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Abstract. We develop a methodology to invert two different data sets with the assumption that

the underlying models have a common structure. Structure is defined in terms of absolute value

of curvature of the model and two models are said to have common structure if the changes

occur at the same physical locations. The joint inversion is solved by defining an objective

function which quantifies the difference in structure between two models, and then minimizing

this objective function subject to satisfying the data constraints. The problem is nonlinear and

is solved iteratively using Krylov space techniques. Testing the algorithm on synthetic data sets

shows that the joint inversion is superior to individual inversions. In an application to field data

we show that the data sets are consistent with models that are quite similar.

1. Introduction

The need to obtain more detailed information about the earth, the human body, or other

physical systems has been the impetus for carrying out different experiments on the same

object. In geophysics it is common to collect magnetic, gravity and airborne electromagnetic

data in reconnaissance surveys from mineral exploration. In medicine, MRI, PET and CT

scans might be performed in attempting the diagnosis. These multiple data sets are important

because extra information reduces the ambiguity or non-uniqueness of the interpretation. To

be effective, however, we need algorithms which can jointly invert different types of data.

Consider two physical experiments denoted generically by F1[m1] = d1 and F2[m2] =

d2. F1 and F2 are linear or nonlinear operators representing the physical experiment, m1, m2

are physical property models, and d1, d2 are data. By ‘joint’ inversion we mean the ability

to simultaneously invert the combined data set (d1, d2) and to recover the models (m1, m2).

This can be carried out using traditional methods if there is a known relationship between

the two properties, that is, if m2 = g(m1) and g is known. In many environments an

explicit functional relationship does not exist but it is noted that the physical properties tend

to change at the same location. The relative change, or even the sign of change is not known

a priori and also the nature of this relative change may vary throughout the model domain.

Nevertheless, there is a spatial coincidence of boundaries or transition zones which links

the two models. In effect, the two models can be considered to have the same ‘structure’

and this allows the data sets to be jointly inverted.

Our paper begins by defining a structure operator that is based upon the curvature of

the model. A semi-norm that measures the difference in structure is introduced and joint

inversion is carried out by minimizing that penalty function subject to adequately fitting the

data. The practical solution is formulated in a discrete domain and formally a two-stage

algorithm is needed to iteratively solve the problem. We present these algorithms and then
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introduce a third algorithm which solves the problem using a truncated conjugate gradient

solution. The paper concludes with a synthetic example in which cross-well seismic and

surface gravity data are jointly inverted, and a field data example in which radio imaging

(RIM) data at two different frequencies are inverted.

2. The structure operator

For a bounded function m∈C2 in one, two or three dimensions, there are numerous definitions

for the term ‘structure’. Generally, we identify structure by a change of the model with

position and hence operators which make use of local gradients or curvature of the model

are useful. Let S denote the structure operator. Desirable properties for S are that: (1) it

should be positive, since positive and negative changes in the model are equal indicators of

structure, (2) it should map any model into the range [0, 1] and thus be insensitive to overall

scaling of the model, and (3) it should map a ‘simple’ function into a ‘simple’ function. This

latter property is important because we want to minimize an objective function based upon

structure. If the structure function is too rough then the likelihood of becoming trapped in

a local minimum is greatly enhanced. We have investigated operators based upon ∇m and

∇2m. The fact that ∇m is a vector ultimately leads to greater computational difficulties. The

computations are somewhat simplified by using curvature and, as a first stage, we consider

the structure operator

S[m] =

{

0 |∇2m| < τ

1 |∇2m| > τ .
(1)

In equation (1) τ is a threshold parameter. If the curvature of the model is less than τ then

the structure is defined to be zero, while if it is greater than τ , then the structure is equal

to unity. Different choices for τ will yield different structure functions. The choice of τ is

therefore crucial and specifying its numerical value requires knowledge of how the physical

property might vary and a decision on the part of the interpreter regarding what curvatures

of the model are considered to be important.

