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ABSTRACT

Two algorithms are presentedto invert magnetotelluricdata over 2D conductivity structures. Both algorithmsuse
approximatesensitivitiesthat arisefrom the 1D conductivity profile beneatheachstation;this avoidsthelargecomputations
normallyrequiredto calculatethe true 2D sensitivities.The first algorithm produces‘blocky’ modelsby minimizing the l~
normof theconductivity,whereasthesecondalgorithmproducessmoothermodelsby minimizing the 12 normof themodel.
The inversionof a largematrix in the 12 normminimization is obviatedby usinga sub-spacesolution.Our presentationis
motivatedby threegoals.The first is to providedetailsof thesealgorithmsandto showtheir efficiencycomparedwith more
commonly used techniques.The secondgoal is to illustrate the non-uniquenessinherent in these inversionsand to
illuminate the importanceof choiceof normthat is minimized.To accomplishthiswe perform l~and 12 norminversionson
a syntheticmodel. Thethird goal is to showthe utility, thepracticalimportance,andthelimitations of invertingdeterminant
averagedata. The utility is demonstratedby the similarity that is often observedwhen comparingthe inversion result
obtained by inverting transverseelectric (TE) and transversemagnetic(TM) modedata jointly with that obtainedfrom
inverting determinant averagedata. The importanceof inverting determinantaveragedata in field experimentsarises
becausedeterminantaveragedata are insensitive to rotationsof the impedancematrix and perhapsother artefactsof
processingthe data.The limitations are shownby thelossof resolutionin the model obtainedby inverting the determinant
averagedata comparedwith joint inversionof TE andTM modes.We illustrate our algorithmsby inverting syntheticdata
andthe COPROD2data set.

1. Introduction (1987),SmithandBooker(1988),DossoandOld-

enburg(1989)andothershasbeenshownto work
The approachfor solving the magnetotelluric well. Moreover, becausecalculationof the for-

(MT) inverseproblemfor 1D conductivity struc- wardmodelledresponsesandthe sensitivities(or
turesis well in hand.The Earth is first discretized Frechetderivatives) are easily carried out, and
into a number of layers (generally more than becausethe M XM matrix (whereM is the num-
there are data) of constant conductivity. The ber of layers) is easily invertible, the inversion
equationsare linearized,sensitivities calculated, result canbe rapidly achievedon a smallworksta-
an an iterative algorithm is usedto generatea tion.
conductivity for each layer so that the data are The aboveinversionmethod can, in principle,
adequately reproduced. Because the inverse be usedto solve 2D and3D inverseproblems.An
problem is non-uniquethe inversion is solvedby exampleof this is the inversionof MT datain two
minimizing a functional of the conductivity sub- dimensions by deGroot-Hedlin and Constable
ject to the data constraints. The conductivity (1990).Thepracticalissue,however,isthe amount
functional is usually designedto penalizerough- of computationrequired.In typical 2D problems
ness.This procedure,used by Constable et al. the numberof cells and the numberof datamay

both be of the order of a few thousand.The
* Correspondingauthor, computationalroadblocksare: (1) computations
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required to carry out a forward modelling; (2) vectors.We follow closely the work presentedby
calculation of the sensitivities; (3) solution of a Oldenburget al. (1993) and henceforthrefer to
large matrix. As the size of the problem in- this paperas P2.
creases,the computationalburdensin thesethree The 1~and 12 inversion algorithmscan invert
areas are exacerbatedand eventually the re- individually or jointly transverseelectric(TE) and
searchertires of waiting for the output, even transversemagnetic(TM) moderesponsesovera
when he or she has accessto a largercomputer. 2D conductivity model. We illustrate the algo-

