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Abstract. To be reliable, Earth models used for mineral exploration should be consistent with all available geological and
geophysical information. During the past several years an important focus of inversion research has been towards advancing
the integration of geological data (such as lithology and structure), physical property data (measurements taken on rock
samples) and geophysical survey data through appropriate inversion methodologies. We expand the types of geological
information that can be incorporated into ‘minimum structure’ type deterministic inversions involving minimisation of an
objective function. These include orientation information and physical property trends. We also present an iterative
cooperative inversion strategy for combining multiple types of geophysical data and recovering geologically realistic
models involving sharp interfaces between rock units. We provide a synthetic example to illustrate our methods.
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Introduction

Geophysical inversion seeks to recover models of the Earth’s
physical properties (such as density and conductivity) that can
adequately reproduce anomalies in geophysical survey data
(such as gravity and DC resistivity surveys) while being
consistent with geological information. The physical properties
are related to rock composition, structure and physical state.
Hence, the physical property models recovered via inversion
are an important source of information for understanding
subsurface geology as it applies to mineral exploration.

Due to data uncertainty and other aspects inherent to the
underdetermined geophysical inverse problem, there are an
infinite number of models that can fit the geophysical data to
the desired degree: the problem is non-unique. Additional
information is essential for a unique solution. Incorporating
previous geological knowledge, and combining several
complimentary types of geophysical data collected over the
same Earth region, can reduce ambiguity and enhance inversion
results, leading to more reliable Earth models. Phillips (2001),
Williams (2006) and Farquharson et al. (2008) provide examples
of incorporating physical property information to dramatically
improve inversion results. In this paper we outline some
additional types of geological information that are commonly
available and can be incorporated into our inversion algorithms.

Many researchers have provided functionality for
incorporating different types of geological information into their
particular inversion frameworks. In this paper we investigate
how geological information can be placed into our deterministic
inversion framework in which a computationally well behaved
function is minimised subject to optional constraints.

Types of geological information available

The geological information available can come from many
sources: surface mapping, drill-holes, hand samples, in situ

measurements, preliminary mining or any other manner in
which geological data are collected. We categorise geological
information as either located (spatially tied) or non-located.
Below we list some types of geological information that we
can incorporate using our methods.

Located information:

* physical property measurements on rock samples;
* lithology observations (combined with petrophysical
information);

* structural orientations;
* structural contacts between rock units.

Non-located information:

* physical properties change sharply or smoothly between rock
units (e.g. across offset faults or across zones of alteration);

* relative positions of rock units (e.g. a particular rock type in a
stratigraphic sequence is known to lie above another but the
location of the contact is unknown);

* physical properties increase or decrease in particular directions
(e.g. density often increases with depth);

* expected target shapes and aspect ratios (e.g. an intrusive body
should be disk-like or pipe-like).

An added consideration is that we should take into account
the reliability of any type of information included in an inversion,
be it geophysical data or geological information. For example,
direct observations should be considered more reliable than
interpolations, which should be considered more reliable than
inferences or hypotheses. If the information is qualitative, such as
an expected shapeof a target, itmaybe soundor speculative. Even
if the information is quantitative, including physical property
measurements taken on rock samples, there may be a wide range
of reliability reflected by the procedures taken to obtain that
information. If a relative or absolute value can be placed on the
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reliability then this information should be incorporated alongside
the related geological information.

It must be noted that geophysical methods cannot
distinguish between rock types that differ in their geological
characteristics but contain similar physical property values. In
this manuscript, wherever we refer to different ‘rock units’ we
are considering packages of rock that can be distinguished via
geophysical methods. Hence, where alteration zones exist within
geologically similar rocks, if the alteration leads to changes in
physical properties then we consider there to be different rock
units.

An illustrative synthetic scenario

We now introduce an illustrative 2D synthetic example in which
we will incorporate much of the above geological information
while running through a hypothetical exploration scenario. The
synthetic model is a simplified version of one used in Williams
(2006), which was based on a nickel exploration scenario in the
Eastern Goldfields of Yilgarn Craton in Western Australia. The
area has a dipping, north–south striking, granite-greenstone
basement. Extensive regolith cover limits basement outcrop.
We choose to present a 2D example for ease of viewing but
the methods are easily extended to 3D.

We consider two geophysical surveys: gravity and cross-well
seismic tomography. These two surveys are complimentary in
that they sense the Earth in different ways. Each survey has
different sensitivities to, and resolution capabilities in, different
parts of the subsurface. Consequently, independent inversions of
each data type are able to recover different parts of the subsurface
to different degrees, as will become evident. Combination of
these two surveys, although relatively uncommon in mineral
exploration scenarios, is fairly common in joint inversion
literature. We have chosen these surveys for this example due
to their conceptual and computational simplicity but they could
represent any two complimentary surveys as defined above.