The definition in equation (1) satisfies many objectives for a structure operator but it

suffers from its discontinuous behaviour with respect to τ . Let ǫ denote a small quantity

and consider two locations in the model domain where the curvatures are respectively

τ − ǫ and τ + ǫ. It is not desirable that the first of these positions is characterized as

having no structure, while the second position is said to have as much structure as locations

with maximum curvature. Some transitional weighting is desirable. The second reason

for needing a smooth operator is technical. We will solve our problem by linearizing an

objective function based upon structure and then iterating. Second derivatives of S[m] need

to be calculated and therefore an operator which is twice Frechet differentiable is required.

Smoothness of S , and allowing transitional values between zero and unity can be

achieved by introducing two parameters, τ1 and τ2, and defining the structure to be:

S[m] =











0 |∇2m| < τ1

P5(|∇
2m|) τ1 < |∇2m| < τ2

1 τ2 < |∇2m|.

(2)

In equation (2) P5 is a polynomial in one dimension with degree five which makes the

structure operator twice Frechet differentiable. The coefficients of P5 are chosen such that

P5(τ1) = P ′
5(τ1) = P ′′

5 (τ1) = P ′
5(τ2) = P ′′

5 (τ2) = 0 and P5(τ2) = 1. Since P5 is a simple

one-dimensional polynomial the six conditions on the polynomial and its derivatives at
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points τ1 and τ2 determine its coefficients uniquely. We note that the Frechet differentiable

operator should be written as Sτ1,τ2 , but for convenience we refer to it only as S .

To summarize, here are some of the characteristics of the structure operator which we

use later.

• The operator maps any function to the interval [0,1].

• The operator has continuous second derivatives.

• The first and second derivatives are zero almost everywhere. They are not zero when

|∇2m| lies in the interval (τ1, τ2).

• The decision about what is (and what is not) structure is done by choosing τ1 and τ2.

• The structure operator is not invertible.

Applying the structure operator is a two-step process. First the Laplacian, which is a

linear operator, is taken. Second, the thresholding and evaluation of P5(|∇
2m|) is carried

out. This is a nonlinear operator. The structure operator is defined only for functions which

are in C2. Discontinuous functions are first approximated using a smooth spline function

and we apply our operator to the smooth approximated function.

Figure 1. A model made up of a Gaussian and

a prism is shown at the top. Application of the

structure operator yields the image shown by the

bottom panel.
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(a) (b)

(c) (d )

Figure 2. The result of applying the structure operator on the model in figure 1. The value of

τ1 is successively increased for panels (a)–(d ).

The result of applying the structure operator to a model which has smooth and

discontinuous components is given in figure 1. Choosing τ1 = τ2 = 10−5 produces the

image in figure 1. The Gaussian feature at the bottom is transformed to a circular region

of unit amplitude and the prism is manifested only by its edges. The dependence of the

structure on the parameters τ1 and τ2 is shown in figure 2. In figure 2(a), τ1 is small and the

Gaussian appears as two circular features. As τ1 increases, the outer feature disappears and

the diameter of the inner circle is progressively reduced until it disappears in figure 2(d ).

3. Methodology for joint inversion

In this section we develop the inversion methodology and algorithms for carrying out the

joint inversion. We suppose that two experiments have been carried out and the relationships

between the models and data are given by

F
(1)
i [m1] = d

(1)
i i = 1 . . . M1 and F

(2)
i [m2] = d

(2)
i i = 1 . . . M2. (3)

The data d(1) and d(2) and estimates of their errors, are assumed known. The models m1

and m2 ∈ D are bounded models in a Hilbert space D and are to be reconstructed. F (1)

and F (2) are linear or nonlinear operators which are assumed to be Frechet differentiable.

Our goal is to jointly invert the data [d1, d2] and to reconstruct the models [m1, m2]

under the assumption that they have similar structure. A measure of the difference in

structure between the two models can be defined as

φc =

∫

D

(S[m1]− S[m2])
2 dV. (4)
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We need to find m1 and m2 that make φc as small as possible and also satisfy equations (3)

to a degree that is justified by the errors in the data. The inverse problem becomes a

minimization problem which is formulated as:

Minimize φc subject to:

φd = ‖F (1)[m1]− d1‖
2 + ‖F (2)[m2]− d2‖

2 = φ∗
d . (5)

In equation (5) φ∗
d is a target misfit and its value depends upon the errors ascribed to the

data. If the data are accurate then φ∗
d=0. In this paper we generally assume that errors are

Gaussian, independent and have unit standard deviation. With this assumption φd is a χ2

variable with M degrees of freedom and its expected value is equal to M . Setting φ∗
d = M

provides a reasonable target.