This paperproposesan alternativesolution to rithms by inverting dataobtained from the test
the problem.Our goal is to obtain a conductivity model of Smith (1988) and the COPROD2data
distributionthat acceptablyreproducestheobser- of JonesandSavage(1986)andJones(1988).For
vationsbut at the sametime keepsthe computa- the COPROD2 data set we illustrate the extra
tions to a minimum. With referenceto the three resolutionobtainedby inverting the TE and TM
computationalroadblockslisted above,our gen- modesjointly comparedwith the inversionof the
eralphilosophy is to use accurateforward mod- determinantaveragedata.
clung but to keepthe numberof forward mod-
ellings to a minimum, and to use approximate
sensitivitiesin placeof accuratevalues.The diffi- 2. Inversionalgorithms
culty with inverting a largematrix is addressedin
two ways. An efficient linear programmingsolu- Greatflexibility existsin settingup any inverse
tion is advocatedfor mid-sizedproblemsand a problem.We begin by presentingdetails of our
generalizedsubspacetechniqueis recommended choicesfor: (1) forward modelling; (2) data; (3)
for large-scaleproblems. In implementing the inversionmodel; (4) sensitivities.Theseitems are
above philosophy,we havegeneratedtwo algo- the samefor bothalgorithms. Explicit detailson
rithms, both of which make use of sensitivities the model norm to be minimizedandthe method
derived from a 1D linearizationof the electro- of solution will be given after thesefour items
magnetic (EM) equationswith respectto the z havebeenconsidered.
coordinate. The first inversion algorithm is a To effect our forward mapping, the 2D con-
modification of the AIM-DS algorithm of Olden- ductivity model is first cellularizedwith rectangu-
burg and Ellis (1991) (hereafter referred to as lar elements.The model is partitioned into
P1). It producesa block model having minimum horizontal cells and n~vertical cells and the 2D
variation subject to an 11 norm misfit criterion, conductivity cr(y, z) is partitionedto an n~X fly

The primary modification to the algorithm in P1 array ~ i = 1, . . ., n~j = 1,. . . , fly. The thick-
is the introductionof prespecifiedvaluesfor the ness of the cells increases(usually logarithmi-
Lagrangemultiplier controlling the misfit at suc- cally) with depth.Lateralpartitioning in the sur-
cessiveiterations.This keepsthe numberof for- vey regionis dictatedby the observationlocations
ward modellingsto oneper iteration.The second which are specified to be at the centre of each
algorithm minimizes an 12 norm objective func- surfacecell. This grid is terminatedlaterally by
tion of the model subjectto an 12 norm misfit in uniform layers and below by prisms elongated
the data. The inversionof a largematrix is obvi- with depth. The conductivity is assumedto be
ated by appealing to a generalizedsub-space constantin eachcell and the 2D MT responses
method (Skilling and Bryan, 1984; Kennett and are computedusing a transmissionsurfacemod-
Williamson, 1988;Oldenburget a!., 1993).In the clung code(Madden,1972).
sub-spacemethodsthe perturbationto the con- TE or TM impedancesat fly observationsites
ductivity at each iteration is restricted to be a and at flf frequenciescan be inverted individu-
linear combinationof q searchvectors.The effi- ally, jointly, or asdeterminantaverages.Determi-
ciency of the method lies in the fact that only a nantaverageimpedancesaregeneratedby
q x q matrix needsto be invertedandtheefficacy 1/2

of the method lies in the appropriatechoice of Zdet (ZxxZyy — ZxyZyx) (1)
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(Berdichevskyand Dmitriev, 1976,p. 208).When work in this paperadoptsthis approximation.A
dataareprovided in the form of apparentresis- better approximation to the 2D sensitivities
tivity and phase,we transformtheseto the re- (Smith and Booker, 1991) can be obtained by
sponse taking E(y0, z, w) to be the electric field at

H(y~,0, ~) (y0, z) in a 2D Earth o-(y, z). Of course,the E
fields are different for the TE and TM modesR11 = ~O E(y~,0, w1) ~ = 1,...,n~I = 1,..., fif andso the approximatesensitivitieswill also be

(2) modedependentin this approximation.

and chooseas data the amplitude and phaseof
this complex quantity. Errors are convertedby ~• I~norm inversion algorithm
numericalsimulation,assumingthat theerrorson
the initial dataareGaussian,unbiasedand mdc- The 1~norm inversion usedhere is essentially
pendent. the AIM-DS algorithmin P1. The basicAIM-DS

For the 2D MT inverse problem we choose
equationis

ln(o-) as the ‘model’ for the inverseproblem.We
let rn-1, i = 1,...,n~j = 1,...,n~,denotethe ccl- ~[rn’~] = d0t~s+ .i[m(10] — ~~[rn~”~] (5)
lularized arrayof ln(o’~1)valueswhere the cellu- where5 denotesa true forward mappingand .9~
larization is the sameas used for the forward

denotesanapproximateforward mapping.Defin-
modelling. ing the approximateforward mappingby keeping

