (3) is used for both

GN and NP as a merit function.

Example 3.1. We generate data for the model

−(m(x)u′)′ = 1,

u(0) = u(1) = 0,

m(x) = 1 + 3e−(x−0.18)
2/0.01 + 1.5e−(x−0.6)

2/0.02.

This is a smooth model. The data are generated at 127 equidistant points, and 5 and

10% random noise levels, using a normal distribution with uniform standard deviation, are

added. This generates data fitting tolerances Tol = 2.83 × 10−2 and Tol = 5.66 × 10−2,
respectively. The forward model uses a straightforward centred discretization on a uniform

grid with step size h(u) = 2−7 = 1/128. We setmref = 0, β0 = 0 and β2 = 0, and concentrate

on β = β1 in (9), (13). Some experimentation yields that the values β = 3.0 × 10−6 and
β = 8.0× 10−6 result in data misfits which are close to the tolerances for the 5 and 10% noise
levels, respectively.

Table 1 displays iteration counts and misfit levels, starting in all cases from the ‘cold start’

iterate m ≡ 1, u by (18) and, for NP, λ ≡ 0. The stopping criterion for the nonlinear iteration

is when ‖δm‖ < 10−4‖m‖ or when the norm of the gradient of (3) is below 10−8. No line
search is needed in any of the results reported here.

In figure 1 we display the curves obtained for m on the coarse grid h = 2−4 as well as on
3 fine grids h = 2−7 obtained by (i) keeping β fixed; (ii) keeping h−1β fixed; and (iii) keeping
hβ fixed. When β is kept fixed the results on the fine and the coarse grids look rather close.

This agrees with theorem 3.1. Keeping hβ fixed results in an undue flattening of the model,

and the data fitting error is unacceptably large. Keeping h−1β fixed results in a wiggly curve
which fits too much of the noise.

Next we solve for h = 2−7, β = 3.0×10−6, starting from the simply interpolated solution
of the coarser problem h = 2−4 and the same value for β. Whereas starting from the ‘cold
start’ requires five iterations according to table 1, here it takes NP four iterations to converge,
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Figure 1. Recovered m for a smooth model with 5% noise using (1) the coarser grid spacing

h = 2−4 for m with β = 3.e−6, denoted ‘c’; (2) the finer grid spacing h = 2−7 for m with

β = 3.e−6, denoted ‘f1’; (3) the finer grid spacing h = 2−7 for m with β = (3.e−6)/8 (keeping
h−1β fixed) denoted ‘f2’; and (4) the finer grid spacing h = 2−7 for m with β = 8 ∗ (3.e−6)
(keeping hβ fixed) denoted ‘f3’. The case where β is kept fixed as the grid is refined yields the

results closest to those on the coarser grid.

(This figure is in colour only in the electronic version, see www.iop.org)

displaying the phenomenon discussed in section 2.2 where the norm of the gradient increases

at the first iteration before starting to descend. A more gradual grid refinement does better. A

similar phenomenon occurs when continuing in β for a fixed grid, when the value of β is small

while the relative change in β is not.

Next we repeat the same experiment with noise level 10%. Some results are displayed in

table 1. Thebehaviour is similar to that observed for the lower noise level. The recovered profile

contains slightly less detail than before, but the scaling and convergence features captured in

figure 1 and theorem 3.1 remain unchanged.

Note that for β at the correct level for the given noise, the number of Newton or Gauss–

Newton iterations does not change as the grid inm becomes finer, in agreement with [29]. We

return to this point in section 5.

We have also experimented with β2 6= 0, i.e., using a mix of first and second derivatives in

the regularization. When employing a divided difference scaling with
√
h inW and keeping β

fixed, the resulting solution profiles for m are very close on different grids, while they vary

more significantly when βi values are changed.
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3.3. Weighted scaling for a nonuniform grid

The general nonuniform grid (10) is discussed in section 3.1 without regard to where it came

from. The regularization functional (9) is uniformly weighted over the interval of integration,

which reflects a tacit assumption that information is equally available and equally reliable

everywhere in x.

