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ABSTRACT 
MCGILLIVRAY and OLDENBURG, D.W. 1990. Methods for calculating Fréchet derivatives and 
sensitivities for the non-linear inverse problem: a comparative study. Geophysical Prospecting 

A fundamental step in the solution of most non-linear inverse problems is to establish a 
relationship between changes in a proposed model and resulting changes in the forward mod- 
elled data. Once this relationship has been established, it becomes possible to refine an initial 
model to obtain an improved fit to the observed data. In a linearized analysis, the Fréchet 
derivative is the connecting link between changes in the model and changes in the data. In 
some simple cases an analytic expression for the Fréchet derivative may be derived. In this 
paper we present three techniques to accomplish this and illustrate them by computing the 
Fréchet derivative for the 1D resistivity problem. For more complicated problems, where it is 
not possible to obtain an expression for the Fréchet derivative, it is necessary to parameterize 
the model and solve numerically for the sensitivities - partial derivatives of the data with 
respect to model parameters. The standard perturbation method for computing first-order 
sensitivities is discussed and compared to the more efficient sensitivity-equation and adjoint- 
equation methods. Extensions to allow for the calculation of higher order, directional and 
objective function sensitivities are also presented. Finally, the application of these various 
techniques is illustrated for both the 1D and 2D resistivity problems. 

38,499-524. 

INTRODUCTION 
Linearized analysis, traditionally employed in solving non-linear inverse problems, 
demands that either the Fréchet derivative or the first-order sensitivities be com- 
puted to evaluate quantitatively how a change in the model affects a datum. Liter- 
ature in various fields illustrates how these quantities can be computed; however, 
there does not exist a detailed comparison of the various approaches which are 
available. As such, when faced with solving an inverse problem, there is often indeci- 
sion about what options exist and how best to find an analytic expression for the 
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Fréchet derivative or how to compute the sensitivities numerically. The goal of this 
paper is to fill that void. Our hope is that at least one of the techniques offered here 
will be of use to any practitioner faced with inverting geophysical data. 

We begin with a general discussion of the forward and inverse problems, which 
involve mappings between ‘model space’ and ‘data space’. For the work presented 
here, model space is a Hilbert space of functions defined over a suitable interval and 
data space is an N-dimensional Euclidean vector space whose elements are real or 
complex numbers. 

We can represent the forward mapping mathematically by 

e j  = Fj(m), j = 1, 2, . . ., N (1) 
where FXm) is a functional which relates a given model m(x) to the jth datum e j .  If 
the problem is linear then (1) can be expressed as 

r 
e j  = J K,(x)m(x) d3x, j = 1, 2, ..., N ,  

D 

where KJ(x) is the kernel function associated with the jth datum and D is the 
domain of the problem. 

In many cases the physics of the experiment leads to a description of the forward 
problem in terms of a differential equation and a set of boundary conditions, which 
together define a mathematical boundary-value problem. The steady-state diffusion 
problem, for example, is described by the differential equation 

LU = -V * (~(x)VU) + ~ ( x ) u  = Q(x), (34  
valid over the domain D, and the boundary condition 

(3b) 
au  
an  

MU = ~ ( x ) u  + P(x) - = g(X), 

valid on the boundary aD of D. In (3), U(X) is the response function to be solved for, 
p(x) and q(x) jointly specify the model, and Q(x) and g(x) describe the source dis- 
tribution (or system excitation). Although for simple geometries it may be possible 
to find a closed-form solution to (3), generally one is forced to appeal to numerical 
techniques. 

In the inverse problem we seek to find a model m*(x) such that 

eTbs = FJ(m*), j = 1, 2, . . ., N (4) 
where eTbs is the jth observation. If the forward problem is linear then a variety of 
standard techniques can be used to solve the set of equations in (4) for m*(x) (e.g. 
Parker 1977b; Menke 1984; Oldenburg 1984); the particular technique used defines 
the inverse mapping. Although non-iterative inverse mappings can be found for 
non-linear problems (e.g. Gel’fand-Levitan approaches for inverse scattering 
problems), the techniques are often unstable in the presence of noise. Also, for many 
non-linear problems encountered in geophysics, no direct inverse mapping has been 
found. The usual strategy in these cases is to start with an estimated solution, 
mest(x), and to solve the forward problem to obtain the predicted data. A pertur- 



C A L C U L A T I N G  F R É C H E T  DERIVATIVES 501 

bation dm(x) is sought which, when added to mest(x), yields a model which repro- 
duces the observed data. 

To derive equations which accomplish this, we write the jth observation in terms 
of the expansion 

where the operator Fy)(m) is called the nth order Fréchet derivative of Fj(m) (Griffe1 
1981; Zeidler 1985). The first-order derivative F?)(m) is referred to simply as the 
Fréchet derivative. 

