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apid construction of equivalent sources using wavelets
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ABSTRACT

We have developed a fast algorithm for generating an
equivalent source by using fast wavelet transforms based on
orthonormal, compactly supported wavelets. We apply a 2D
wavelet transform to each row and column of the coefficient
matrix and subsequently threshold the transformed matrix to
generate a sparse representation in the wavelet domain. The
algorithm then uses this sparse matrix to construct the the
equivalent source directly in the wavelet domain. Performing
an inverse wavelet transform then yields the equivalent
source in the space domain. Using upward continuation of to-
tal-field magnetic data between uneven surfaces as examples,
we have compared this approach with the direct solution us-
ing the dense matrix in the space domain. We have shown that
the wavelet approach can reduce the CPU time by as many as
two orders of magnitude.

INTRODUCTION

The equivalent source technique �Dampney, 1969� plays an im-
ortant role in the processing and interpretation of potential-field
ata. The technique stems from the special properties of the potential
elds. The potential field and its derivatives are harmonic functions

n the source-free region. If the field is known on the bounding sur-
ace of a region, then the field anywhere in this region is uniquely de-
ermined by the solution of a Dirichlet problem in which the bound-
ry condition is given by the known field �Kellog, 1953�. Therefore,
f one can construct a source distribution outside this region that re-
roduces the field on the boundary, then it also defines the field in the
ource-free region. Such source distributions are infinite in number,
ut only one of them needs to be constructed. Because it usually
ears no resemblance to the true source, the term equivalent source is
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sed to describe it. Two important areas of application are the contin-
ation of potential-field data between uneven surfaces �Hansen and
iyazaki, 1984� and the reduction to the pole of magnetic data at

ow latitudes �Silva, 1986�.
Equivalent source construction involves setting up a source layer

ocated below the observation surface and computing its physical
roperty distribution from observed data by solving a linear inver-
ion. Then any linear transformation of potential-field data can be
omputed from the estimated physical property distribution. Let d be
he potential-field data located over an observation surface So, and
et m be the strength of the equivalent source distributed over a sur-
ace Se. To obtain the best results, the surface Se coincides with So or
ies below it, but should be above the actual sources that produced
he data d. The integral equation is formally written as

d�r���
Se

m�r��g�r,r��ds�, r�So �1�

here g�r,r�� is the kernel function, whose form depends on the type
f the equivalent source; and r and r� are the positions of observation
nd source locations, respectively. Different types of equivalent
ources, i.e., the physical properties in the equivalent layer, are used
n the literature. Those commonly used include point monopoles,
oint dipoles, and piecewise constant magnetization distributions.

The construction of the equivalent source requires the inversion
f equation 1 to recover an m from the given data d. For numerical
olutions, this entails the discretization of the equation. We divide
he undulating surface Se into a set of square cells that are contiguous
orizontally and offset vertically, and assume a constant source
trength within each cell. This yields a matrix representation

d�Gm, �2�

here d� �d1,¯ ,dN�T is the vector containing the observed data;
� �m1,¯ ,mM�T is the vector containing the strength of the equiv-
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L52 Li and Oldenburg
lent source; and G is the coefficient matrix whose elements gij typi-
ally are defined by

gij��
�Se

j
g�ri,r��ds�, �3�

here �Se
j is the subarea corresponding to mj. Here, we assume there

re N observations and M equivalent source parameters. The inverse
olution of the matrix system in equation 2 yields the numerical solu-
ion of the equivalent source.

The coefficient matrix G is dense. For large data sets, the process
s almost prohibitively expensive. For this reason, the equivalent
ource technique has not gained wide application in potential-field
rocessing. Approximations have been made to reduce the problem
o a more manageable size. For instance, Hansen and Miyazaki
1984� use a block-sparse approximation of G by setting gij to zero
hen the distance between the observation and the source is greater

han a user-defined range of influence. However, the computational
omplexity remains in general the biggest hurdle to the effective use
f this technique.