This is not the case in a typical geophysical application, where the measurements are

normally taken at the surface of the earth, and where information quality deteriorates as depth

(which we call here x) increases. Increasingly large step sizes in the grid are then taken, not

becausem is expected to be smoother, but because less is possible to recover as depth increases.

We therefore pursue the assumption that similar importance should be placed on each

grid element, regardless of its size, in the discretized regularization functional. This leads to a

weighted Tikhonov functional and its discretization. Similar assumptions are used in [36,42]

and elsewhere. In this section we do not attempt to justify this choice of a priori information.

Rather, we show how to interpret this information when working with different grids. This is

important for the performance of grid continuation algorithms.

We think of the grid (10), (11), as a sufficiently smooth transformation of a uniform grid

with spacing h̄. Thus, assume there is a differentiable, monotonically increasing function

ρ : [0, xf ] → [0, xf ] such that

ρ(ih̄) = xi, i = 0, 1, . . . , Nm. (19)

Clearly this function is invertible, so there is a corresponding inverse transformation ψ such

that ψ(ρ(ξ)) = ξ, 0 6 ξ 6 xf , and we may consider in place of (9) the regularization

functional

Tψ = 1

2

∫ xf

0

{

β0m
2 + β1

(

dm

dψ

)2
}

dψ. (20)

Letting

ω(x) = dρ

dξ
(ψ(x)) = dρ

dξ

∣

∣

∣

∣

ξ=ψ(x)

we have dψ = ω−1 dx, dm
dψ

= ωm′. Thus,

Tψ = 1
2

∫ xf

0

{β0m2 + β1(ωm′)2}ω−1(x) dx.

Example 3.2. A possible choice is an exponential grid

ρ(ξ) = cξ − 1
d

, whence (21a)

ψ(x) = logc[dx + 1], (21b)

where c > 1 is a fixed parameter and d = cxf − 1. This is indeed an exponential grid:

xi = (ch̄)i − 1
d

. (21c)

The weight function is then

ω(x) = (dx + 1) ln c

d
. (21d)

The function ω(x) increases as x increases.
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In the discretization we now obtain

T
ψ

h = β0

2

Nm
∑

i=1
hi−1/2ω

−1(xi−1/2)m
2
i−1/2 +

β1

2

Nm
∑

i=0
cihiω(xi)

(

mi+1/2 −mi−1/2
hi

)2

. (22)

Theorem 3.1 still applies to Tψ − T
ψ

h , with the obvious modifications in notation.

Note that with an exponential grid (21), or any other grid such that hi+1/2 > hi−1/2,
the weights in (22) for the discretization of m′ increase in size as x (or i) increases, while
those for m decrease: as we get further from the surface boundary, the influence of the data

deteriorates, hence the regularization term should induce more flatness (i.e. closeness to the a

priori mref ) and be less mindful of the actual values of m needed for the data fitting.

Often, for a given grid (10) we do not really have a grid function ρ defined everywhere,

nor do we know ρ(ξ) explicitly as we do in (21). Thus, it makes sense to approximate

ω(xi−1/2) = ρ(ih̄)− ρ((i− 1)h̄)
h̄

= xi − xi−1

h̄

= hi−1/2/h̄.

Likewise, ω(xi) = hi/h̄. Thus, the weights in (22), not surprisingly, turn out to be precisely

those for a uniform grid, with the average step size h̄ for spacing:

T
ψ

h = h̄β0

2

Nm
∑

i=1
m2i−1/2 +

β1

2h̄

Nm
∑

i=0
ci(mi+1/2 −mi−1/2)

2. (23)

Since the approximations for ω are also second-order accurate we have obtained the following

theorem.

Theorem 3.2. Ifm ∈ C1[0, xf ] and the grid is defined as in (19) by a monotonically increasing

function ρ ∈ C1[0, xf ] then, with β0 and β1 held fixed in (20) and (23),

Tψ − T
ψ

h = O(h̄2).

Remark 3.2.

• The expression (23) depends on the grid only through its sizeNm and the presumed location
of the mi−1/2, which in turn appear in the discretization A(m). (The values of m which
are needed in the midpoints of the u-grid for A(m) are obtained by a piecewise constant

interpolation, and this is where the abscissae of the m-grid, (10), come in.)