The true model contains three rock types: bedrock
(a combination of granite and metamorphic rocks found in the
example ofWilliams (2006)), a regolith cover layer and a dipping
block (a combination of sulfides and ultramafic rocks found
in the example of Williams (2006)). From now on we will use
the terms ‘density’ and ‘slowness’ to refer to the anomalous
quantities, equal to the absolute quantities with background
values subtracted. The anomalous physical property values for
the three rock types are as follows: the bedrock has a density of
0.0 (g/cc) and a slowness of 0.0 (s/km); the cover layer has a
density of –0.5 and a slowness of +0.5; the dipping block has a
density of +0.5 and a slowness of –0.5. The discrete inversion
mesh can be seen in Figure 1b. The density and slowness models
are shown in Figure 2a and 2b respectively.

Gravity and travel-time data are created for the models and a
small amount of random noise is added before inverting. The
gravity data are computed across the surface of the model and the
cross-well seismic tomography ray-paths run from Easting (x)
–396m to 396m every 50m in depth (z). The data are plotted in
Figure 1.

Geologically unconstrained inversion

We formulate the inverse problem as an optimisation that
involves minimisation of an objective function, F, that
combines a data misfit measure, Fd, with a regularisation
measure, Fm:

FðmÞ ¼ FdðmÞ þ bFmðmÞ: ð1Þ

Here, m is the physical property model and b is a trade-off
parameter that controls the relative size of the misfit and
regularisation measure and allows us to tune the level of data
fit as desired. Todiscretize,we divide theEarth into an orthogonal
mesh of rectangular prismatic cells with the physical property
(or properties) constant in each mesh cell. The model vector
m= [m1, m2, . . .] contains the physical property values in each
mesh cell.

In the absence of more specific, constraining geological
information we choose to seek a smoothly varying model that
does not contain unreasonably high values.We recognise that this
‘minimum structure’ inversion is just one of several options,
others including ‘compact’ inversions (Last and Kubik, 1983),
‘focussed’ inversions (Portniaguine and Zhdanov, 1999) and
non-smooth inversions (Farquharson and Oldenburg, 1998).
However, we consider the minimum structure option due to its
computational simplicity. Our minimum structure regularisation
function is based on that of Li and Oldenburg (1996):

FmðmÞ ¼
Z

wsðm� mref Þ2dvþ
Z

wxðdm=dxÞ2dv

þ
Z

wyðdm=dyÞ2dvþ
Z

wzðdm=dzÞ2dv; ð2Þ

which can be readily discretized on the inversion mesh.
This regularisation function makes the inverse problems
tractable (it allows a single model to be recovered) and it
allows incorporation of much geological information into the
inversion. Thefirst term in equation (2) is a smallness or closeness
term. In the case of a zero-valued reference model,mref, this term
encourages the inversion to recover models with low values of
the physical property. When a reference model is incorporated,
the inversion attempts to match it as closely as possible while
still fitting the data to the desired degree. The latter terms in
equation (2) involving derivatives are smoothness terms that
encourage recovery of spatially smooth models. Common
practice is to not include a reference model in the smoothness
terms, but a reference model may be included in the smoothness
terms if required for a particular application.

Default (unconstrained) inversion results for our synthetic
example are shown in Figure 2c and 2d. For all inversions we set
the smallness weights ws= 0 and the smoothness weights
wx =wz= 1 (wy= 0 for the 2D problem). Without further
geological information, the models in Figure 2c and 2d would
be our best guesses for the subsurface density and slowness
distributions. However, the gravity inversion result fails to
image the cover layer and dip of the central body, and the
seismic tomography inversion fails to image the central body
entirely.

Incorporating physical property value information

Physical property information is commonly available from
measurements taken on surface outcrop or drill-core samples.
This information can be incorporated into the inversions in a
natural way using the reference models and weights in the
regularisation measure in equation (2) or through bound
constraints added to the optimization problem:

minimise FðmÞ ¼ FdðmÞ þ bFmðmÞ
subject to Li � mi � Ui for some or all i; ð3Þ

where Li andUi are the lower and upper bounds for the ith model
cell. Li and Oldenburg (2003) discuss one possible method of
solution to the bounded inverse problem, the logarithmic barrier
approach. We employ a more robust and efficient gradient-
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projection method to solve the inverse problem: the Gradient-
Projection-Reduced-Newton method of Vogel (2002).