A major goal of this paper is to illustrate the only the first two termsin (3) yields
practicalityof usingapproximatesensitivities.Nu-
merous approximationsexist but the simplest is 911m; (O]~y=y0

to generatethe 1D sensitivities,as done in P1.
We begin by linearizing, in the z direction, the = ,~[rn

t’°; W]~yy+ fg
1D[m(~~y0, z,

exact forward mapping, ~, about a model rn~’°
which in this caserepresentso-(y, z) at the nth [m(y0, z) —rn~(y0,z)] dz (6)
iteration.Thisyields

andsubstitutinginto (5) yields
Iy=y0 Jgirdm; yo, z, wjrn~

1~(z)dz

= .[rn~”~w] = + f glD[m~ y
0, z, wl

‘ y0 0 =d0~(yo, w) —d~’
0(y

0,a)

[rn(y0, z) —m~(y0,z)] dz + ... (3)

where glD is the 1D kernel function associated +fglD[rn; y0, z, wJrn~”~(z)dz (7)
with the conductivity o-(y, z) at model offset Y0~ Discretizingthisequationproduces
The expressionof glD for the amplitude and
phase responsesused here has been given by EA.krnc~~ = d~— d~+

Oldenburg(1979,Eq. (7)):

glD[m~ y0, z, wJ j = 1,...,n~,k = 1,... ,
2flf (8)

[E(y
0, z, w) 2 where AIJk is the integral of the kth 1D kernel

= ~ y0, z)[ E(~ ~w) ] (4) function glD at model offset y1 over~the ith

depthpartition. The model norm minimized is a
whereE(y0, z, w) is theelectric field strengthat discretizationof the functional
the point (y0, z). In the simplestapproximation, arn
E(y0, z, o) is takento be the E(z) field in a 1D 4~=13fJ~-~---~dydz + yf 1~—ldydz (9)

J I IEarth with conductivity o-(y0, z). Most of the
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The inverseproblemis solvedby minimizing the creasing sequencewhich asymptotically ap-
objective function proachesa constant.The increasingnatureof i

preventsunnecessaryroughnessbeing accumu-

= ~ z, mi” ~ — m~1)1 lated in the model at intermediatesteps. Al-
j J ‘-I thoughthis approachhas the possibledisadvan-

—1 ~ tage that a non-optimumsequenceof j.t values

+ y i~y. mt” +1) — ~ + 1) may be selected,the major advantageis that only
3 i+1,j ~ one forward modelling needsbe carriedout per

iteration. This may be comparedwith the ap-
.2n

1n obs (n)~ — RJk proachwhere a scheduleof targetmisfits ts cho-
+ IL (10) senandthena line searchperformedto find the

k j 3k correspondingLagrangemultiplier /L at eachiter-

where�jk is the standarddeviationof the datum ation. Of course,here thereis the possibledisad-
R~S.The parametersJ3 and y controlthe relative vantagethat a non-optimum sequenceof target
weightingof the y and z variationsandare fixed misfits may be selected,with the associatednon-
for eachinversion.The Lagrangemultiplier j.t is optimum numberof line searches.Although the
generallysoughtso that the final misfit achievesa bestapproachis somewhatmodel dependentwe
targetvalue consistentwith the errorsassociated find, in general,that the computationalsavings
with the data;however,ratherthanstartwith this associatedwith a simplescheduleof p~valuescan
valueof j.t, a scheduleof IL valuesis found to be be substantialbecauseline searchestypically in-
desirable. This scheduleis a monotonically in- volved 3—8 forward modellings.
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Fig. 1. Synthetic conductivity model consisting of a 1000 11 m resistive prism and 10 Cl m conductive prism in a 100 Cl m
background,all overlyinga 10 Cl m conductivebasement.Thescaleon the right is log10u.
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The use of 11 norm requiresthe definition of this fact we presentthe resultsof the inversionof
an appropriatemisfit measure.Here we follow the determinantdataassociatedwith the model
ParkerandMcNutt (1980)anddefine shown in Fig. 1 for three choicesof the ratios

1 ir 1/22~h1fl} IRobs_R~) /
3:y, 10:1, 1:10 and 1:1, in Figs.2(a), 2(b) and

= ( ) ~~ J 1k (11) 2(c),respectively.Thesethreemodelsall havethe
2flffly k .~ Elk samemisfit xA~= 1 and havesignificantly differ-

ent character.For comparison,we show in Fig.
andnote that E[~~]= 1. 2(d) the resultsof a joint inversionof the TE and