• The rationale for (23) is similar to that for error equidistribution (e.g. [2], chapter 9), in
that the underlying assumption is that each grid element has equal importance, which its

relative size should reflect.

The above remarks on (23) are in contrast to the unweighted expression (13). For

each of these two expressions, if we keep β constant and refine the grid in m then (for a

sufficiently fine coarsest grid) this process is expected to yield a similarly looking profile

form. This profile would generally be different, though, for the two regularization functionals.

We have experimented with nonuniform grids on the setup described in example 3.1. The

essential observations are indeed that using the unweighted expression (13) or the weighted

expression (23) may produce a significantly different profile for m, while changing the

resolution h̄ for the same grid function ρ(ξ) has a much smaller effect in this sense.

The experiments in [22, 23] were performed using the expression (23) in the Tikhonov

functional. This is a usual practice which theorem 3.2 justifies. A question which remains
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unanswered, however, is how the grid (10) is actually determined. Indeed, in instances such as

the magnetotelluric problem [23] the solution u of the forward problem, not m−mref , has an

evanescing behaviour to which an exponential grid such as (21) can be tailored. It is of course

convenient to use the same grid for m as well, but such a choice appears to be more specific

than has actually been rigorously justified in the literature.

3.4. More on grid continuation

The simplest grid continuation procedure for m would use a piecewise constant interpolation

as the grid is refined in order to define the next first iterate. This is commensurate with the

interpretation of the model as piecewise constant. However, if the regularization functional

involves derivatives then the term W TWm effectively takes discrete derivatives of m, and a

simple piecewise constant interpolation increases the magnitude of these discrete derivative

approximations. Generally, if T involves n derivatives then m should be best interpreted

as representing a piecewise polynomial function in Cn−1. This leads to a conforming finite
element interpretation for the discretization of T .

In case of T of (9), if β1 = 0 then a piecewise constant interpolation suffices, but for the

more interesting case where β1 6= 0 a local piecewise linear interpolation is preferred: for each

pair of consecutive coarse grid points in turn, apply linear interpolation for all fine grid points

which fall within that coarse grid subinterval. The process is symmetrized by repeating from

right to left and averaging.

The field u for both GN and NP is evaluated on the finer grid by solving the forward

problem (2), once an iterate for m has been established. However, for large problems the

forward solution process also involves an iterative method and thus requires a starting iterate.

The discretization scheme of the forward problemoften provides a natural interpolation scheme

for u.

Example 3.3. We consider the same model as in example 3.1. Again a 5% noise is added

to the synthetic data. But now we assume that the data are known only at 15 equidistant

points. Moreover, as we refine the grid we do so simultaneously for the grids in m and in

u, Nm = Nu + 1 = h−1. The work per iteration on coarser grids is therefore considerably
smaller than on finer grids, sowe are particularly interested in reducing the number of iterations

required on the finer grids to a minimum.

We set β0 = β2 = 0, and concentrate on β = β1. Our initial guess is m = mref ≡ 1, u

by (18) and λ ≡ 0. We solve the problem on a uniform grid with h = 2−4, for β = 10−3,
using either NP or GN (see section 3.2).

Table 2 lists iteration counts for different combinations of method and continuation

technique in the grid. We recorded the following continuation combinations:

• The continuation sequence in the grid involves four grids with step sizes h =
2−4, 2−5, 2−6, 2−7. The continuation methods are:

(i) cns—the simplest piecewise constant interpolation.

(ii) lin—local linear interpolation.

These interpolations are used for m, and then (18) is used for u and a piecewise linear

interpolation for λ, if needed, to begin the iteration on each grid.

• The continuation sequence in β involves four values (three steps), β = 1.0× 10−3, 5.0×
10−5, 1.0 × 10−5, 3.0 × 10−6. The nonlinear problem gets harder as β gets smaller. A
simple continuation method in β is used.
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Table 2. Iteration counts for various methods of determining first iterates by continuation in m-

and u-grids or in β.