To overcome this difficulty, we develop a fast solution method for
he equivalent source based on wavelet transforms using orthonor-

al, compactly supported wavelets. The core of the method is the
parse wavelet representation of the coefficient matrix and a conju-
ate gradient solution of the resulting system. We achieve further
peedup by constructing the equivalent source directly in the wave-
et domain. In addition, we use a wavelet-domain model objective
unction so that the equivalent source solution is stable and consis-
ent with the noise level of the data.

We first develop the sparse wavelet representation of the coeffi-
ient matrix. We then formulate the construction as an inverse prob-
em in the wavelet domain. To achieve this, we examine a model ob-
ective function that quantifies the spectral properties of the equiva-
ent source using its wavelet coefficients. We next develop the fast
umerical solution using the conjugate gradient least-squares
CGLS� strategy. We finally conclude with illustrations using syn-
hetic and field examples.

WAVELET REPRESENTATION OF THE
COEFFICIENT MATRIX

In their work on the 3D inversion of magnetic data, Li and Olden-
urg �2003� compress the sensitivities of each datum with respect to
he unknown susceptibilities by applying a 3D wavelet transform
nd setting to zero the small wavelet coefficients that are below a
iven threshold. The resultant sparse representation of the sensitivi-
y matrix composed of the transformed and thresholded sensitivities
an achieve compression ratios from 10 to 50. The essence of that
peration is the compression of a function because only the variation
f sensitivities with the source locations is represented in the wavelet
omain and the variation with observation location is left in the
pace domain. However, in the case of equivalent source construc-
ion for regularly spaced data, the wavelet transform can be applied
ith respect to both the source locations and observation locations.
his is consistent with the established method for sparse representa-

ion of integral operators in the wavelet bases. As a result, we can
chieve a high compression ratio with insignificant errors.
Downloaded 01 Feb 2012 to 137.82.25.106. Redistribution subject to S
For many applications, gridded data are available. Therefore, we
ocus on this type of application, as do many previous authors �e.g.,
ansen and Miyazaki, 1984; Silva, 1986�. This condition is not
verly restrictive and enables us to tackle several important prob-
ems in potential-field processing. We therefore discretize the equiv-
lent source layer so that there is an mi corresponding to every di; i.e.,
�M �we will assume this condition henceforth�.
Assume that the observation surface So and the equivalent source

urface Se are continuous. Then, the coefficient matrix arising in the
onstruction of an equivalent source layer is characterized by a peak
long the diagonal and a smooth decay away from the diagonal. This
ype of operator is well-suited to being represented sparsely by the
avelet bases as shown by Beylkin et al. �1991� in their seminal pa-
er on fast numerical algorithms using wavelet transforms. For 1D
roblems, Beylkin et al. �1991� show that when an appropriately
hosen wavelet transform is applied to such matrices, the trans-
ormed matrix has significant elements only within a narrow band
ear the location of the peaks in the original matrix. Retaining only
hese large coefficients and setting the rest to zero produces a sparse
epresentation of the original matrix with a high degree of accuracy.
lthough that work was proposed within the context of solving the

ntegral equations of the second kind, the methodology for operator
ompression is applicable to our current problem of inverting the in-
egral equations of the first kind for equivalent source construction.

For completeness, we give a brief review of the wavelet trans-
orms �for details, see, e.g., Daubechies, 1988, 1992�. The wavelets
re a class of orthonormal bases defined recursively by solving two-
cale difference equations �equation 4 below�. Let � �x� be the wave-
et and ��x� be its accompanying scaling function; then they are
ompletely defined by

��x���2 �
k�0

L�1

hk��2x�k�,

� �x���2 �
k�0

L�1

gk��2x�k�, �4�

here hk and gk are the wavelet coefficients forming a quadrature
irror filter bank and

gk� ��1�khL�k, k�0,¯ ,L�1. �5�

quadrature mirror filter bank splits a signal into a complementary
air of smooth and detailed components �Strang and Nguyen, 1996�.
he coefficients are chosen so that the wavelet � �x� had n vanishing
oments �Daubechies, 1992�:

�
��

�

� �x�xidx�0, i�1,¯ , n�1. �6�

hese wavelets are also well localized in both the space and Fourier
omains. The complete set of bases is derived by the translation and
ilation of the single function � �x�:

� j,k�x��2�j/2� �2�jx�k�, �7�

here j denotes the scale and a smaller value corresponds to a coars-
r scale �i.e., lower resolution�.
EG license or copyright; see Terms of Use at http://segdl.org/
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Rapid equivalent source construction L53
Using these bases, an orthonormal wavelet transform of a discrete
eries v can be formed:

ṽ�Wv, �8�

here ṽ contains the coefficients of the wavelet transform and W is
he matrix defining the wavelet transform. The explicit form of W
an be found in Press �1992�. However, it is almost never used in
ractice. Instead, the transform is carried out by using the pyramid
lgorithm �Mallat, 1989�, which uses the convolutions of the dis-
rete series with the filter coefficients hk and gk. The former extracts
he smooth part of the signal and the latter extracts the detailed com-
onent. This process is repeated on the subsampled smooth portion
ntil the coarsest representation is obtained. The compression prop-
rty of the wavelet transform derives from the presence of a large
umber of small or zero coefficients. These small wavelet coeffi-
ients are produced because the wavelets are localized and they are
rthogonal to low-order polynomials. The smoothly varying portion
f a function can be well represented by only a few wavelets at
oarse scales.

The elements in columns of the coefficient matrix G correspond
o different observation locations �x,y� on the surface So, and the ele-

ents in rows correspond to different source locations �x�,y�� on Se.
hus, each row or column can be considered a 2D image. We can ap-
ly 1D wavelet transforms along the x- and y-directions, respective-
y, for each column to obtain a separable 2D wavelet transform. This
s exactly analogous to the operation of 2D fast Fourier transform
FFT�. The same 2D wavelet transform can be applied to the rows as
ell. Therefore, applying the 2D wavelet transform to each row and

olumn expands G in the wavelet bases. Let W2 be the symbolic ma-
rix representation of the 2D wavelet transform; then the trans-
ormed coefficient matrix G̃ can be written as

G̃�W2GW2
T. �9�

ecause many elements of G̃ are nearly or identically zero, they
an be discarded when their amplitudes fall below a threshold
. This leads to the desired sparse matrix G̃s and a discarded matrix

˜ ��G̃�G̃s.
Unlike the commonly used soft thresholding in denoising applica-

ions, a hard threshold is required for matrix compression because
he goal is to discard small coefficients to reduce the storage require-

ent and the CPU time for matrix-vector multiplications. The
hreshold � for winnowing the small coefficients is determined by
he required accuracy.Although various matrix norms can be used to
efine accuracy measures, their effect on the accuracy of forward
odeling �i.e., the evaluation of equation 2� often is not apparent.
e therefore adopt a more pragmatic approach of using the relative

rror of the modeled data produced by the thresholding. This is de-
ned as

r�
�G̃�m̃�

�G̃m̃�
, �10�

here m̃�W2m is the transformed model vector. Because the
uantity r is model dependent, we evaluate it using a model m con-
isting of uncorrelated random numbers. Numerical tests indicate
hat the choice of a relative threshold of 0.001, so that �

0.001�max�� g̃ij��, is reasonable for many practical applications.
t produces a relative error of about r�1%.
Downloaded 01 Feb 2012 to 137.82.25.106. Redistribution subject to S
It is important to note that the relative threshold, instead of an ab-
olute threshold, should be specified in practice because the latter is
ighly dependent on the problem and its scaling. There is a trade-off
etween computational efficiency and accuracy. A higher relative
hreshold yields a sparser matrix and faster computation at the cost
f accuracy. Thus, one might need to experiment with the relative
hreshold for specific applications in practice.

As an illustration, we consider the following synthetic problem.
he magnetic data are located over a 64�64 grid with an interval of
m in both horizontal directions. The data are assumed to be a total-

eld anomaly with an ambient field in the direction I�50° and D
10°. We use an equivalent source that is composed of thin rectan-

ular prisms with a constant, vertical magnetization. The prisms are
entered beneath each data point. They have a width of 1 m in both
orizontal directions and extend beneath the observation surface
rom 0.1 to 0.6 m. The choice of depth and thickness is not crucial,
ut it is desirable to have a small depth and a thickness less than the
idth of the cell so as to better reproduce the high-frequency signal

n the data.
The resulting coefficient matrix for this problem is 4096�4096,

nd it is dense. Applying the wavelet transform using the
aubechies wavelet �Daubechies, 1988� that has three vanishing
oments, and thresholding with the above criterion, results in a

parse transformed matrix having only 346,986 nonzero entries.
his represents a compression ratio of 48.4. The relative error of the

eft-hand side is less than 1%. Figure 1 shows the sparsity pattern of
he transformed matrix. Each nonzero element is plotted as a black
ot, and zero elements are blank. The matrix is dominated by a diag-
nal band and four off-diagonal bands above and below.