Returning to the synthetic scenario, assume that surface
mapping has been performed in the next phase of exploration
and physical property measurements have been taken on rock
samples. We can now place bounds on the cells along the surface
of the model. Reliability information based on the statistics of
the measurements taken on the surface samples can be used to
determine the spread on the bounds for any particular cell. Here,
we set the bounds within �0.02 of the true values at the surface.
The results with these bounds applied are shown in Figure 2e
and 2f. The results are immediately improved: the gravity
inversion now indicates the cover layer and the dip of the
central body, and the central body is now indicated in the
tomography inversion.

Incorporating physical property trend information

Knowledge of the relative positions of rock units may allow us
to specify physical property trends (i.e. physical property increase
or decrease in particular directions). Assume now that in our
synthetic scenario, knowledge of the geology leads us to expect
a less dense and slower layer of cover that has a depth of no

greater than 100m (perhaps obtained through drilling evidence).
Hence, away from the central body, the density should
only increase with depth and the slowness should only
decrease with depth in the top 100m. We may also specify
that below a certain depth, say 150m for this example, we do
not expect the density to increase or the slowness to decrease
any further with depth.

We incorporate this physical property trend information
through linear inequality constraints of the general form
Am� b. Lelièvre and Oldenburg (2009) provide detail on the
implementation. For example, if densitymodel element 1 (r1) lies
vertically above density model element 2 (r2) then in the top
100m of the model we desire that r2�r1. This leads to the
inequality equation r2 –r1� 0, which would define one row of
the matrix A and a zero element in the vector b. We use the
logarithmic barriermethod, as implemented byLi andOldenburg
(2003), to solve the resulting optimisation problem

minimise FðmÞ ¼ FdðmÞ þ bFmðmÞ
subject to Am�b: ð4Þ

Although there are alternatives to the logarithmic barrier method,
it has proven to be a feasible solution method for large 3D
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Fig. 1. (a) The gravity data used in the inversions. (b) The inversion mesh: the locations of the gravity
data are indicatedwith black dots (blue dots in the online colour version) above the surface; the cross-well
seismic tomography sources and receivers are indicated with black dots (red dots in the online colour
version) on the left and right sides of the mesh respectively. (c) The seismic tomography travel-time data
used in the inversions.
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geophysical inverse problems with simple bound constraints and
it extends to linear inequalities without issue.

Bound constraints can be incorporated into the problem in
equation (4) alongside the linear inequalities. If wewish to bound
the ith model parameter between lower and upper bounds Li and
Ui (i.e. Li�ri�Ui) then we would add two equations to the
Am� b system:

ri � Li ð5aÞ
�ri � �Ui: ð5bÞ

Incorporating the additional depth trend information into our
synthetic inversions yields the improved results in Figure 2g
and 2h. Especially evident are the reduction of anomalous dense
material at depth and an improved recovery of the cover unit in
the density model.

Incorporating orientation and aspect ratio information

The smoothness terms in equation (2) measure model gradients
in the three axial directions defined by the inversion mesh.
By altering the relative values of the smoothness weights wx,
wy and wz in equation (2), one can cause the recovered models to
become smoother (i.e. elongated) in some mesh-orthogonal
direction(s) compared to the other(s). Aspect ratio information
can be used to determine the relative values of the smoothness
weights in each direction. A further generalisation of the
objective function by Li and Oldenburg (2000) and Lelièvre
and Oldenburg (2009) allows the coordinate axes to be rotated
such that elongations can be specified in anyCartesian coordinate
frame. For a 2D problem the new regularization function is of
the form

FmðmÞ ¼
Z

wsðm� mref Þ2dv

þ
Z

wx0 ðcos y dm=dxþ sin y dm=dzÞ2dv

þ
Z

wz0 ð� sin y dm=dxþ cos y dm=dzÞ2dv; ð6Þ

wherey is the dip angle that rotates the original (mesh orthogonal)
axes x and z into the new coordinate frame with axes x0 and z0.
In 3D there are three angles and we do not show the resulting
complicated regularisation measure here. The smoothness
weights can be homogeneous across the entire mesh or can be
set to different values in different regions. Orientations can
thereby be specified globally or locally.

Returning to our synthetic scenario, the geological
information available and the previous inversion results lead
us to expect that the region contains a horizontal cover layer
interrupted by a central dipping body. Assume now that a drilling
program spots a drill-hole as indicated by the white lines in
Figure 3a and 3b. If physical property measurements are taken
on drill-core samples then we can place additional bounds on the
cells along the drill-hole trace, producing the results in Figure 3a
and 3b. The surface mapping and drill-hole information also
allow an interpretation of the dip of the central body, which we
will now incorporate.