To solve the above minimization problem numerically we divide the model domain into

N cells. The data equations become:

Fi[m] = di i = 1 . . . M, M = M1 + M2 (6)

where m = [m1, m2] ∈ R2N is a vector of length 2N . The misfit is written as

φd =

M
∑

i=1

‖Fi[m]− di‖
2. (7)

Finding the structure of a discrete model is done by first applying the discrete Laplacian,

and then applying the threshold operator. Each cell is assigned a structural value and the

structural measure in equation (4) is rewritten as

φc =

N
∑

i=1

(S[m
(i)

1 ]− S[m
(i)

2 ])2. (8)

Our inverse problem is solved by finding m = [m1, m2] such that equation (8) is minimized

subject to the constraint φd = φ∗
d .

3.1. Solving the problem

In order to solve the problem we define a penalty parameter µ and combine the data in

equations (7) and the structural measure (8) into one objective function φ:

φ = φc + µφd . (9)

In general, the parameter µ controls the trade-off between φc and φd . For any given value

of µ we want to minimize φ. As µ increases, φc increases while φd decreases. We adjust

µ so that when minimization is complete we will also have satisfied the constraint φd = φ∗
d .

The structural measure in equation (8), and possibly the data equations (7), are nonlinear.

We solve the problem iteratively. At every iteration we linearize the data constraints and

the structure operator, and solve a linear set of equations. Let m denote the current model

and let δm be a model perturbation. The perturbed data functionals (when keeping only the

first-order terms) are

Fi[m + δm] = Fi[m]+
∑

j

∂Fi

∂mj

δmj (10)

where the sensitivity ∂Fi

∂mj
is calculated at m. Setting the left-hand side of equation (10)

equal to the observations, and letting Gij (m) = ∂Fi

∂mj
, yields

Fi[m]+
∑

j

Gij (m)δmj = di (11)
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or
∑

j

Gij (m)δmj = bi

where bi = di − Fi[m]. The linearized misfit corresponding to equation (7) becomes

φlin
d = ‖Gδm − b‖2. (12)

Because of the neglect of higher-order terms in equation (10), we note that this linearized

misfit is not, in general, equal to the true misfit φd evaluated by equation (7).

Linearizing φc at the model m yields

φlin
c (m + δm) = φc(m) + (∇mφc)

T δm + 1
2
δmT Hδm (13)

where

H =
∂2φc

∂mi∂mj

is the Hessian of the model objective function.

We proceed by substituting the linearized functions into (9) and minimizing the

linearized quadratic functional

minφlin(δm, µ) = φlin
c +

µ

2
‖Gδm − b‖2 = φlin

c +
µ

2
φd

lin. (14)

A major goal in the computations is to find the correct value of µ so that φd = φ∗
d . Because

we are working with an approximation of the data equations and the structure operator, we

do not expect that φd equals φlin
d or that φc equals φlin

c as δm becomes large. This difference

between the linearized problem, which we can solve, and the nonlinear problem, which we

want to solve, leads us to restrict the size of δm at each iteration. We appeal to the trust

region formulation (Dennis and Schnabel 1983) which limits δm to lie in a region where the

quadratic approximation holds for approximating the nonlinear function. This trust region

can be evaluated by checking the linear approximation against the nonlinear function. We

evaluate:

T =
|φ − φlin|

φ

where φlin defined above is the linearized objective function and φ is its nonlinear

counterpart. If T is sufficiently small then we are inside the trust region.

At each iteration we attempt to find that δm and µ which brings φd as close to φ∗
d

as possible while still restricting the perturbation by the trust region constraint. This is

accomplished by including an additional penalty term in the objective function. Let W be

a nonsingular weighting matrix. The modified objective function becomes

φ(δm, µ, ξ) = φc +
1

2
ξ‖Wδm‖2 +

µ

2
φd (15)

and its linear counterpart:

φlin(δm, µ, ξ) = φlin
c +

1

2
ξ‖Wδm‖2 +

µ

2
φlin

d .