FAST SOLUTION FOR EQUIVALENT SOURCE

We now turn our attention to the construction of an equivalent
ource using the compressed coefficient matrix. Given that G is
quare, one might obtain the solution for m by the direct inversion of
he matrix system, and the observed data are fit exactly. This causes

igure 1. The sparsity pattern of the transformed coefficient matrix
fter the thresholding has been applied. The matrix has dimensions
f 4096�4096. The nonzero elements are shown as black dots, and
hey represent a 2% fill.
EG license or copyright; see Terms of Use at http://segdl.org/
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L54 Li and Oldenburg
wo potential problems. First, the matrix G might be poorly condi-
ioned, and the direct inversion becomes unstable. Second, the ob-
erved data are always contaminated by noise, and the exact inver-
ion of the matrix system is unwise. Therefore, we treat the problem
s an inverse problem and solve it by introducing explicit regulariza-
ion. Thus, our approach differs from the standard equivalent source
echnique in that we seek to construct an equivalent source layer that
nly reproduces the signal in the data.

pace-domain formulation

Let �d be the data misfit quantifying the difference between the
bserved data and those predicted by the equivalent source, and let
m be the model objective function quantifying the complexity of

he equivalent source. We obtain the inverse solution for the equiva-
ent source by Tikhonov regularization �Tikhonov and Arsenin,
977�:

minimize � ��d���m

subject to �d��
d
*, �11�

here � is the regularization parameter and �
d
* is the target misfit,

hich depends on the estimated error level of the data.
The model objective function imposes desired properties on the

onstructed equivalent source to achieve stability. For most applica-
ions, a model objective that penalizes the size of the equivalent
ource and its structural complexity is a good choice; hence, we use
he form

�m���	�sm
2�
 �m

�x
�2

�
 �m

�y
�2�dxdy . �12�

his is a generic model objective function that has been used exten-
ively in applied geophysical inversion �e.g., Dosso and Oldenburg,
989; Menke, 1989; Li and Oldenburg, 2003�. It measures globally
he model complexity without being concerned with the position-
ependent local properties of the model.

In our current application, we essentially require that the con-
tructed equivalent source is smooth with respect to its lateral loca-
ion without reference to the vertical position of the source or the cor-
esponding rate of change of observed data as a function of position.
iven the assumption that the surface Se is continuous, such a re-
uirement is reasonable. The smoothness of the model is primarily
etermined by the parameter �s � 0,��. Setting �s�0 yields a
aximally smooth equivalent source, and �s 	 1 diminishes the ef-

ect of the derivative terms in equation 12, which is similar to the
amped least-squares approach to equivalent source construction by
eão and Silva �1989�. It is important to note that the equivalent
ource serves only as an intermediate step to achieve the desired data
rocessing such as upward continuation or reduction to the pole; the
pecific properties of the equivalent source are not important so long
s its construction is stable and minimally affected by data noise.
onsequently, it often suffices to construct a maximally smooth so-

ution with �s�0.
The data misfit �d is defined by

�d� �Gm�d�2, �13�

here �·� denotes the L2 norm. Here, we assume that the data and co-
fficient matrix have been normalized by the standard deviation of
Downloaded 01 Feb 2012 to 137.82.25.106. Redistribution subject to S
he error in the data. Having defined the data misfit and model objec-
ive function, we can proceed with the solution of the minimization
roblem in equation 11 to construct the equivalent source.

The minimization process involves a search for an optimal � val-
e that yields the target misfit. In cases when the target misfit is un-
nown due to the lack of explicit knowledge of data error statistics, �
ust be estimated independently by such methods as the L-curve

riterion �Hansen, 1998� or generalized cross validation �GCV�
Wahba, 1990�. Henceforth, we assume that the target misfit is
nown and focus on the computational complexity of this basic
roblem.