Letting dej = egbs - Fjm,,,) be the misfit for the jth observation, then (5 )  can be 
written as 

dej = FY)(m,,,)dm + 0(116ml12). (6) 
If the higher-order terms represented by O( 11dmll 2, are neglected, then (6) can be 
written as 

dej  = J>{x, m,,,)dm(x) d3x, (7) 

where KJ{x, m) is the Fréchet kernel associated with the jth observation. It is this 
kernel which establishes the relationship between a small (first-order) perturbation 
in the model and the corresponding change in the datum. Since (7) is linear, the 
perturbation dm(x) can be readily computed using standard techniques once an 
analytic expression for the Fréchet kernel has been derived. 

Rather than deriving an expression for the Fréchet derivative, an alternate 
approach to the solution of the inverse problem is first to represent the model by a 
finite set of parameters mk , k = 1, 2, . . . , M .  The model is then a Euclidean vector m 
and the Taylor series expansion for the jth datum is 

where anFJ{m)/amk am, ..., is the nth order sensitivity of Fjm) with respect to the 
kth, lth, . . . , parameters. Equation (8) can also be written as 

If the higher-order terms encompassed by O( 116mll 2, are neglected, one obtains the 
matrix equation 

de x Jam, (10) 

where J is the N x M Jacobian matrix whose elements J j k  = aFj/dmk are the first- 
order sensitivities. Practical formulations for finding the model perturbation 6m 
make use of a generalized inverse for J (Jackson 1972; Wiggins 1972; Jupp and 
Vozoff 1975; Menke 1984). 
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The specific methods used to solve (7) or (10) will differ among inverse practi- 
tioners. Also, each problem is b s t  tackled by introducing an appropriate weighted 
norm to be minimized and often different regularization schemes are implemented. 
Nevertheless, almost all linearized inversion methods make use of one of these two 
equations and thus the calculation of Fréchet derivative kernels and parameter 
sensitivities is of fundamental importance to the solution of the non-linear inverse 
problem. 

DERIVATION OF ANALYTIC FRÉCHET DERIVATIVES 
The usual approach for deriving an expression for the Fréchet derivative is to 
perturb the governing differential equation and thereby formulate a new problem 
which relates the change in the forward response to a small perturbation in the 
model. Let the forward problem be described by 

LU = Q(x). (1 1) 

LSU + SLU = O, (12) 

LSU = R(x), (13) 

Then the response perturbation Su(x) satisfies, to first order, the problem 

or 

where SL is a new operator obtained by perturbing the model, and R(x) = -6Lu. 
The solution of (13), evaluated at an observation location x o ,  yields the Fréchet 
derivative for that observation. 

Adjoint Green’s function approach 

A general way of solving (13) for the Fréchet derivative is to make use of an 
adjoint Green’s function solution (Lanczos 1960; Roach 1982). We begin by defining 
an adjoint operator L* and considering the problem 

L*G* = S ( X  - x O ) ,  (14) 
where G*(x, xo) is the adjoint Green’s function. Multiplying (13) by G* and (14) by 
Su and subtracting, yields the expression 

G*LSu - SuL*G* = G*R(x) - S U ( X ) S ( X  - ~ 0 ) .  (15) 
Integrating both sides of (15) over the domain D, and making use of the properties 
of the Dirac delta function, yields 

S,(G*L6u - SuL*G*) d3x = G*(x, x,)R(x) d3x - Su(xo). s, (16) 

If the operator L* and the adjoint boundary conditions are chosen such that 

(G*LSu - SuL*G*) d3x = O, J, 
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for all G* and du, then the Fréchet derivative is given by 

G*(x, xo)R(x) d3x. 

Requiring the adjoint problem to satisfy (17) establishes a form of reciprocity 
between the response perturbation and adjoint problems. This makes it possible to 
compute the response perturbation du(x,) due to a unit source at x by placing a unit 
source at xo and calculating the value of the adjoint Green’s function at x. Equation 
(18) then uses the linearity of the problem to obtain the response perturbation due 
to the complete source term R(x) by superposition. In many cases it is much easier 
to solve for the adjoint Green’s function and perform the required integrations than 
to solve (13) directly. 

To illustrate the adjoint approach, we derive the Fréchet derivative for the d.c. 
resistivity problem. The general governing equations are 

v . (a(x)V4) = O, (194 

4 k  Y ,  Z ) L m  = O, ( 1 9 4  

where 4(x) is the potential due to a single current electrode located at x, = (O, O, O) 
and a(x) is the subsurface conductivity distribution. When the conductivity varies 
only with depth, (19) can be written as 

a I 
az 27ca(O)r - 4(r ,  O) = - ~ W), 

4@, 4 Lm = O, (20c) 

where r is the radial distance from the current electrode. 
Symmetry suggests taking the Hankel transform of 4 

where Jo(Ar) is a Bessel function of the first kind of order O. The transformed 
response h(A, z) = A&, z) can then be shown to satisfy the forward problem 

dh d2h 
dz2 dz 

d ill 
- h(A7 O) = - - 

W(Z)  - - A2h = O, - _  

dz 27ca(0)’ 
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where 

1 da(z) 1 dp(z) w(z)= ---=--. 
~ ( z )  dz p(z) dz 

As a final transformation it is convenient to define the normalized response 
$(A, z) = h(Â, z)/h'(Â, O) which satisfies 

dS" d2$ 
dzZ dz 

w ( ~ )  - - n2S" = O, -- 

d -  - S(A, o) = 1, 
dz 

$(A, z) La) = o. (234 

Equations (23a, b, c) are the desired governing differential equation and boundary 
conditions for which the Fréchet derivative will be calculated. 