Method β h−1 Cont Itns Method β h−1 Cont Itns

NP 1.0e−3 16 no 4 GN 1.0e−3 16 no 6

32 cns 2 32 cns 2

64 cns 2 64 cns 2

128 cns 2 128 cns 2

NP 1.0e−3 16 no 4 GN 1.0e−3 16 no 6

32 lin 2 32 lin 2

64 lin 1 64 lin 1

128 lin 1 128 lin 1

NP 1.0e−3 16 no 4 GN 1.0e−3 16 no 6

5.0e−5 4 5.0e−5 4

1.0e−5 3 1.0e−5 4

3.0e−6 3 3.0e−6 6

NP 3.0e−6 16 no 5 GN 3.0e−6 16 no 8

32 cns 3 32 cns 5

64 cns 3 64 cns 4

128 cns 2 128 cns 3

NP 3.0e−6 16 no 5 GN 3.0e−6 16 no 8

32 lin 3 32 lin 3

64 lin 3 64 lin 3

128 lin 2 128 lin 2

From table 2 we can see that the more sophisticated interpolation technique for grid

refinement does improve the process occasionally by one iteration per grid continuation, which

can be important.

We have also experimented with a cubic spline interpolation for the grid refinement, but

this yielded no further improvement over the local linear one.

Note, finally, that the last steps of continuation in the grid are much more expensive than

the first ones. In these, only one or two iterations, rather than four or five from a ‘cold start’,

are needed for the best variants, even for the smallest value of the regularization parameter!

4. A three-dimensional example

In this section we conduct some numerical experiments with synthetic data using the forward

model arising in DC resistivity or impedance tomography [6, 48] in three dimensions. Thus,

the following differential equations are defined in a domain � ⊂ R
3:

divJ = q, (24a)

J + emgrad u = 0. (24b)

This system is equipped with the following boundary conditions: on the boundary ∂� the flux

in the normal direction vanishes,

J · n
∣

∣

∂�
= 0, (24c)

which specifies u up to a constant. To fix that constant we also require
∫

�

u dV = 0. (24d)
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Note that the flux J can be eliminated from (24). The differential equation can then

be seen as the three-dimensional extension of the differential equation used in examples 3.1

and 3.3, except that the model appears in the exponent in σ = em. This handles the practical

difficulty often arising when the conductivity σ varies widely over a few orders of magnitude,

and it automatically respects the physical requirement that σ > 0. The price is a loss of

resolution. The resulting forward problem is in the form (1), and it is well posed for a given

model m(x, y, z).

Below we assume that the domain � is the unit cube,

� = [−1, 1]3,
and consider discretization on a uniform, staggered tensor grid. Thus, withN a positive integer

andh = 2/N , we consider� as the union ofN3 cubic cells of sideh each. Corresponding to the

notation of section 3 we approximate m in the (i, j, k)th cell by a constant mi−1/2,j−1/2,k−1/2,
1 6 i, j, k 6 N . Thus, Nm = N3.

We use the same cell grid to construct a finite volume discretization for the differential

system (24). For details see, e.g., [21, 52]. Only short, centred differences are used. The

components of J = (J x, J y, J z)T are placed at the face centres of the cells. Integrating (24a)

over cell (i, j, k) (whose centre coordinates are denoted (i−1/2, j−1/2, k−1/2)) then gives
J xi,j−1/2,k−1/2 − J xi−1,j−1/2,k−1/2 + J

y

i−1/2,j,k−1/2 − J
y

i−1/2,j−1,k−1/2 + J
z
i−1/2,j−1/2,k

−J zi−1/2,j−1/2,k−1 = hqi−1/2,j−1/2,k−1/2, 1 6 i, j, k 6 N. (25a)

The boundary conditions (24c) are naturally used to eliminate values of J x, J y , or J z at cells

which are next to a boundary in (25a).

The components of u are placed, like m, at cell centres. The x-component, say, of (24b)

is then discretized centred at the x-face of the cell, yielding

h−1(ui+1/2,j−1/2,k−1/2 − ui−1/2,j−1/2,k−1/2) = σ−1
i,j−1/2,k−1/2J

x
i,j−1/2,k−1/2, (25b)

where

σi,j−1/2,k−1/2 = 1/(e−mi+1/2,j−1/2,k−1/2 + e−mi−1/2,j−1/2,k−1/2) (25c)

is a harmonic average of two neighbouring cell properties. This can be written in matrix

notation as

Ĝu = S(m)−1J (26)

where the matrix Ĝ discretizes the gradient operator and depends only on the grid and the

ordering of the variables. The matrix S(m) is a diagonal matrix which depends on m as

per (25c). Note that it is easy to differentiate the product S(m)v with respect to m; such a

directional differentiation yields a bidiagonal matrix.