The problem of minimizing (10) subject to the TM mode datawith 1~: y = 1: 1 andx~= 1. All
constraintsin (8) is solvedusing linear program- four inversionswere performedwith 1D sensitivi-
ming (LP) techniquesand was outlined in P1. ties (Eq. (4)), using the E field associatedwith
Here,we simply note that minimization of an 1~ the corresponding1D Earth. As a test case(not
model norm gives rise to modelswith large re- shown),thejoint inversionwasrepeatedwith 1D
gions of constant conductivity, i.e. block type sensitivities(Eq.(4)), usingthe E field associated
models,and the useof an l~datanorm provides with the 2D Earth conductivity: only a minor
robustnessin the presenceof non-Gaussiannoise improvementwasobservedin the final model and
on the data. These two characteristicsof the !~ the rate of convergence.It shouldbe noted that
norm are well suitedto inverting MT datawith the joint inversion hastwice the numberof data
static shift effects, comparedwith the determinantinversions and

correspondinglyproducesabetterrepresentation
of thetrue model than the determinantinversion.

4. 1~inversion of synthetic data However,we remindthe readerthat thedetermi-
nant inversiondoesnot requireknowledgeof the

We now invert datafrom a model suggestedby TE andTM modes,is a smallerinverseproblem,
Smith and Booker (1991) and usedin P1. The and yet yields a very good approximationof the
model has fly = 50 horizontal cells and n~= 30 true model. In practical terms, this makes the
vertical cells. It consistsof a 1000 H m resistive determinantinversionan appealingtool.
prism and a 10 H m conductiveprism in a 100
H m background,all overlying a 10 H m conduc-
tive basement.This model, shown in Fig. 1, was 5. 12 norm inversion algorithm
chosenmainly becauseof its similarity to models
alreadyusedby otherworkers(Smith, 1988;deG- The blockinessin modelsproducedby the 1~
root-Hedlin and Constable, 1990). It is hoped norm inversion may be a desirablecharacteristic
that a comparisonof the samemodel invertedby for someEarthgeologiesbut othergeologicenvi-
different techniqueswill provide information ronmentsmight be betteremulatedby smoother
about the strengthsandweaknessesof different models. Correspondingly,we presentan algo-
methods.The cellularizationof the model we use rithm which minimizes the 12 norm of the con-
has logarithmically increasingcell thicknesswith ductivity model. In this algorithmwe also allow
depth and constantcell width in the region of for a basemodel in the objectivefunction so that
interest.When referringto dataassociatedwith structureis minimizedwith respectto that back-
this model we considernine frequenciesin the groundmodel.
range 1.0—0.00033 Hz, with ±5% unbiased In the l~norm inversion the recoveredmodel
Gaussiannoiseaddedto the apparentresistivities is achievedby explicitly solvingfor the conductiv-
and ±2°noiseto the phases. ity in each cell. Effectively, each cell is a basis

It is well known that the inversion of a finite elementin model spaceand finding valuesof the
numberof noisy datacan yield a wide rangeof conductivitiesrequiressolvinga largematrix sys-
modelsdependingon the choiceof model norm tem. This is efficient for an LP solver (Marsten,
regularization. To illustrate the significance of 1981, D’Azevedo et al., 1991) for the size of
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problemjust considered.The 12 norm inversion, where Ym = Vm
4im and Yd = Vmcbd are gradient

however,requiresthe solution of an M x M ma- vectors, Hm = VmVm4~m and Hd = VmVmcbd are
trix, where M is the numberof cells, and this Hessianmatricesand Vm is the operator(8/am

1,
computationcanbecomeprohibitiveas the num- 0/8rn2,.. . , 8/8m~)~.In (15), cbm is understoodto
berof cells increases.To obviatethis difficulty we be 4m(m~”~)and

4~dis 4d(d~).
appeal to a generalizedsub-spacemethod. We In a sub-spaceapproach,the ‘model’ perturba-
adopt the formalism outlined in P2 but present tion ~rn a RM is restrictedto lie in a q-dimen-
the essenceof the calculationhere. sional sub-spaceof RM which is spannedby the

We first define a model objectivefunction vectors{v
1} i = 1, q. The model perturbationcan