Since p(z) is expected to vary over several orders of magnitude and is strictly 
positive it is convenient to consider either m(z) = In p(z) or w(z) = (d/dz) In p(z) as 
the model. In many cases w(z) is the appropriate choice since it will lead to smooth- 
er estimates of In p(z). If w(z) is selected as the model, then a perturbed system is 
obtained by letting w(z) -, w(z) + 6w(z) in (23). Subtracting the unperturbed from the 
perturbed system yields an equation for the response perturbation 6S"(A, z): 

d6S d$ d26S" 
dz2 dz dz 

w(z) - - A26S = 6w(z) -, -- 

d 
dz 
- dS"((n, O) = O, 

6$((n, Z)Iz-tm = o. (244 

The adjoint problem which satisfies the reciprocity relationship in (17) can be found 
by multiplying (24a) by the adjoint Green's function G*(A, z, 5 )  and integrating over 
z. We obtain 

The first two terms on the left are then integrated by parts to yield 

G* Im - 6 $ p z  dz + wG*) Im + Srn&fq dz + dz (w(z)G*) - Â2G*] dz 
dz O 

= [G*(Â, z, O) - ') 6w(z)dz. (26) 
dz 
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If we choose the adjoint problem to be 

d2G* d 
dz2 dz 
__ + - (w(z)G*) - A2G* = 6(z - 0, 

d 
dz - G*(A, O, <) + w(O)G*(A, O,  5 )  O, 

G*@, z, 0 Lm = O, 

then the Fréchet derivative ,!?')(A, O) is given by 

dS(A, z) 
dz 

6S(A, O) = $(')(A, O ) ~ W  = G*(A, Z, O) - 6w(z) dz 

Note that in this case the problem is not self-adjoint (i.e. the response perturbation 
SS and the Green's function G* do not satisfy the same governing equations and 
boundary conditions). An analytic solution to (27), 

P(0) 
P(Z) 

G*(A, Z, O) = - S(A, z), 

can be found using standard techniques (e.g. Parker 1977a). The Fréchet derivative 
is then given by 

The adjoint Green's function approach has also been used in a number of other 
1D inverse problems in geophysics. Parker (1977a), for example, used this approach 
to derive the Fréchet derivative for the 1D magnetotelluric problem, while Chave 
(1984) used it to obtain the Fréchet derivative for the general 1D electromagnetic 
induction problem. 

Series expansion approach 
The second method for calculating the Fréchet derivative is based upon writing 

the response of a perturbed system in terms of a Taylor series expansion. In fact, 
this method is not fundamentally different from the adjoint Green's function 
approach but it does show how higher-order Fréchet derivatives can also be evalu- 
ated. The method will be illustrated by applying it to the 1D resistivity problem. Let 
the general model perturbation be 6w(z) = E~(z), where q(z) is an arbitrary function. 
The perturbed response Sper,(A, z) can be written in terms of the Taylor series expan- 
sion 

E2 

2! Sppert(A, z) = $(A, z) + &S,(A, z) + - S2(A, z) + . . ., 
where 

a n  

a&" $"(A, z) = - S(A, z). 
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The perturbed response satisfies 

1 E2 1 dz 2! 
[s + &SI + - s2 + * * .  - (w + E U )  

E 2  

dz2 2! s + E S 1  + - s2 + . . . 

1 E2 

2! 
s" + &fl + - S2 + = O. (32) 

Collecting terms involving the same power of E,  one obtains the series of equations 

dgk dgk - 1 
W(Z) - - A'Sk = kq - k = 1, 2, .... d2$k -- 

dz2 dz dz (33) 

For k 2 1, the surface boundary condition is (d/dz)g,(A, O) = O and all solutions are 
required to decay to zero as z 4 CO. For k = 1, $,(A, z) = $(A, z) is the field due to 
the unperturbed system. We note that each of the problems in (33) has the same 
form and is identical to that given in (24). $,(A, O) can be found using the adjoint 
Green's function approach and hence the Fréchet derivative f(')(A, 0)6w = &$,(A, O) 
will again be given by (30). Higher-order Fréchet derivatives may be calculated 
using the same adjoint Green's function. 

Riccati equation approach 

adjoint method in that it is restricted to governing equations of the form 
The third method for computing the Fréchet derivative is less general than the 

Uyz) + A(z)u'(z) + B(z)u(z) = O, (34) 
that is, to second-order homogeneous linear equations in one-dimension. Neverthe- 
less, the pervasiveness of this equation in physical problems means that special solu- 
tion methods tied to this equation can still have general usefulness (e.g. Oldenburg 
1978 and 1979). To compute the Fréchet derivative, we first transform (34) to 
a Riccati equation by making the substitution y(z) = - ur(z)/a(z)u(z) or 
y(z) = -a(z)u(z)/u'(z) (Bender and Orszag 1978). The Riccati equation for ay,  
obtained by perturbing the model, is then solved using standard techniques. 