Using expressions similar to (25b) also in the y-and z-directions, the components of J

in (25a) which are inside � can be eliminated. This yields a system of N3 linear algebraic

equations for u based on a seven-point discretization stencil. This system of equations has a

constant null-space, but it becomes nonsingular upon imposing a discrete version of (24d).

We now turn to the discretization of the regularization operator which is written in three

dimensions as

T = 1
2

∫

�

(

β0m
2 + β1|gradm|2

)

dV. (27)

The gradient operator in (27) is discretized using short differences, precisely as for u in (26).

This yields

Th = β0

2
mTVcm +

β1

2
mT ĜTVf Ĝm (28)
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Table 3. Numerical experiment 3: iteration counts andmisfit levels for different grids and β values.

β h Iterations ‖Qu− b‖/‖b‖

1.0e−4 2−2 5 3.1e−3
1.0e−3 2−2 5 1.5e−2
1.0e−2 2−2 6 7.9e−2
1.0e−4 2−3 5 2.9e−3
1.0e−3 2−3 5 1.4e−2
1.0e−2 2−3 5 7.2e−2
1.0e−4 2−4 5 2.8e−3
1.0e−3 2−4 5 1.3e−2
1.0e−2 2−4 5 7.1e−2

where Vc and Vf are diagonal matrices with the integration cell volumes as their elements.

ThematrixW , which appears in the term ‖W(m−mref)‖2 in (3) and (7a), is given by (15a)
with

W0 = V
1
2
c and W1 = V

1
2

f Ĝ.

If we use uniform grid spacing h then the diagonal elements of Vc and Vf are all equal to h
3,

cf remark 3.1.

Example 4.1. Using the forward problem discretization described above we generate data

for (24) using the smooth model

m(x, y, z) = exp
(

− (x − 0.3)2 − (y − 0.3)2 − (z− 0.3)2
)

−3 exp
(

− (x + 0.3)2 − (y + 0.3)2 − (z + 0.3)2
)

.

We also choose

q(x, y, z) = δ(x − 0.3)δ(y + 0.3)δ(z + 0.3)− δ(x + 0.3)δ(y − 0.3)δ(z− 0.3).

This yields a unique u by (24).

The data is sampled at 43 uniformly spaced grid points in the interval [−0.6, 0.6].
The forward problem (2) is solved to a tolerance of 10−6, using BiCG-stab with SSOR
preconditioners [3]. We set β0 = 0. The optimization for (3) is performed using an inexact

GN method [33, 34, 40, 43], where the linear system

(J T J + βW TW)δm = r

is solved by its equivalent least-squares system to accuracy of 0.1 using the CGLS method.

The nonlinear iteration is terminated when the relative gradient norm is below 10−3.
We conduct two experiments.

(1) First we add a 1% noise to the data and solve (3) for three values of β, iterating for each

from a ‘cold start’ on three different grids.

Note of the results gathered in table 3 that the relative misfit varies little with the grid.

This demonstrates that indeed it is possible here to zoom in on an adequate β value using

calculations only on the coarse grid withNm = 83, in preparation for recovering themodel

with one β value only on the fine grid with Nm = 323. Furthermore, using a smaller β

or h does not increase the cost in iterations for this example.
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Table 4. Numerical experiment 4: iteration counts and misfit levels for grid continuation.

Noise β h Iterations ‖Qu− b‖/‖b‖

1% 8.0e−4 2−2 5 1.2e−2
8.0e−4 2−3 2 1.0e−2
8.0e−4 2−4 1 1.0e−2

5% 7.0e−3 2−2 4 5.8e−2
7.0e−3 2−3 1 5.4e−2
7.0e−3 2−4 1 5.2e−2

10% 2.0e−1 2−2 4 1.1e−1
2.0e−1 2−3 1 1.0e−1
2.0e−1 2−4 1 1.0e−1

(2) Next, having selected β based on coarse grid information we use this value and calculate

solutions on the gradually finer grids with Nm = 163 and Nm = 323. We use the same

model and data but with 1, 5 and 10% noise levels. In order to interpolate m and also u

from one grid to the next we use continuous, piecewise linear interpolation. This is a local

operation.