2 bewritten as
4)m(m) =IIH~(m—mo)II (12)

q
wherem0 is a~basemodel andH~is aweighting 6m = a~v~Va (16)
matrix. The minimization of 4~myields a model =

that is closeto m0 with the metric definedby H~
andis thereforespecifiedoncethe parametersa1andsothe characteristicsof the recoveredmodel
aredetermined.are directly controlled by these two quantities. The sub-spaceequationsaregeneratedby sub-

The datamisfit may be characterizedby
stituting (16) into (15) to yield

4d(d) = ~Wd(d— dobs) ~2 (13) + Va)where the relationship betweenthe jth datum
and the model is d3 = .~%[m].The functionalss~ = cbm + y~Va+ ~aTVTHmVa

are assumedknown. In (13), Wd is an N XN
matrix. If the noise contaminatingthe jth obser- + 1

44’d+ y~Va+ ~aTVTHaVa — c~} (17)
vation is an uncorrelatedGaussianrandomvan- This is a quadraticobjectivefunction to be solved
able havingzero meanandstandarddeviation ~J for the parametervector a. Differentiating (17)
then an appropriate form for W~ ix Wd = with respectto a andsettingthe resultantequa-
diag{1/e

1,. . ., 1/e~}.With such assumptions,4~d tions equalto zeroyields
is a randomvariable distributed as x

2 with N
degreesof freedom.The expectedvalueof cbd is VT(Hm +ILHd) Va = _j,~VTy~_VTYm (18)
thereforeapproximatelyequalto N and,accord-
ingly, the model soughtfrom the inversion algo- The solution of this systemrequires that a line
rithm shouldreproducethe observationsto about searchbe carried out to find the value of the
this value. The inverse problem of minimizing Langrangemultiplier IL so that a specific target

4)m(m) such that 4d(d) = çb~’,a desiredmisfit, is value 4~is achieved. This involves an initial
solvedby minimizing guessfor IL~solving(18) by singularvalue decom-

position (SVD) for the vector a, computingthe
4~(m)= 4)m(m) + IL[4’d(d) — q~,j’] (14) perturbation ~~m’carrying out a forward mod-

where x is the Lagrangemultiplier. The mini- elling to evaluatethe true responsesand misfit,
mization problem is nonlinear and is addressed and then adjustingIL~The estimationof an ac-
by linearizing(14) aboutthe current model m~ ceptablevalue of IL typically requiresthree or
anditerating.If ~m is a model perturbation,then four forward modellings.
a truncatedTaylor expansionwhich has terms At each iteration in the inversionwe desirea
only up to secondorder is model perturbationwhich minimizes c6m and al-

ters 4d so that it achievesa specific targetvalue
q~(m~+ ~m) 4~.To prevent the build-up of unnecessary

= 4~m+ y,~m+ ~I3mTHmt5m roughness,the target misfit beginsat an initial
value(usuallya fraction of the misfit generateby

+ + y~m+ ~f5mTHa~m— 4i.~} (15) the startingmodel) anddecreaseswith successive
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iterations towards a final value selectedby the 6. 12 norm inversion of synthetic data
interpreter. Convergenceis reached when the
datamisfit reachesthis final targetand no fur- The 1~norm inversion resultsillustratedeffec
ther reduction in the model norm is obtained tively the dependenceof the inversion result on
with successiveiterations. the model norm.The samedependenceexistsfor

The successof the sub-spacemethoddepends the 12 inversions,but this aspectdoesnot need
strongly upon the choiceof basisvectors. In P2, further investigationhere. As such, for the l2
considerablesuccesswasachievedby subdividing inversions,we selecta single objective function.
the misfit objective function and using steepest Our choicefor 4m is guidedby a desireto find a
descentvectors associatedwith eachdata gradi- model which hasminimum structurein the verti-
ent. Here we segmentthe datamisfit objective cal and horizontal directions and at the same
function accordingto frequency,amplitude and time is closeto a basemodel m0. To accomplish
phase.The ith searchvectorbecomes this we minimize a discretizedapproximationto

4)m(m, rn
0)

1 ~*fly d.~d?’~2
Vi=(W,i~’Wm) Vm ~ I asffws(y, z)(m—m0)