To illustrate the method, we apply it to the 1D resistivity problem. Following 
Oldenburg (1978) let S(A, z) = h(A, z)/h'(Â, z). Substituting into (22a) yields the 
Riccati equation 

dS 
dz 
- + w(z)S + Â2S2 - 1 = o. (35) 

Perturbing w(z) by 6w(z) generates a response perturbation 6S(A, z) which satisfies, 
to first order, the equation 

(36) 
d6S 
dz 
- + (w(z) + 2A2S)dS = -SGw(z). 
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This may also be written as 

Making use of the integrating factor 

we obtain an expression for the Fréchet derivative S(')(A, O) given by 

(37) 

(38) 

This is identical to that obtained using the adjoint Green's function approach for 
the $(A, O) response. 

The Riccati-equation approach is particularly interesting because it allows one 
to compute Fréchet derivatives for a response or for its reciprocal. For example, we 
could have chosen the response 

This leads to the Riccati equation 

w(z)R + R2 - 1' = O, (41) 
dR 
dz 
-- 

and to a Fréchet derivative R(')(A, O) given by 

At the surface of the earth, either S(A, O), or its reciprocal R(A, O), is measured. 
For use in a linearized inverse solution one would like to choose the datum and its 
corresponding Fréchet derivative which leads to the most linear problem possible. 
This choice of data is also encountered in electromagnetic problems where both 
electric ( E )  and magnetic (B)  fields are measured and their ratio, either E / B  or B / E  
can be regarded as data. An analysis, making use of the Fréchet derivative for both 
data choices, can resolve which datum should be used for linearization. 

PARAMETERIZATION OF THE FORWARD AND INVERSE PROBLEMS 
In a parametric formulation of a forward or inverse problem, the model can be 
written as 
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where {$k} is a set of basis functions. The choice of basis functions determines the 
type of model to be considered. For example, the model domain D can be divided 
into subdomains Dk with the kth basis function defined to be unity over the kth 
subdomain and zero elsewhere. The kth parameter mk is then the value of the model 
over the corresponding subdomain. This parameterization permits ‘blocky’ models 
which are well suited to problems where large changes in the model are expected 
over short distances. Another approach is to define a grid of nodes over D and to let 
the kth parameter be the value of m(x) at the location of the kth node. {!),’I is 
determined by the interpolation method used to define the model between nodes. A 
third possibility is to choose {$k} as a set of regional basis functions (e.g. sinusoidal 
functions used in a Fourier expansion). 

Regardless of the parameterization selected, the model is completely specified in 
terms of the vector m = (mi, m, , . . . , mM). In solving the inverse problem, the goal is 
to find values for these parameters which will acceptably reproduce the observa- 
tions. Although there are many ways in which this problem can be approached - for 
example, using the steepest descent, conjugate gradient, or Gauss-Newton method 
(Gill, Murray and Wright 1981) - the inversion will generally require the computa- 
tion of the sensitivity or partial derivative matrix in (10). 

When the forward problem is expressed as a boundary-value problem, the sensi- 
tivities can be computed by solving another boundary-value problem which is either 
identical, or closely related to, the original problem. Many standard algorithms are 
available for the numerical solution of boundary-value problems - the most com- 
monly used being the finite-difference, finite-element and boundary-element methods 
(e.g. Lapidus and Pinder 1982). These algorithms make use of a discretization to 
reduce the governing differential equation and boundary conditions to a system of 
algebraic equations. For a general forward problem, this system can be expressed as 

AU = q, (44) 

where U is the solution at a set of discrete points in the domain. The entries of the 
coefficient matrix A depend on the material properties of the model and on the 
discretization scheme adopted. This means that a new coefficient matrix must be 
formed each time the forward problem is to be solved using a new model. The 
entries of the vector q, on the other hand, are independent of the material properties 
of the model and depend only on the source distribution and discretization scheme. 

Because of the need to solve (44) for many different source distributions, a direct 
solver based on some kind of factorization of A is generally used to obtain U. One 
possible factorization is given by 

A = L U  (45) 

where L and U are respectively lower and upper triangular matrices (Golub and 
Van Loan 1983). The system in (44) becomes 

LUU = q. (46) 

Letting Uu = v, the vector v can be computed by solving Lv = q by forward substi- 
tution; U may be recovered by solving Uu = v by back substitution. Once the factors 
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of A have been computed, they can be used repeatedly to solve the forward problem 
for different source configurations at little additional expense. 

CALCULATION OF DIFFERENTIAL SENSITIVITIES 

Given that the forward problem can be expressed as a boundary-value problem, 
there are three ways to obtain the sensitivities. In the first method, the sensitivities 
are computed from their finite-difference approximations, each requiring the solu- 
tion of the forward problem with the corresponding parameter slightly perturbed. In 
the second method, a new boundary-value problem is derived for each of the sensiti- 
vities, and the sensitivities are solved for directly. In the third, the sensitivities are 
computed using the solution to an adjoint Green’s function problem. 