The direct approach using the dense matrix would involve dis-
retizing equation 12 using the finite-difference approximation to
he derivative operators to obtain

�m�mTLTLm, �14�

nd solving the following system:

�GTG��LTL�m�GTd, �15�

here LT L is the model weighting matrix representing the model
bjective function based on the finite-difference approximation. The
odel weighting matrix is extremely sparse �Menke, 1989� and in-

urs little computational expense. The impediment to this direct ap-
roach comes from the presence of the dense matrix G, which is
hat we set out to overcome.
The solution of equation 15 can be sped up by performing fast ma-

rix-vector multiplications in the wavelet domain by using the
parse, transformed coefficient matrix G̃s. This would be similar to
he approach that Li and Oldenburg �2003� take in the fast 3D mag-
etic inversion. We refer to this as the wavelet-accelerated approach.
e have implemented both approaches in the space domain for the

urpose of comparison.

avelet-domain formulation

Given the availability of G̃s, the most efficient route to the solution
s to perform the minimization completely in the wavelet domain.

e now develop this method. First we apply the wavelet transform
o the data d and represent the model m in the wavelet bases,

d̃�W2d,

m�W2
Tm̃, �16�

here W2 is the same wavelet transform applied to the coefficient
atrix. Then, the original equation 2 can be rewritten as

d̃�G̃m̃, �17�

nd d̃ and m̃ become the data and model in the wavelet domain, re-
pectively.

Next, it is necessary to derive the wavelet-domain equivalent of
he model objective function in equation 12 and the data misfit in
quation 13. For the model objective function, we need to use the
ourier transform as a tool to understand the meaning of equation 12
hen the model is represented in the wavelet bases. Express the
odel in its Fourier transform:

m�x,y���
p
�

q

f�p,q�ei�px�qy�dpdq, �18�
EG license or copyright; see Terms of Use at http://segdl.org/
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Rapid equivalent source construction L55
here �p,q� are the transform variables in the x- and y-directions. By
arseval’s theorem, the model objective function in equation 12 can
e expressed as

�m��
p
�

q

��s�p2�q2��f�p,q��2dpdq . �19�

Two interesting points emerge from this transformation. First, the
erm ��s�p2�q2� can be viewed as the square of a weighting func-
ion applied to the Fourier transform of the model. Thus, a smooth-
ess objective function in the space domain is expressed by a
eighted smallest model objective function �i.e., a diagonal weight-

ng function� in the Fourier domain. Second, the weighting function
mplies a spectral decay of the model that has the form

P�p,q��
1

�s�p2�q2 �
1

�s�
2 , �20�

here 
 ��p2�q2 is the radial wavenumber. This represents a sta-
istically self-similar process with a power spectrum obeying an in-
erse power law. Therefore, by imposing a model objective function
f the form in equation 12, we are seeking to construct a self-similar
odel whose power spectrum decays as 1 /
2.
When a self-similar process is represented in the wavelet bases,

he wavelet coefficients on the same scale exhibit uncorrelated
aussian behavior, the variance decays exponentially with the scale,

nd the exponent is equal to the product of the scale and the rate of
ower spectral decay �Flandrin, 1992�. In other words, for a process
ith a power spectrum of the form 1 /
� , the variance of the wavelet

oefficients at the jth scale is

v j �2�j� . �21�

his can be extended to multidimensional models when a separable
avelet transform is used:

v jxjy
�2��jx� x�jy� y�, �22�

here jx and jy are the scales of the wavelet transform in the x- and
-directions, and � x and � y are the rates of power spectral decay in
he x- and y-directions, respectively. In our current problem, � x

� y �2, and the variance is given by 2�2�jx�jy�.
Given this understanding, a weighting function that is inversely

roportional to the standard deviation of the wavelet coefficients at a
iven scale is required to produce the same type of model as does the
pace-domain objective function. Thus, the wavelet-domain equiva-
ent of the space-domain objective function in equation 12 is given
y