2 dy dz
j=(i—1)*n~+1 I

(19) +1f {axw~(Y~z)[(°)I

so that the datumin the sumis an amplitude (or 8(m — rn
0) 2

phase)at a singlefrequency.Everyinversioncar- +a5w~(y, z) 8z dy dz (20)
nedout containsthesevectors,the constantvec-
tor andalso (W,~Wm)~Vm4m= rn — m0,which is where a~,ay and a~are adjustableconstants
the steepestdescentvector associatedwith the having suitable dimensionsto make (20) dimen-
model objective function. In addition, we also sionless. The weighting functions w5(y, z),
segmentthe model norm objective function and w~(y, z) and w5(y, z) provideadditional flexibil-
form steepestdescentvectorsfrom eachof the ity to controlthe characteristicof the final model.
minor objective functions. The segmentationis The discreteform of (20) is
invoked by choosinga rectangularregion of the ~ = ~ + ~ + ~

model and subdividing this region into smaller ‘t’m — ‘Ps ‘P~ ‘*‘z
groups. The projection of (m — m0) onto any .~ 2 / 2

=a W(rn—m0) +a Wi,m—m0)
group of cells provides a new searchdirection. S S Y Y

The rectangular region can be the entire model + a W (m — m ) 112
or a smaller portion. In the initial iterationswe Z z 0

usedeachrow of cells to makea basisvectorand = (m — mo)T{a5W5TWy + a1,W,J’W~,+ azWzTWz}
sometimesalso subdividedthe entiremode! into
groupings of n X n cells, where n is typically x (m — m0)
5 x 5. In later iterations,whenfeaturesof inter- T T

~(m—m0) W W rn—rn0 21
estappeared,we havecentredthe rectangleover m
the areato seeif structureis enhancedor attenu- In (21), W~is a diagonal matrix with elements
ated in a subsequentiteration. This processcan (~y~z)

1”2,where i~yis the length of the cell
be both interactiveand dynamic. The attractive and z~z is its thickness,W~haselements±~ z/
aspectof the dynamic use of additional search (i~z

1dy)”~
2,where d y is the distancebetween

vectorsis that in the sub-spaceinversion only a the centresof horizontallyadjacentcells,and W~
model perturbationis sought. At worst, a poor has elements±(~yz~z/~z

1dz)
1~2,wheredz is

choiceof vectorsproduceslittle benefit. the distancebetween the centres of vertically



D.W Oldenburg,KG. Ellis / Physicsof theEarth and PlanetayInteriors 81 (1993)177—200 185

V1~
.0
C,

N

‘5

~— I — I

L
Ds$b(ka) Ds$k(ka)

1N

*00 100
511

_.0 00 0

IIS0 10 o40I I0~ ~~xlli
Ds$h(kin) DSPU$(kin)



186 D. W. Oldenburg, R. G. Ellis / Physicsof theEarth and PlanetayInteriors 81(1993)177—200

c/~V

~ ~
0 0 — — — — — CU Cu N
I I I I I I I I I

Cs.’

100 —100 ~

II ‘C10 ‘9 &ID I04~40 4010-I01 0-105 55 ‘5-40 -40—00 —00 ~-ID00 ~ $ -100 -100

Os$k ~) Ds$b .~~
C

100 100

00 ~40 ~
r~V C

~ .~ I
0 .0 V

_-40 .~
V ~

-I0

-‘9 .~ ~

~ — ~ —
.I!IUUUUIIUuP~100 ~

Du,th (kin) 0s$~(kin) ~ E ~



D.W. Oldenburg,R.G. Ellis / Physicsof theEarth and PlanetayInteriors 81 (1993)177—200 187

adjacent cells. The factor (~z/~z1)~”
2in the geophysicallyandusuallywe aremoreinterested

specificationof the W
1 and W~matricesaccounts in deviationsfrom that background.Accordingly,

for non-constant w~(y,z) and w~(y,z) and we carry out anotherinversion where the base
causesthe constructed model to discriminate model hasbeenalteredfrom a half-spaceof 0.03
againstconductivityvariationat depth.This is in S rn’ to a 1D conductivitystructureobtainedby
accordancewith the reality of strong surfacecon- taking the lateral average of the conductivity
ductivity variationsthat are often found in geo- shown in Fig. 4(b). The result after sevenitera-
physicalsurveysand the reducedresolutionwith tions is displayedin Fig. 4(c). The datamisfit for
depth for EM investigations. We have chosen this model is