Perturbation approach 

approximate them using the one-sided finite-difference formula 
The most straightforward way to calculate the differential sensitivities is to 

aFJ(m) FXm + Amk) - F,(m) 
x 

Amk 
(47) 

The perturbed forward response FJ(m + Amk) is obtained by re-solving the forward 
problem after the kth parameter has been perturbed by an amount Amk. Since the 
model must be altered to compute the perturbed responses, each sensitivity requires 
the solution of a completely new problem. As such, this ‘brute force’ method is 
inefficient, but it can nevertheless yield useful results (e.g. Edwards, Nobes and 
Gomez-Trevifio 1984). 

Sensitivity equation approach 
In the sensitivity-equation method, a new forward problem is derived whose 

solution is the desired sensitivity function 4k(x). Problems which have been 
addressed using this approach include the 2D magnetotelluric problem (Rodi 1976; 
Jupp and Vozoff 1977; Cerv and Pek 1981; Hohmann and Raiche 1988), the 2D 
electromagnetic problem (Oristaglio and Worthington 1980) and computer-aided 
design problems (Brayton and Spence 1980). Vemuri et ai. (1969), McElwee (1982) 
and Townley and Wilson (1985) use the approach to address problems in ground- 
water flow. 

To illustrate the technique, we consider the steady-state diffusion problem given 
in (3). Taking p(x) to be the model, and assuming the parameterization p(x) = 
If”= p l  Jll(x), we obtain 

(48b) 
au 
an cr(x)u + p(x) - = O on aD. 
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Differentiating (48) with respect to pk , and substituting for uk(x) = au(x)/ap,, yields 
the sensitivity problem 

-V . (p(x)vuk) + q(x)uk = V * (t,bk(x)Vu) in D, (494 

auk a(x)uk + B(x) - = O on aD. 
an 

To compute the sensitivities for a model p(x), the forward problem (3) is first 
solved to obtain u(x) at all points x in D. For each parameter p k ,  the corresponding 
sensitivity problem is solved to obtain uk(x) which is then evaluated at each of the 
observation locations. Note that the source term V . (t,bk(x)Vu) differs for each k, so 
that a total of M + 1 forward problems must be solved to obtain all of the sensiti- 
vities. Since the sensitivity problems and the original forward problem differ only in 
terms of their right-hand sides, they can be solved efficiently if a direct method such 
as the LU decomposition is used. Only a single matrix factorization is then required 
to solve all M + 1 forward problems. 

The sensitivity-equation method is easily extended to the calculation of other 
kinds of sensitivities. For example, the directional sensitivity u,(x), given by 

where a is a unit vector in parameter space, can be computed by first multiplying 
(49) by ak and then summing over k to obtain the new problem 

-v . (p(x)vu,) + q(x)u, = v . ( 5 ak $&)vu) in D, (514 
k = l  

au 
an a(x)u, + B(x) 2 = 0 on ôD. 

u ~ , ( x )  may then be solved for directly. Directional sensitivities are useful for deter- 
mining an optimum model perturbation once a direction for the perturbation has 
been selected (e.g. Townley and Wilson 1985). 

The sensitivity-equation method can also be extended to the calculation of 
higher-order sensitivities. For example, differentiating (49) with respect to the new 
parameter pi yields a new problem whose solution is the second-order sensitivity 
function ukl(x) = a2u(x)/apk ûpi . Several parameter-estimation schemes that make 
use of these higher-order sensitivities to achieve rapid convergence are available (e.g. 
Brayton and Spence 1980; Gill et al. 1981). The use of second-order sensitivities in 
the estimation of parameter uncertainty has also been described (Townley and 
Wilson 1985). 

Adjoint equation approach 

The third method for calculating sensitivities is based on the adjoint Green’s 
function concept discussed earlier. Some of the problems to which the adjoint- 
equation approach has been applied include the seismic problem (Tarantola 1984; 
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Chen 1985), the resistivity problem (Smith and Vozoff 1984), the magnetotelluric 
problem (Weidelt 1975; Park 1987), the groundwater flow problem (Neuman 1980; 
Carrera and Neuman 1984; Sykes and Wilson 1984; Sykes Wilson and Andrews 
1985; Townley and Wilson 1985), the reservoir evaluation problem (Carter et al. 
1974), and various problems in computer-aided design (Director and Rohrer 1969; 
Branin 1973; Brayton and Spence 1980). An equivalent approach, based on a reci- 
procity relationship for transmission networks, has also been described (Madden 
1972; Tripp, Hohmann and Swift 1984). 

As an illustration of the approach, consider again the steady-state diffusion 
problem given in (3). Having obtained the sensitivity problem in (49), the appropri- 
ate adjoint problem is found by constructing an operator L* and boundary condi- 
tions such that (17) is satisfied. We obtain 

L*G* = - V  . (p(x)VG*) + q(x)G* = 6(x - xj) in D, (524 

(52b) 
dG* 
dn a(x)G* + p(x) - = O on dD. 