The parameter ξ is adjusted to keep the step size sufficiently small. Taking the derivative

of equation (15) with respect to δm and setting the resultant equal to zero gives

(H + ξW T W + µGT G)δm = −∇m(φc) + µGT b. (16)
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This is a linear system which we write as

Jξ,µδm = d. (17)

The matrix Jξ,µ is positive definite and symmetric. This system is solved and the model

is updated. The iterations continue until the misfit equals the desired target φ∗
d . The

practical difficulties centre around finding the sequence of ξ, µ such that good convergence

is obtained. This problem is addressed next.

3.2. Algorithms for solving the minimization problem

At every iteration one needs to choose a parameter ξ which controls the step size,

and a regression parameter µ. The choice of these two parameters is not simple and

correspondingly we present a two-step solution. We first design an algorithm to choose ξ

when µ is specified. We rely heavily on trust region theory as presented by Dennis and

Schnabel (1983). Next, we present an algorithm for selecting µ. If computing power were

not an issue, solution of the minimization problem could be obtained by using algorithms

1 and 2. However, the computational overhead using algorithm 1 is high. Therefore, we

have developed a modified and more efficient approach, using a Krylov space technique

that leads to algorithm 3.

3.2.1. Choice of ξ . Assume for this section that µ is fixed. The primary role of ξ is to

limit the step size so that the quadratic approximation is valid. However, we do not want

to choose a step which is too small because that reduces the convergence rate. We want to

choose ξ to ‘stretch’ the quadratic approximation to its full capacity. This is done by the

following.

Algorithm 1.

1. Choose a1, a2∈(0, 1).

2. At iteration n calculate: φ(mn) = φc(mn) +
µ

2
φd(mn).

3. Choose ξ .

4. Calculate δm by solving equation (16).

5. Evaluate mtrial
n+1 = mn + δm.

6.

test1 = φ(mtrial
n+1)/φ(mn)

test2 =
|φ(mtrial

n+1 − φlin|

φ(mtrial
n+1)

.

7.

• If test1 > 1 narrow the trust region. Set ξ→2ξ . Go to 4.

• If test1 < 1 and test2 > a2 narrow the trust region. Set ξ→2ξ . Go to 4.

• If test1 < 1 and test2 < a1 extend the trust region, set ξ→ξ/2. Go to 4.

• If test1 < 1 and a1 < test2 < a2, accept δm.

8. mn+1 = mn + δm; save ξ as an initial guess for the next iteration.

In our algorithm we chose a1 = 0.1; a2 = 0.9. The algorithm decreases the value of φ

in every iteration for a constant µ. It stops when φ no longer decreases.

3.2.2. Choice of µ. While optimization literature extensively treats well-posed nonlinear

problems it lacks treatment of ill-posed nonlinear problems. The most common approach to
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solving ill-posed nonlinear problems is to employ Tichonov’s regularization. The nonlinear

optimization problem: minimize φm = ‖m‖2 subject to: F[m] = d is solved by first forming

an objective function: φT = φm + µφd . For fixed µ this objective function is minimized

with respect to m. The value of µ is altered until a desired misfit is achieved. The way

to choose µ, even when F is linear, is complicated and according to Hanke and Hansen

(1993) there is no black box to find it. For nonlinear problems finding µ is even more

complicated, and although this problem has been approached by some, there is no specific

algorithm which works for general problems. The difficulty is exacerbated in our problem

because our structure operator is highly nonlinear.

We first assume that a minimum of φ exists for every µ. Second, as in Tichonov

regularization, it is clear that as µ→0 we minimize mainly φc, and thus φd is large. As

µ → ∞ we minimize mainly φd and thus φc becomes large. We cannot prove that φd is a

monotonic increasing function of µ, as it is in the Tichonov case for linear problems, but

we assume that this is the case here. We can then use a Newton-type algorithm to iteratively

find the right µ. The algorithm goes as follows:

Algorithm 2.

1. Choose µ.

2. Apply algorithm 1 to obtain the minimum of φ = φc + µφd .

3. When a solution is found

• if φd > φ∗
d decrease µ and go to 2;

• if φd < φ∗
d increase µ and go to 4.