�m�m̃�� �
jx,jy

22�jx�jy� �
kx,ky

�m̃jx,jy

kx,ky�2, �23�

here m̃jx,jy

kx,ky are the wavelet coefficients; and kx and ky denote the lo-
ation index of the wavelet coefficients in the x- and y-directions, re-
pectively. Written in the matrix form,

�m�m̃��m̃TL̃TL̃m̃, �24�

here L̃ is a diagonal matrix given by
Downloaded 01 Feb 2012 to 137.82.25.106. Redistribution subject to S
L̃�diag�¯ ,2�jx�jy�,¯ �, �25�

nd the entries on the diagonal of L̃ are ordered in the same way as
re the coefficients in m̃.

We remark that although we have used the Fourier transform to ar-
ive at the new model objective function in equation 23, this step
oes not rely on the assumption of a planar surface as required in the
ourier-domain processing of potential-field data. Such an assump-

ion is required in potential-field processing so that space-domain
perators are expressed as 2D convolutions. Transforming such op-
rations to the Fourier domain leads to decoupled systems that are
imple multiplications because of the convolution theorem of the
ourier transform.
However, a 2D Fourier transform can be applied to any 2D func-

ion, such as an equivalent source defined on undulating surfaces.
hus, the above result is generally applicable to the equivalent
ource construction, and the fact that it is on an uneven surface does
ot pose any difficulties. This is because the model objective func-
ion equation 12 is formed as an integral with respect to x and y, and
here is no reference to the vertical position of the source. We also
ote that this result might seem to imply that the wavelet transform

2 diagonalizes the space-domain weighting matrix LT L. This is
ot strictly true. The direct wavelet transform of LT L is, however,
iagonally dominated, and keeping only the diagonal elements
ould be an excellent approximation. It is for this reason that we use

he notation L̃.
The wavelet-domain misfit function is easily established. Be-

ause W2 is an orthonormal transform and its application to a vector
oes not change the norm, we have the same form of data misfit in the
pace and wavelet domains:

�d� �Gm�d�2� �G̃m̃� d̃�2. �26�

n other words, the misfit function is directly calculable using wave-
et-domain quantities.

Substituting equations 24 and 26 into equation 11, and carrying
ut formal minimization with respect to m̃, yields

�G̃TG̃��L̃T L̃�m̃�G̃T d̃ . �27�

he matrix G̃ is replaced by its sparse version G̃s during the compu-
ation. This equation has the same appearance as equation 15, but the
ifference is that all matrices involved in the computation are very
parse. Therefore, equation 27 is much easier to solve even if it is
olved by a line search to find the appropriate � that yields the de-
ired data misfit.

Alternatively, one can use incomplete conjugate gradients �CG�
Haber, 1997� to further reduce the computational cost. The weight-
ng matrix L̃, as given in equation 25, is diagonal, and it is invertible;
hus we can convert equation 27 to a standard form:

�G̃L
TG̃L��I�m̃L�G̃L

Td̃, �28�

here

G̃L�G̃L̃�1,

m̃L� L̃m̃ . �29�

his problem can be solved without an explicit regularization pa-
ameter � by incomplete conjugate gradient �CG� least squares
EG license or copyright; see Terms of Use at http://segdl.org/
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L56 Li and Oldenburg
Haber, 1997�. In an incomplete CG solution, we apply only a limit-
d number of CG iterations to

G̃L
TG̃Lm̃L�G̃L

Td̃ . �30�

he number of CG iterations acts as the inverse of the regularization
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igure 2. Asynthetic example illustrating the equivalent source con-
truction. Maps display �a� the topography, �b� the noise-corrupted
otal-field anomaly on the uneven surface shown in �a� and produced
y a thin vertical prism, and �c� the accurate total-field anomaly on a
lane at an elevation of 4 m and produced by the same prism. The
rism is outlined by the white lines in �b� and extends vertically from
1 to �3 m in elevation. The magnetization of the prism is
A /m and is aligned with the ambient field direction of I�50° and
�10°.
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arameter � in equation 28; i.e., the degree of regularization is in-
ersely proportional to the number of CG iterations performed.