Forming the expression 

G*LUk - uk L*G* = G*V ’ (l,!/k VU) - uk 6(X - Xj), (53) 
and integrating over D yields 

G*V ’ (l,!/k VU)  d32. (54) 

To compute the sensitivities, (52) must be solved for each observation location 
xi. The integration in (54) is then carried out for each parameter. Since the source 
term in (52a) differs for each observation location, a total of N + 1 forward prob- 
lems must be solved (although again this can be done efficiently if an LU decompo- 
sition or other factorization is used). 

In some cases, the sensitivity of an objective function is desired. For example, if a 
steepest-descent method is to be used to minimize the objective function 

N 
4(m) = [eTbs - ej]’ 

j= 1 

where ej = F,{m), then sensitivities of the form 
N 84 - = -2 1 (e:” - ej)uk(xj) 

j= 1 

(55)  

must be calculated. Although this could be done by solving for each U&), a more 
practical method can be arrived at by solving the modified adjoint problem 

N 
L*G* = - V . (p(x)VG*) + q(x)G* = - 2 1 (egbs - ej)6(x - xj) 

a(x)G* + p(x) - = O on do. 

in D, (57a) 
j =  1 

(57b) 
aG* 
dn 
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The objective function sensitivities can then be computed from 

Using this approach only two forward problems need be solved to obtain all 
required sensitivities. 

EXAMPLE : 1 D RESISTIVITY PROBLEM 
To illustrate the numerical computation of sensitivities, we consider the 1D resis- 
tivity problem given in (22). Let m(z) = In p(z) be the model and represent the earth 
by a sequence of layers of constant conductivity. Then 

where 

1 for z1 < z < z , + ~  
O otherwise 

and zl is the depth to the top of the lth layer. 
The reference model for this example, shown in Fig. la, consists of a 100 Rm 

conductive zone buried within a more resistive 1000 Rm half-space. The interval 
between z = O m and z = 400 m was divided into 20 m thick layers and the log 
resistivities of all but the first layer were taken to be parameters. (The log resistivity 
of the surface layer was not considered to be a parameter since if it were, the depen- 
dence of the boundary condition (22b) on the surface conductivity would unneces- 
sarily complicate the example.) The transformed potentials for different values of 1 

160 - 

h 
E 140-  
> 
n 120-  

r 100-  

v 

v 2 
80 - b 

FIG. 1. (a) Conductivity model used in the 1 D  resistivity example. (b) Transformed surface 
potential h( l ,  O) computed for the model shown in (a). 
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were computed using the propagator matrix algorithm described in Appendix A. 
Those results are shown in Fig. lb. The presence of the conductive zone is indicated 
by the anomalously low value of the transformed potential. 

Taking the transformed potential for 1 = 0.005 m-' to be the single datum for 
this example, the differential sensitivities hk(II, O) = ùh(II, û)/ûmk were computed using 
each of the three methods described in this paper. 

First, making use of the perturbation approach and the approximation given in 
(47), the sensitivities for each layer were computed using conductivity perturbations 
of 1.0%, 10.0% and 100.0%. The sensitivities were computed using different pertur- 
bations so that the effect of perturbation size on the accuracy of the approximation 
could be examined. The results, plotted as functions of depth, are shown in Fig. 2a. 
As expected, the transformed potential is found to be most sensitive to changes in 
the near-surface conductivity, and a rapid decrease in sensitivity is observed at the 
top of the conductive zone. The shielding effect of the conductive layer is also appar- 
ent, resulting in the transformed potential being insensitive to changes in the con- 
ductivity below the layer. A comparison of the sensitivities obtained for the three 
different perturbation steps indicates that this approach is reasonably accurate 
except when large perturbations are used. The computational work involved, 
however, is great for problems that involve a large number of parameters relative to 
the number of data available. For this example a total of 20 forward problems had 
to be solved to obtain the sensitivities for only one datum. 

respect to mk. This yields 
The sensitivity-equation formulation is obtained by differentiating 

d2hk dhk dlC/k dh dh 
dz2 dz dz dz dz 
-- W(Z) -- A 2 h k  =--- = [6(Z - Z k - l )  - 6(Z - Zk)] -, 

d 
- hk(A, O) = O, 
dz 

The current source represented by the non-homogeneous boundary condition (22b) 
in the original problem must be replaced by two buried sources - one on either side 
of the kth layer. Although dhldz is discontinuous at each of the layer boundaries, 
the right hand side of (60a) can still be evaluated using 

dh 1 dh 
dz 2 

6(z - q) - = - 6(z - ZJ 

The sensitivity function hk(l, z) is obtained by using the propagator matrix algo- 
rithm to solve (60) for each layer. The sensitivity-vs-depth relationship is shown in 
Fig. 2b. A total of 20 forward problems again had to be solved to compute the 
sensitivities for the one value of II. Comparing Figs 2a and 2b, it is found that the 
sensitivities computed using this method correspond to those found by the pertur- 
bation approach for Aa/a -+ O. 
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20 
h 

E 
U > 15 

O 

O 100 200 300 400 

Depth (rn) 
FIG. 2. Sensitivity as a function of depth for Â. = 0.005 m-' computed using (a) the pertur- 
bation method, (b) the sensitivity-equation method, and (c) the adjoint-equation method. 