4. Interpolate to find µ.

For point (3) in the above algorithm, an estimate for the next value of µ can be facilitated

by keeping track of previous values of µ and φ.

3.2.3. Krylov space techniques. The major computational effort in implementing algorithm

1 involves solving the M × M system of equations (15). Although µ is known, ξ is not

and the matrix system needs to be solved many times. An alternate, albeit approximate,

approach is to set ξ = 0 so that the equations are

(H + µGT G)δm = −∇m(φc) + µGT b. (18)

Equation (17) is then solved with an iterative solver which is terminated after a

few iterations. This approach is not new. Hanke and Hansen (1993) used Krylov

space techniques (conjugate gradient, and least squares conjugate gradient) and effectively

demonstrated that the number of iterations can be used as an effective regularizer. Brown

and Saad (1990, 1994) have also used a similar Krylov space method for the solution of

a nonlinear problem. The implementation of this approach is immediate if W = I , the

identity matrix. However, if W 6= I then the problem needs to be transferred to a standard

form. Since W is sparse this is efficiently done using a QR transformation (Hanke and

Hansen 1993). In our work, the matrix is symmetric and positive semi-definite, and we use

the conjugate gradient solver. The replacement for algorithm 1 is:

Algorithm 3.

1. Choose a1, a2∈(0, 1).

2. At iteration n calculate φ(mn) = φc(mn) + µφd(mn).

3. Start the CG iteration to solve equation (16) with ξ = 0. For each iteration:

4. Calculate δmk (the δm that is achieved by stopping the CG solution at iteration k)

and store δmk .
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5. Evaluate mtrial
n+1 = mn + δmk .

6.

test1 = φ(mtrial
n+1)/φ(mn)

test2 =
|φ(mtrial

n+1) − φlin(mtrial
n+1)|

φ(mtrial
n+1)

.

7.

• If test1 > 1 narrow the trust region (iterate less in CG). Choose a solution from the

previous iteration.

• If test1 < 1 and test2 > a2 narrow the trust region (iterate less in CG). Choose a

solution from the previous iteration.

• If test1 < 1 and test2 < a1 extend the trust region. Continue the CG iterations.

Go to 4.

• If test1 < 1 and a1 < test2 < a2, accept δmk , (δm = δmk).

8. mn+1 = mn + δm.

This algorithm achieves approximately the same solution as algorithm 1 but it does so

with far fewer computations. The main reason is that in algorithm 1 we need to invert a

matrix for every ξ , while using the Krylov space technique we do not invert the matrix

even once.

3.3. Numerical implementation of joint inversion

Although we have provided algorithms for carrying joint inversion, there are still some

numerical difficulties when trying to apply them to a new problem. In this section we try

to give some general guidelines for the numerical implementation of the joint inversion.

There are three key aspects to the practical implementation. First, the structure operator

is highly nonlinear. We have found that it is difficult to decrease the value of φc. Therefore,

it is recommended to start the minimization from two models which have a similar structure,

preferably models for which φc = 0. Half spaces are good starting models. Then allow the

algorithm to reduce the data misfit slowly while the structural similarity increases. Starting

the algorithm with models obtained by inverting each data individually will generally fail

since the models are not similar but yet φd = φ∗
d .

The second aspect is the fact that the derivatives of the structure operator are zero over

portions of the model domain. Non-zero values occur only in the transition zones where

τ1 < |∇2m| < τ2. The Hessian will be zero if |∇2m| lies outside these bounds and, at those

locations, the structure operator has no effect on the inversion. It is, therefore, extremely

important to estimate [τ1, τ2] correctly. If τ1 is too large, the structure operator will not

be effective in the inversion until considerable structure has been built up. It may then be

difficult to reduce this structure in such a way that the two models evolve toward the same

structure. Conversely, if τ1 is very small and τ2 is large then the entire model is regarded

as having structure. This will allow models to have substantial curvature everywhere on

the model domain and it is likely that the final models would not be similar.