The results are recorded in table 4. Note the improved iteration counts for the finer grids.

Since runs on the finest grid are so much more expensive, an improvement factor of about

4 in CPU time is obtained by the gradual refinement for a fixed value of β.

Remarks.

• The results demonstrate clearly the advantage of our proposed method. Note that each
iteration on the coarsest grid is about 300 times cheaper than the same iteration on the

finest grid; thus our continuation method enjoys substantial improvement over existing

methods where β is obtained on the fine grid.

• The consistency in the results of table 3 over different grids can be obtained only if the
coarse grid is not too coarse; that is, if we can finduH such that ‖QuH−b‖ is small enough.
If the noise level is lower than the discretization error, then the coarse grid may not be

able to produce the data accurately enough. This has happened in the above example for

a noise level of roughly 0.1%. In this case we could not deduce about the regularization

parameter based on the coarsest grid calculations.

• This raises the question, what is the coarsest grid that can be used for the indicated
purpose? We do not have a rigorous answer. A similar basic lack of rigour occurs also in

other multilevel and multigrid methods for practical problems: the coarsest grid must be

‘fine enough’ to set the multilevel machinery in motion.

• In table 4 we see that, as expected, the misfit is slightly higher on the coarse grid then on
the fine grid. This suggests that when the β search is conducted on the coarsest grid it

need not be very accurate.

5. Conclusions and further discussion

In this paper we have investigated a number of issues related to a multilevel continuation

approach for the rapid solution of the nonlinear inverse problem (3). These include the use of

grids for the model m and the forward solution u = A(m)−1q, as well as the regularization
matrixW and the parameter β.
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• We have repeatedly observed that, for small values of β which occur in practice, Newton-
like iterations may stall at first, even when starting from a close initial iterate. Thus:

(i) Although it is possible5 to additionally regularize C, care must be taken when

designing algorithms which attempt to change β at each iteration.

(ii) When contemplating grid continuation, care must be taken to have as close a starting

iterate as possible, and this highlights the importance of the correct scaling ofW .

• We have investigated the scaling of W for both uniform and nonuniform grids and

interpreted rigorously the frequent use in practice of unscaled W . In particular, for

nonuniform grids, theorem 3.2 indicates how a uniform scaling may be interpreted as

corresponding to a weighted regularization functional. The principle is that each grid

subinterval is equally important, regardless of its length. The question how the m-grid

should be rigorously chosen with this principle in mind seems nontrivial and is beyond

the scope of this paper.

• Even though in practice m is often interpreted as representing a piecewise constant

function, for the purpose of grid continuation in the presence of a regularization functional

which involves derivatives ofm, it is preferable to use a smoother than piecewise constant

interpolation. For a regularization functional involving up to first-order derivatives a

continuous piecewise linear interpolation is particularly suitable.

• The above findings were combined into a continuation algorithm which first uses a coarse
grid, where calculations are cheap, to find an appropriate β commensurate with the quality

of the data; and then proceeds with gradual grid refinement in both m and u, using one β

value with properly scaledW and a sufficiently smooth interpolation, until a satisfactory

resolution is achieved. Substantial efficiency gains are obtained in each of these two stages.

We emphasize again that the choice of the coarsest u-grid must be dictated by the

discretization error. If this error is smaller than the measurement error, then the value of β used

on this grid is a good guess for finer grids. However, if the discretization error is larger than

the measurement error, then one cannot infer about β on the fine grids based on β obtained at

the coarse grid.

Further remarks.