To solve for the sensitivities using the adjoint-equation approach, we require the 
solution of the adjoint problem 

dZG* d 
dz2 dz 
- + - (wG*) - AZG* = 6(~) ,  

d 
dz 
- G*(Â, O) + w(O)G*(A, O) = O, 
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G*(Â, z) = O. (624 

The sensitivity hk(Â, O) is then given by 

The adjoint problem can also be solved (after some manipulation) using the 
propagator matrix algorithm, although a simple relationship can be found which 
allows G*(Â, z) to be calculated directly from h(Â, z). Note that if a new function 
G* = G*p is defined, then G*(Â,  z) is found to satisfy the same forward problem as 
h(Â, z) except that the current source is scaled by - ÂI/27c.’ Since the original govern- 
ing differential equation is linear, the Green’s function G*(Â, z) required in (63) can 
be related to h ( Â ,  z) by 

27c h(Â, z) 
G*(Â, Z) = - - -. 

11 P ( 4  

Once the forward problem has been solved for h(Â, z), then (64) is used to obtain 
G*(Â, z) and the integrations in (63) are carried out to compute the sensitivities. The 
results, shown in Fig. 2c, are identical to those found using the sensitivity-equation 
method. Only a single forward solution is required to generate all of the sensitivities 
using this approach. 

EXAMPLE : 2D RESISTIVITY PROBLEM 
To illustrate the sensitivity and adjoint equation methods for a more complicated 
situation, consider the 2D resistivity problem described by the differential equation 

and the boundary conditions 

4(% Y ,  Z ) L m  = O, (654 

where 4(x,  y, z) is the potential due to a single current electrode located at x, = (x ,  , 
O, z,) and R = [ ( x  - x,)’ + y’ + (z - z,)’]~/’. The second current electrode is 
assumed to be located at infinity. Because of the 2D nature of the conductivity 
structure, it is convenient to consider the Fourier cosine transform of 4 given by 
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The transformed response 6 then satisfies 

a 
- 6 ( x 7  K y  7 z, laD = O7 an 

6 ( X 7  K y ,  Z ) ~ F - ~  = 07 

(67b) 

(674 

where r = [ ( x  - x,)’ + (z - z,)’]’/’. 
The forward problem given in (67) can be solved using an integrated finite- 

difference algorithm (Narasimhan and Witherspoon 1976; Dey and Morrison 1979) 
to yield transformed potentials over a finite-difference mesh for any particular value 
of K y .  The forward responses in the spatial domain can be obtained by numerically 
evaluating the inverse cosine transform 

Numerical computations proceed by representing the conductivity model a(x, z )  by 
a set of rectangular prisms of constant conductivity which extend to infinity in the 
y-direction. The parametrized model is then given by 

Mz Mx 

a(x? z, = 1 1 ajk$jk(x7 z)7 (69) 
j = i  k = l  

where 

The sensitivity problem, obtained by differentiating (67) with respect to is 

a 

6 j k ( X , K y ,  z, Ir-m = O, 

- an 6 j d X ,  K y  9 z, laD = O, (70b) 

(704 

where $ j k ( X ,  K y  z )  = a / a a j k  6(x7 K y  z )  is the desired sensitivity in the transformed 
domain. 

The adjoint Green’s function problem corresponding to (70) is 
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Since the form of (71) is identical to that of the original transformed forward 
problem in (67), the same finite-difference algorithm can be used to solve both. This 
takes advantage of the computational savings associated with decomposing the 
original matrix. 

Note that for the 2D resistivity problem it will often be the case that an elec- 
trode used to make one or more potential measurements will have also been used at 
some point in the survey as a current electrode. If this occurs, then (71) need not be 
solved since G*(x, K y  z7 x o  , zo) can always be computed directly from the forward 
modelled response $(x, K y ,  z )  due to the current electrode at (xo  , zo). 

Once the adjoint Green’s function has been obtained, the sensitivity of the corre- 
sponding transformed potential can be computed from 

G*(x, Ky, z, xo , zo) d2x. (72) 

An inverse cosine transform is then required to obtain the sensitivity of the potential 
in the spatial domain 