A full CG solution of equation 30 is equivalent to setting ��0 in
quation 28, whereas a small number of iterations corresponds to a
arge � value. In an incomplete CG, we start with m̃�0 and termi-
ate the iteration when the data misfit �d has been reduced to within
n acceptable tolerance from the target value �

d
*, and the resulting

odel at that iteration provides the solution for the equivalent source
onstruction. The desired equivalent source is obtained by applying

˜ �1 to m̃L followed by an inverse wavelet transform. This is by far
he most efficient approach.

NUMERICAL EXAMPLES

We illustrate the algorithm using two examples. The first one is a
ynthetic case designed to demonstrate the validity and efficiency of
he wavelet-domain method. As comparisons, we also perform the
onstruction by applying the direct space-domain method using the
ense matrix, and the wavelet-accelerated space-domain method us-
ng fast matrix-vector multiplications. Figure 2a shows a topograph-
c surface, and Figure 2b and c shows, respectively, the total-field

agnetic data on the topographic surface and on a plane intersecting
he topography.

Both data sets are produced by the same source body. We simulat-
d the field over a 64�64 grid on each surface. The grid spacing is
m in both directions. The causative body is a vertical thin prism
ith a width of 20 m in both east and north directions and a vertical

xtent from �1 to �3 m in elevation, and its magnetization is
A /m. The magnetization and the ambient field have the same di-

ection of I�50° and D�10°. The topographic surface has eleva-
ions ranging from 0 to 5 m, and the planar surface has an elevation
f 4 m. We have added independent Gaussian noise with a standard
eviation of 1 nT to the observations on the topographic surface to
imulate observed data. The objective is to construct an equivalent
ource layer for the observed data and continue them to the planar
urface.

We use a piecewise constant magnetization distribution as the
quivalent source, and choose to align the magnetization direction
ith the ambient field direction. This choice produces the least

mount of distortion near the edges that is sometimes seen in the up-
ard continuation based on the equivalent source. The majority of

he planar surface at a 4-m elevation is above the original observa-
ion surface, but a portion is below. The equivalent source is placed
.1 m below the observation surface or the plane, depending on
hich is lower �Figure 3�.
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igure 3. An illustration of relative positions of three surfaces in-
olved in the equivalent source construction. This is a profile corre-
ponding to 0-m east in Figure 2. The solid line indicates the original
bservation surface �So�, the dotted-dashed line the plane to which
he data are to be continued, and the dashed line the equivalent
ource surface �S �.
e
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Rapid equivalent source construction L57
We have constructed the equivalent source using the direct meth-
d �by solving equation 15�, wavelet-accelerated method, and wave-
et-domain method for comparison. They all produce numerically
dentical solutions and provide consistent and good representations
f the true field at the continuation height. For brevity, we reproduce
nly the result of the wavelet-domain method here �Figure 4�, which
ook only nine CG iterations to obtain as shown in Figure 5. Figure
a shows the field continued to the elevation of 4 m using the con-
tructed equivalent source, which compares well with the true field
n Figure 2c. The difference between the true field and the continued
eld �Figure 4a� is shown in Figure 4b. The difference reaches 3 nT
t isolated points, but it is mostly within 2 nT. This is a somewhat
mall deviation considering that the true field has a dynamic range of
30 nT and the observed data are contaminated by noise. However,
he important point is that all three approaches have produced the
ame result that compares well with the true field at the continuation
eight. This validates the wavelet-domain method.

We now examine the computational efficiency achieved in the
avelet domain by comparing the relative CPU times required to ob-

ain a solution with each method. For the wavelet-accelerated meth-
d and wavelet-domain method, we compress the coefficient matrix
sing the Daubechies wavelet that has three vanishing moments.
he resultant sparse matrix in the wavelet domain achieves a com-
ression ratio of 56. The sparsity pattern is similar to that shown in
igure 1. To facilitate the comparison, we denote the CPU time for

he wavelet-domain method as 1 unit. The corresponding CPU time
or the space-domain and wavelet-accelerated space-domain meth-
ds are, respectively, 470 and 4 units. These are the CPU times re-
uired to obtain one solution with the correct regularization parame-
er �, although practical applications require several such solutions
o search for the optimal regularization parameter for the space-do-

ain and wavelet-accelerated methods. The important comparison
s between the direct space-domain method and the wavelet-domain

ethod. It is clear that substantial computational savings are
chieved through the use of the wavelet transform and incomplete
onjugate gradient solution in the wavelet domain.