The third aspect of the joint inversion is the fact that it is easier to carry out the numerical

computations by working with the Laplacian of the model. This requires the introduction

of an invertible transformation between the original and new model. We use the operator

∇2+ǫI where ǫ is a small quantity. The advantages of working with transformed variables

is that the structure operator is now defined only by the analytic expression which determines

the thresholding. The gradient and Hessian of φc can be evaluated directly for any given
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model. The transformed variables are also an advantage when working with Krylov space

techniques since the CG algorithm is defined with weighting function W = I . When W 6= I ,

the problem first needs to be transformed into standard form (Hanke and Hansen 1993). If

we work with the Laplacian then this transformation is not needed.

4. Examples

To demonstrate the joint inversion methodology we give two examples. The first is a

synthetic example in which we invert data from seismic tomography and gravity surveys.

The second is a joint inversion of RIM tomography data acquired at two different

frequencies.

4.1. Joint inversion of gravity and seismic tomography data

Seismic velocities depend upon density and elastic constants. Although velocity usually

increases with density, the relationship is dependent upon the geologic environment and

hence is generally unknown. Nevertheless, we expect that velocity and density would be

good candidates for joint inversion.

As a synthetic example we consider a two-dimensional earth which has the anomalous

velocity structure given in figure 3. The two positive anomalies have the same maximum

amplitude and they are Gaussian shaped. The density anomalies, shown in figure 4, are

also Gaussian shaped but the near surface anomaly is negative while the deeper anomaly is

positive. The locations of the extrema of velocity coincide with those of density.

We first carry out a seismic tomography experiment. Twenty sources are equally spaced

in one well and first arrivals from each source are measured at 20 receivers in the second

well. The velocity of the medium is c(x, z) and the travel time is

ti =

∫

li

dl

c(x, z)
=

∫

li

s(x, z) dl (19)

where li is the ray path i, and s(x, z) = 1/c(x, z) is the slowness.

Rather than using travel times directly, we first remove the effects of a uniform

background velocity c0 and thereby work with travel-time perturbations 1ti . These are

linearly related to the slowness perturbation 1s(x, z) according to

1ti =

∫

li

1s(x, z) dl. (20)

In reality, the ray path joining any source and receiver is curved because of refraction.

However, for purposes of illustrating joint inversion there is no loss of generality in assuming

straight ray paths, and we do so here. To carry out numerical computations we discretize

the model into 600 cells. Equation (20) becomes a linear system of the form 1t = G11s

where G1 is a sparse matrix. The data, contaminated by 5% random Gaussian noise, are

shown in figure 4(b).

A surface gravity survey is carried out to measure the anomalous gravitational

acceleration in the vertical direction. Letting 1ρ(x, z) denote the anomalous density per

unit length, then the gravitational data are given by

1gi = 1g(xi, 0) =

∫

V

2γ
1ρ(x, z)z

((x − xi)2 + z2)
dx dz (21)

where γ is the gravitational constant. Data are acquired at 400 equispaced points. The

density model is discretized with the same mesh used in the tomography problem and
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Figure 3. The anomalous slowness model used in the cross-well seismic survey is shown at the

bottom. The anomalous travel-time data, without the addition of noise, are plotted at the top.

hence the gravity data take the form 1g = G21ρ where G2 is a 400 × 600 matrix but is

full. The data, contaminated with 5% random Gaussian noise are shown in figure 4.

Before proceeding with the joint inversion we invert each data set separately. The data

equations are first divided by their standard deviations. We then minimize ‖Lm‖2 subject

to requiring that φ∗
d = 400, that is, the final misfit is equal to the expected χ2 value. Here

L is the stabilized Laplacian operator ∇2 + ǫI . The results are shown in figure 5. The

seismic inversion shows two regions of increased slowness. These regions correspond well

with the location of the true anomaly, however they do not have the correct amplitude.

In the gravity inversion, the recovered density, shows the desired negative and positive

anomalies in their correct lateral position but depth information is incorrect. The anomalous

density extends to the surface. This is a typical result when inverting gravity data without

incorporating any vertical weighting to force the density to be more distributed with depth.

For the joint inversion we again first normalize the equations by their standard deviations.

We now have a total of 800 data and correspondingly set the desired misfit φ∗
d = 800. The

two linear systems are put together as described earlier. The structure operator is the

same stabilized Laplacian as used in the individual inversions and the threshold values are

τ1 = 0.5 and τ2 = 0.7 for both the seismic and gravity models. The starting slowness and

density models were the zero models. The misfit convergence curve and a plot of φc as a

function of iteration are given in figure 6. The computed slowness and density models are

shown in figures 5(e) and (f ) respectively. The improvement over the individual inversions
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Figure 4. The anomalous density

model is shown at the bottom.