As an illustration of the adjoint-equation method we compute the sensitivities for a 
half-space of 1000 Rm. For this example we concentrate on a limited region of the 
model (i.e. -200 m < x < 200 m and 20 m < z < 200 m). The parametrization of 
this region is indicated on the cross-sections shown in Figs 3 and 5. Having placed a 
current electrode at x, = (125, O, O) m and a potential electrode at xo = (- 125, O, 
O) m, the sensitivity of the measured potential to changes in the conductivity of each 
prism was computed. A total of two forward solutions for each of the nine K y  values 
used in the inverse transform were needed to obtain all 312 sensitivities. The absol- 
ute value of the resulting sensitivities, displayed in cross-section form, are shown in 
Fig. 3a. These numerically-generated sensitivities compare well with those computed 
from the analytic solutions for the potential and Green’s function, shown in Fig. 3b. 
We see from the results for the half-space that the sensitivity is largest at those 
blocks which are near to either of the electrodes. We notice also that the sensitivity 
can be either positive or negative. There is a region af positive sensitivity at shallow 
depths in a semicircle between the current and potential electrode; outside this 
region the sensitivity is negative which means that the potential at the measuring 
site will decrease when the conductivity increases. 
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I 

65m 
1 

FIG. 4. Cross-section showing a 100 Rm conductive prism buried in a loo0 Rm halfspace. 

In any inverse problem, one attempts to acquire data which provide complemen- 
tary information about the earth structure. In the d.c. resistivity problem, we expect 
different sensitivities if the potential is measured at a different offset in either the x- 
or y-direction. The sensitivities resulting from changing the offset in the y-direction 
or strike direction aie particularly easy to compute. Having obtained the trans- 
formed sensitivity 6, for enough values of K y  to allow for an accurate numerical 
evaluation of (73), one can compute the sensitivity of potentials for different points 
along the strike direction by simply re-evaluating the inverse transform using differ- 
ent values of y,. Thus the sensitivities for off-line potentials can be obtained at little 
additional expense once the on-line sensitivities have been computed. Fig. 3c shows 
the sensitivity computed for a potential electrode located at x,, = (- 125,200, O) m. 

As a final example, the adjoint method was used to compute the sensitivities for 
the more complicated situation of a conductive body buried in a half-space (Fig. 4). 
The sensitivities for the same current and on-line potential electrode as in Fig. 3 are 
shown in Fig. 5. There has been considerable change in the sensitivity pattern 
caused by the conductive prism. Overall, the amplitudes of the sensitivities have 
increased and the demarcation between positive and negative sensitivities has been 
greatly distorted in the region between the two electrodes where the prism lies. 

FIG. 3. Absolute sensitivities computed for a loo0 Rm half-space using (a) the adjoint- 
equation approach, and (b) the analytic expressions for the potential and Green’s function. 
The current and potential electrodes were located at x, = (125, O, O) m and x,, = (- 125, O, O) m 
respectively. (c) Absolute sensitivities computed using the adjoint-equation approach for an 
off-line potential electrode at xo = (-125, 200, O) m. The dashed line is the demarcation 
between positive and negative values of the sensitivities. 
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FIG. 5. Absolute sensitivities computed for the conductive prism model shown in Fig. 4 using 
the adjoint-equation approach. 

SUMMARY 

The efficient solution of the non-linear inverse problem requires that the dependence 
of the data on changes in the model be easily quantified. The most convenient way 
of quantifying this dependence is to derive the analytic Fréchet derivative using one 
of the three procedures described in this paper. In most cases, however, it is not 
possible to derive an analytic expression for either the forward responses or the 
Fréchet derivatives, so one must resort to a model parameterization to simplify the 
problem. The dependence of the data on changes in the model is then given by a set 
of partial derivatives or sensitivities. These sensitivities can be computed from their 
finite-difference approximation, although this requires the solution of a large 
number of forward problems. When dealing with boundary-value problems we can 
derive a new set of equations whose solution yields either the sensitivities themselves 
or quantities from which the sensitivities can be calculated. The similarity of these 
new equations and the original forward problem allows the sensitivities to be com- 
puted efficiently if a numerical solution based on a matrix factorization is used. 
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APPENDIX A 

Forward responses for the I D  resistivity problem 

Let the earth be represented by a sequence of M ,  layers of constant conductivity 
over a half-space. Within any of the layers or the half-space, the governing differen- 
tial equation for the 1D resistivity problem reduces to 

Â 2 k  = O. d2h 
dz2 
- _  

The general solution to (Al) for the kth layer can then be written as 
h(Â, .) = U k e - " Z k - l - Z )  + Dked(Zk-i-z) > ('42) 

and for the half-space, as 

k(1, z) = D,, + 1 

Making use of the continuity relationship 

k(Â, z:) - k(Â, zk) = O, 

and the conservation of charge relationship 

2n for k = k, 
O otherwise, 

-- Ok k(Â, z:) - - - k(Â, z;) = b k + l  

1 dz 1 dz 

('43) 

one can solve for the coefficients U and D for the kth layer in terms of those for the 
(k + 1)th layer. This leads to the propagator matrix expression 

where 

and 

The source vector s k  is given by 

for k = k. 
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Combining the propagator matrix expressions for each layer yields 

U, and D, can be related using the boundary condition a t  z = O which requires that 
h( l ,  z) satisfy 

c- Z for surface electrode, 

O for buried electrode. 
h(A, O + )  = -0l(U1 - DI) = 0 1  d --- 

Â. dz 

The solution h(Â., O) = U, + D, is then obtained from (A6) and (A7). 
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