As a second example, we apply the wavelet-domain method to a
et of field data acquired in gold exploration at a low magnetic lati-
ude �I��17°, D�1.5°�. Figure 6a displays the surface topogra-
hy, and Figure 6b is the observed total-field anomaly on the surface.
he elevation of the topography varies from 400 to 900 m. The cor-

esponding total-field anomaly varies from �2200 nT to 400 nT.
he influence of the rugged topography is apparent in the data. For
xample, the extremely strong negative anomaly is located at a to-
ography low.

We wish to observe the field on a planar surface at an elevation of
70 m. We use a similar approach as in the synthetic case and place
he equivalent source slightly below either the observation surface
r the plane, whichever is lower. We achieve a compression ratio
f 61, and the incomplete conjugate gradient takes 39 iterations to
btain the desired data misfit. The total-field anomaly continued to
he plane �Figure 6c� has much more balanced peak and trough val-
es. The wavelet-domain method has worked well in this field exam-
le with strong topographic relief and low magnetic latitude. The
omputational efficiency is similar also to that seen in synthetic test
ases.
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igure 4. An illustration of the wavelet-domain equivalent source
onstruction for continuation of the magnetic field from an uneven
urface to a plane. �a� The continued total-field anomaly at an eleva-
ion of 4 m using the equivalent source. This field agrees with the
rue field shown in Figure 2c. �b� The differences between the two
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igure 5. A convergence curve for the wavelet-domain-method con-
truction of an equivalent source in the synthetic example, which
ses incomplete conjugate gradient �CG�, and the number of itera-
ions serves as the inverse of the regularization parameter. Only nine
terations are required to reach the target misfit indicated by the
ashed line.
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CONCLUSIONS

We have developed a rapid construction algorithm for the equiva-
ent source of potential-field data. The algorithm uses the sparse
avelet representation of operators and a wavelet-domain model
bjective function. The coefficient matrices involved in the equiva-
ent source problems are well-suited for compression using ortho-
ormal bases of compactly supported wavelets. The compressed
atrix can have as low as a few percent of elements to be nonzero.
uch a sparse matrix, coupled with a diagonal form of the weighting
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igure 6. A field example illustrating the continuation between un-
ven surfaces using the wavelet-domain construction of equivalent
ources. �a� The surface topography. �b� The total-field anomaly ob-
erved on the topographic surface. The ambient field has an inclina-
ion of �17° and a declination of 1.5°. �c� A display of the data con-
inued to a constant elevation of 870 m.
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atrix in the wavelet domain and the use of incomplete conjugate
radient iterations, greatly reduces the computations.

Because the method is based on the compression of the coefficient
atrix, the compressibility of the matrix is the deciding factor for its

fficiency. The best compression is obtained when the elements of
he coefficient matrix peak along the diagonal. Thus, a greater com-
ression ratio is achieved when vertical dipoles, or magnetization,
re used for anomalies with steep inclination and when horizontal di-
oles are used for anomalies with shallow inclination. Simple dipole
ources and magnetized prisms with small vertical extent also pro-
uce a better compression ratio. However, the choice of source type
ust be made to balance the high compression ratio with the quality

f the constructed equivalent source. For example, it is observed, in-
ependent of the solution method, that the best result for upward
ontinuation is obtained when the direction of the dipole or magneti-
ation is aligned with the direction of the anomaly projection. Other
hoices of the dipole direction tend to produce larger errors along the
dge of the map.

The work reported here serves to prove the concept of the method
nd demonstrates its efficacy and numerical feasibility. Further effi-
iency can be achieved by developing direct approaches for calculat-
ng the sparse, transformed coefficient matrix or by adopting differ-
nt wavelets. It is likely that a different wavelet would yield a higher
ompression ratio, but we have not investigated it exhaustively with-
n the scope of this work. Consequently, this method could fill a gap
or processing large data sets collected on undulating surfaces where
he Fourier transform-based methods are no longer valid.
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