• As we show in the numerical examples, keeping β fixed withW properly scaled allowed

for a good continuation process from one grid to the next, provided that the coarser

grid is already sufficiently fine for the model and that a sufficiently smooth interpolation

procedure is used for m. But for the examples in one dimension it did not seem to buy

much otherwise, because the solution profile is already captured on the coarser grid. This

raises the question why refine the model at all? There are several reasons for this. One

is that perhaps new features can be found (which we do not know in advance) with the

increased degrees of freedom. If no features are found then this gives ameasure of security

that none can be found with the present information. Another reason for refinement in the

model is for purposes of model presentation and evaluation. Finally, recall that in order

to achieve a major efficiency gain we refine the grids in both m and u. The refinement

then ensures that the predicted data—which are matched against the given data b—are

accurate enough.

• The continuation technique used in β was the simplest: take the previously obtained
solution as the first iterate for the next problem (3) or (17) in the continuation chain.

5 This can be done, say, by using a trust region method, or by increasing β in (8) without changing (3); iterative

methods for solving large-scale problems may achieve such an effect on the fly as well.
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There are well known, more involved techniques for constructing the first iterate for each

continuation step using more information, see e.g. [40,51]. For instance, we can consider

the gradient of (3) for variable β on fixed grids as a family of problems depending on a

parameter, which we can choose to be τ = − ln β. It is then possible to use the derivative
with respect to the parameter in order to construct a hopefully better initial iterate, at the

cost of essentially one iteration. However, this approach does not always yield results

which justify the additional cost. Specifically, we have not found it useful in the case of

example 3.3.

• The case β = 0, Q = I , has attracted the attention of a number of numerical analysts,

although it is rather rare in practice. For a sequence of finer and finer grids the problem (3)

(with β = 0) has been noticed to become harder to solve (requiring more Newton-type

iterations) as the grid is refined [19, 35]. Some supporting theory is supplied in [10, 11].

In contrast, it is well known that if we fix m and consider a sequence of finer and finer

grids for u in one dimension, the corresponding matrices A(m) would have uniformly

bounded inverses (approximating the Green function of (1)). This forms the basis of

a grid independence principle [1, 14] which states that the number of Newton iterations

required for (local) convergence for a nonlinear forward problemof this type (i.e., if instead

of (2) we had a discretization of a nonlinear differential system in u, say f (u;m) = 0,

with A = ∂f

∂u
) remains independent of the u-grid, even though the eigenvalue spread of

A increases as the u-grid is refined. For the inverse problem (3), a grid-independence

principle can also be formulated for a fixed β > 0 [29]. This apparent contradiction

with [10, 11, 19, 35] is resolved if we pay attention to the distinction of which parameter,

β or the discretization parameter h, is being kept fixed, and which is allowed to approach

the limit of 0. The setup is similar to that arising in discretization methods for singular

perturbation problems (e.g. [2] and references therein). Moreover, in practicewe do expect

both h > 0 and β > 0 to have fixed values, and the relationship between their relative

sizes may vary. Our experiments with realistic values of β and h agreed with [29], namely

no significant increase in difficulty of solving the nonlinear problem was observed as the

grid regularization parameter h was decreased.

• Unlike, for example, citenash,hlmr,borcea, we are not aiming here at using one multigrid
approach in the construction of a whole solution method. Thus, each problem in a given

chain of problems typified by a particular grid and a value of β is solved separately, once

an appropriate initial iterate is established. Of course, it may well be natural to solve

the forward model using a multigrid technique [7, 25], what with some multilevel data

structures already at hand, but such is not the focus of this paper.

• Finally, wemake a further comment about inexact methods. In large-scale problems, which

typically arise in distributed parameter estimation in more than one dimension, iterative

linear algebramethods are routinely employed in the solution of both (2) and each iteration

of a method for (3) (or (17)). In such techniques the residual is reduced repeatedly until

its norm falls below a prescribed tolerance. But practical necessity, especially in three

dimensions, often indicates that such tolerances should not be very small, giving rise

to inexact methods (see, e.g., [33, 34] and references therein). In this paper we have

considered a number of issues which arise independently of the use of inexact methods.

Thus, we have tried to isolate their effect by also calculating solutions using different

tolerances when solving large, sparse linear systems, especially in example 4.1. Such

additional calculations have yielded similar results to those reported here. Generally

speaking, most of our conclusions hold in practice, even when inexact methods are used.

See also [26, 44] for a different approach.
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