We expect that the cover unit is no thicker than 100m. Hence,
down to that depthwe set thewz/wx ratio below thedefault valueof
unity. This will encourage features that are elongated in the x
direction (horizontal) andmay take larger jumps in the z direction
(vertical). To incorporate the structural orientation information

(a)

(c)

(e)

(g)

(b)

(d )

(f )

(h )

Density Slowness

Fig. 2. True and inverted models for the gravity and cross-well seismic tomography synthetic example.
Densitymodels (g/cc) are on left, slownessmodels (s/km) on right. To remove clutter,we do not showaxis
labels or colour scale information: axis labels are as in Figure 1b; the colour scale for all models is [–0.7,
0.7], using the same colour bar as in Figure 1c. Superimposed black lines indicate the rock unit boundaries
in the true model. From top to bottom the models are: (a, b) the true models; (c, d) geologically
unconstrained results; (e, f) results with bounds applied along the surface; (g, h) results with additional
linear inequality constraints applied to enforce expected depth trends.Models from subsequent inversions
are shown in Figure 3.
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regarding the dip of the central body we need to rotate the
coordinate system such that the new x0 axis lies along the
expected dip direction. Hence, in a region immediately around
the outcrop of the target unit (one cell on either side of the contact,
extending down dip to a depth of 96m) we specify a dip of
45 degrees and set wz0/wx0 below unity to encourage features that
are elongated in the down-dip direction. Outside of this regionwe
do not rotate the coordinate system or apply a non-unity wz0/wx0

ratio.
Reliability estimates and knowledge of the scale of geological

information can be used to guide to how far sparse information
can be extrapolated to influence its surroundings and thereby
populate a larger region of the inversion mesh. In the synthetic
example we set the wz0/wx0 ratio low (= 0.01) where this
information is most reliable: cells at or adjacent to the surface
and the drill-hole trace. We increase the ratio back to unity as the
cells get further away from those. The inversion results with this
information included are in Figure 3c and 3d. These results show
further improvement and nearly recover the correct depth extents
of the cover and dipping block.

Recovering rock type models

In this final stage, we wish to better constrain the recovered
density and slowness values to lie within three separated narrow
ranges as is expected assuming the presence of three rock types.
Figures 4 and 5 show histograms of the physical property values
for all models presented. The best recovered models so far, in
Figure 3c and 3d, contain physical property values that are
starting to bin into three narrow ranges, as seen in Figure 5c
and 5d, but we would like to do better.

Recovering sharp boundaries between rock units

The use of L2-norms (sum-of-squares) in the discretized version
of equation (2) results in recovered models that exhibit a smooth,
smeared-out appearance. Unfortunately, smooth models do not
generally fit with geologists’ ideas about the subsurface, which
can involve sharp interfaces (physical property discontinuities)
between rock units (regionswith physical properties confined to a
relatively narrow characteristic distribution). Sharp boundaries
can be generated using other norms, for example as implemented
by Farquharson and Oldenburg (1998). However, moving away
from L2-norms complicates the optimisation problem.

We have developed an iterative inversion procedure that can
obtain geologically realistic models (involving sharp interfaces
between rock units) while using L2-norms. The essence of the
procedure is to adjust inversion smoothness weights based on a
measure of structure derived from previous inversion results. Our
method does not require any alteration to the inverse problem
and it can therefore be performed with pre-existing inversion
algorithms.

The first step is to take the best model so far and calculate the
magnitude of the spatial model gradient:

jjrmjj ¼ ððrxmÞ2 þ ðrymÞ2 þ ðrzmÞ2Þ1=2: ð7Þ
Smoothness weights are then set low in the regions where ||rm||
is high and vice versa. This encourages the subsequent inversion
to make interfaces sharper (between rock units) and to make
smoother areas more constant (within rock units). Topological
rules regarding the relative positions of rock units and the
interfaces between them can be used in concert with the
calculated ||rm|| values when setting smoothness weights low

(a)

(c)

(e)

(g)

(b)

(d )

(f )

(h )