Surface gravity data, uncontaminated

with error, are shown at the top.

is substantial. The slowness anomaly on the left has the correct amplitude. The anomalous

densities have moved downward and now coincide well with the true locations. There are

still discrepancies between the true and recovered models but overall the agreement is quite

good. This illustrates that the gravity data have provided complementary information for

the inversion of seismic data and vice versa.

4.2. Joint inversion of different frequencies of RIM data

RIM is a high frequency EM survey which is used to obtain information about electrical

conductivity. A transmitter, in this case a vertical magnetic dipole, is deployed in one

borehole and a receiver coil is in another borehole. Ray theory is adopted and the source

signal is assumed to travel along a straight line connecting the source and receiver. The

amplitude of the EM wave at the receiver is given by

Ar =
A0

r
e
−

∫

li
s(x,z,ω) dl

(22)

where A0 is the amplitude at the source, r is the distance between the transmitter and

the receiver, li is the ray path and s(x, z, ω) is an attenuation coefficient which depends

upon conductivity of the medium and frequency. The frequency dependence arises because
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Figure 5. The true slowness and density models are shown in the top row. Inversion of the

individual data sets produces the models in the middle row. The results of the joint inversion

are shown at the bottom and they compare well with the true models.

the electrical conductivity is frequency dependent at these high frequencies (Knight and

Nur 1987). Taking the logarithm of equation (22) yields a linear relationship between the

attenuation coefficient and the data:

log(Ar)i − log(A0) + log(ri) = −

∫

li

s(x, z, ω) dl. (23)

RIM data are generally collected over a range of frequencies and data from each

frequency are inverted to estimate s. Although s is frequency dependent we expect that

models at different frequencies would have a similar structure. Correspondingly, this makes

RIM data a good candidate for the joint inversion.

Field data were acquired in two boreholes separated by 70 m. There were 31 source

positions and 32 receiver positions and 856 data were collected at each frequency. The

boreholes intersected mineralization and the goal of the RIM survey was to see if extensions

of the mineralization, which are thought to appear as regions of high attenuation, could be

traced outward from the holes.
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Figure 6. The data misfit φd as a

function of iteration is plotted at the

top. The measure of structural misfit

φc is given below. The value of µ

was kept fixed for all iterations.

Unfortunately good estimates of the errors were not available. The procedure for dealing

with this for the individual inversions was to use the L-curve technique (Hansen 1994) and

stop the inversion when the model norm began to increase sharply without much decrease

in the misfit. The model domain was divided into 43×37 cells and the stabilized Laplacian

was minimized. The results of the separate inversions for frequencies 3.1 and 11.5 MHz

are shown in the top two panels of figure 7. There is some correspondence between the

two images but there are also major differences. With the L-curve technique the rms misfit

relative to the data was 0.33.

In carrying out the joint inversion we set the target misfit to be equal to the sum of

the misfits from the two individual inversions. Again the stabilized Laplacian was used

for the structure operator and τ1 and τ2 were, respectively, 10−4 and 10−2. The models,

recovered after 10 iterations, are shown in figures 7(c) and (d ). The two models from the

joint inversion are quite similar and they differ substantially from those obtained in the

individual inversions.
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Figure 7. Inversion of two frequencies of RIM data. Models obtained by inverting the individual

data sets are provided at the top. The models obtained with a joint inversion are at the bottom.

5. Summary and conclusion

We have developed a generic approach to invert two data sets when the underlying models

are linked by having structural similarity. The importance of this approach is most evident

in surveys which are sensitive to different physical properties. Without a way to link the two

properties we generally proceed by inverting the data sets separately. A joint interpretation

of the inversion results is then carried out looking for similarities or differences between

the recovered models or by carrying out additional processing on the images. However,

non-uniqueness inherent in the individual inversions may mean that incorrect conclusions

are obtained. The joint inversion approach provided here reduces the non-uniqueness and

hopefully improves the quality of interpretation.
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