Density Slowness

Fig. 3. Inverted models for the gravity and cross-well seismic tomography synthetic example. Density
models (g/cc) are on left, slownessmodels (s/km) on right. To remove clutter, we do not show axis labels or
colour scale information: axis labels are as in Figure 1b; the colour scale for all models is [–0.7, 0.7], using
the same colour bar as in Figure 1c. Superimposed black lines indicate the rock unit boundaries in the true
model. The location of a drill-hole is indicated with a white line in (a) and (b). Models from previous
inversions are shown in Figure 2. From top to bottom themodels are: (a, b) resultswith additional drill-hole
bounds; (c, d ) results with additional orientation information incorporated; (e, f ) results of our structural
cooperative inversion strategy after incorporating only surface bounds and expected depth trends; (g, h)
independent results using approximate L1-norms and the same geological information as in (e, f ).
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Fig. 4. Histograms showing the distribution of physical property values in the corresponding models
in Figure 2.
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over the inversion volume. After a subsequent inversion, ||rm|| is
recalculated and the smoothness weights altered again, this time
with a smaller volume (lower percentile ofmesh cells) overwhich
the weights are set low. This procedure is repeated in an iterative
manner, with the smoothness weights set low over smaller and
smaller volumes in each full inversion, until a model is recovered
with the desired character.

Structural cooperative inversion

The iterative procedure mentioned above extends naturally to
make use of multiple types of geophysical data (from surveys
responsive to different physical properties). In the cooperative
procedure, the gradient magnitude is calculated for two (or more)
inversion results, each using a different type of geophysical data.
Those gradient magnitudes are normalised and added together.
That result is then used to set the smoothnessweights for all of the
inversions in the next iteration, which can be run in parallel to
reduce computation time.

The synthetic scenario we present is ideal for a cooperative
inversion. Each geophysical survey senses the subsurface in a
different way and each adequately resolves different
characteristics of the true Earth. For example, the gravity
inversions resolve the lateral extents of the central body well
but the tomography inversions do not, and the opposite is true for
the depth extent of the cover layer. This is clear from comparing
the geologically unconstrained results in Figure 2c and 2d. By
combining both datasets into a cooperative inversion we hope to
overcome the lack of resolution in each geophysical survey.

The results in Figure 3e and 3f were obtained after using this
cooperative strategy with only the surface bounds and depth
trend information incorporated. For comparison, the results in
Figure 3g and 3h were obtained through independent inversions
incorporating that same geological information and using
approximate L1-norms (an Ekblom measure with p= 1.1 as
implemented by Farquharson and Oldenburg (1998)) in
equation (2) to create models with sharper interfaces.

The cooperative iterative inversion procedure is able to
overcome the lack of resolution in each geophysical survey
and provides an obvious improvement over the results in
Figure 2g and 2h, and those in Figure 3g and 3h. The three
rock units are clearly defined in Figure 3e and 3f with sharp
interfaces between them. The density and slowness values are
better confined within three narrow ranges, as indicated by
Figure 5e and 5f, and are close to the true values. The true
depth extents of the cover layer and the target unit have been
located within one mesh cell. Whenmore geological information
is placed into the iterative procedure the results show further
improvement.

Discussion

When not constrained by geological information, default
inversions can generate reasonable results, recovering spatially
simple physical property distributions that honour the survey
data. However, such first-pass results may not honour
the geological information, much of which can now be
incorporated to improve inversion results, as is evident from
the example presented above and in the work of Phillips (2001),
Williams (2006) and Farquharson et al. (2008). Furthermore,
different physical property models recovered independently
from different geophysical datasets can be inconsistent with
each other and inverting the data in a joint or cooperative
fashion may help overcome the lack of resolution in each
dataset. We have developed a cooperative iterative inversion
procedure that provides such a tool.

To compare our inversion procedure with similar efforts
reported in the literature, we begin by mentioning the work of
Bosch et al. (2001) and Guillen et al. (2008). They work in a
stochastic inversion framework and perform a lithologic
inversion that directly recovers rock type from a list of those
assumed present. Prior information is placed into the problem
through probability density functions and topology rules that
define relationships between rock units. The model space (i.e. all
possiblemodels) is investigated through a randomwalk sampling
process, an approach proposed by Mosegaard and Tarantola
(2002). This strategy provides not only model estimates but
also statistical information regarding the model space. Multiple
types of geophysical data can be jointly inverted in a natural
way. In contrast to the functions in our deterministic framework,
their probability density functions and structural topology
measures are not required to be differentiable and, hence, there
is more flexibility in the types of geological information that
can be incorporated. However, their approach relies on random
sampling methods that lead to much heavier computational costs
than deterministic approaches. Furthermore, the success of
their approach relies on the creation of an initial model that
adequately resembles the true Earth. There are benefits and
limitations associated with both their stochastic approach and
our deterministic approach. If used in concert through an
appropriate workflow, these two approaches have the potential
to provide a powerful set of tools for integrating geological and
geophysical data. Future work should investigate appropriate
aspects of such a workflow.
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