4d = 976. The two prisms arevisu-
a

5 = 108, a3,= 1.0, and a~= 1.0. ally enhancedand the conductivity overshoots
Forthe first inversionof the Smith andBooker (especially beneaththe conductivity prism) are

model we invert Berdichevskydeterminantaver- reducedfrom that shown in Fig. 4(b). We deem
agedataanduse m0= 0.03 S rn~asa reference this to be a beneficialresult.
model. The startingmodel is a half-spaceof 0.01 The inversion abovewas performedusing de-
S rn~.The inversionis carriedout with 49 search terminantaveragedata. We now comparethose
vectors;thereare 18 datagradientsearchvectors resultswith that obtainedby jointly inverting the
(two for eachperiod), the constantvectorand 30 TE and TM mode data. That inversion result,
steepestdescentvectorsfor the model objective obtainedafter 10 iterationsandusinga reference
function (one for eachrow of cells in the model). model of 0.03 S m

1, is shown in Fig. 4(d). The
Before showingthe resultwe justify the grouping final misfit to the data was çb~= 2487. This is
of the datain forming our searchvectors.In Fig. somewhatgreaterthan the desiredfit of 1800,
3 we show four selectedvectorsat the first itera- but thisseemedto beapproximatelythe limit that
tion. Thesevectorsare clearly useful searchdi- could be achievedusingthesebasis vectors.The
rections for they have manifestationsof surface joint inversionused38 datagradientvectors,the
roughness, manifestations of the conductive constantvectors and 30 vectors associatedwith
blocks and have the potential for altering the each row of cells, making a total of 69 vectors.
half-spacemodel towardthe two-layermodel. The results are not substantiallydifferent from

The model shown in Fig. 4(b) was achieved those in Fig. 4(c), and in fact, the result in Fig.
after 15 iterations. The final fit to the data is 4(c) might be moderatelysuperior.

= 988,which is acceptablyclosethe numberof
data, 900. The improvementin the datamisfit is

. 7. COPROD2 data set l~norm inversion
rapid in the initial iterations and decreasesbe-
yond the seventhiteration. The generalfeatures We now invert a subsetof theCOPROD2data
of the true model arevisible; the ID background set provided by A.G. Jones.These data were
is reasonablywell definedandthe sharpconduc- collectedalong an east—westtraversein southern
tivity contrastat 40 km is seenas a smoothed Saskatchewanand Manitoba in Canada.There
transitionzone; this is a typical result in an 12 are 35 stationswith spacingsof approximately10
inversion.The resistiveandconductiveanomalies km. The data havebeenanalysedby Jonesand
arefairly well determinedin thehorizontaldirec- Savage(1986) and Jones(1988), and have been
tion but thereare dropoutsbeneathbothprisms, used as test data for inversion algorithms. We
There is also a conductiveovershootvisible be- now presentthe results of the applicationof the
neaththe conductiveprism. The top of the con- AIM i~inversion to a subsetof the COPROD2
ductive prism is close to that in the true model data. The subsetchosenconsistsof the dataat all
but theresistiveprism hasbeenpushedto greater 35 stations and at the eight frequencies0.187,
depth.We noticealso that the near-surfacelayer 9.37E— 02, 4.69E — 02, 2.33E— 02, 5.86E— 03,
exhibitsmorelateralvariability, which is in accor- 2.93E— 03, and 1.46E— 03 Hz. From this subset
dancewith our weighting function. we haveextractedandinvertedfour datasets;the

The 1D backgroundis often of limited interest TE mode data, the TM modedata, the determi-
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nant average data and the joint TE and TM model. We note that bothconductivity anomalies
mode data. Following deGroot-Hedlinand Con- aresplit vertically into two conductors.However,
stable (1990), we attribute minimum errors of we emphasizethat this is only oneof many mod-
±10% to the apparentresistivities and ±5°to elswhich fit thesedataat this misfit level.
the phases. The resultofinverting the TM modedatawith

The model producedby the AIM 1~inversion f3 : -r 5: 1 and with 1D sensitivities gave the
using 1D sensitivitiesoperatingon the TE mode model shown in Fig. 5(b). The observed and
datawith f3 : = 5: 1 is shown in Fig. 5(a), and predicteddataare shown in Fig. 6(b). The data
the observedand predicteddata are shown in misfit is x~’= 0.86. The TM modeapparentresis-
Fig. 6(a). The predicteddatahavex~’= 0.97. The tivity andphasedatashow little manifestationof
TE mode apparentresistivity and phase data the conductinganomaliesandconsequentlythere
havea strongconductingsignaturein the vicinity is little structurein the recoveredmodel.
of the NACP and the TOBE anomaliesand this Combiningthe TE andTM modedatato form
leads to compact conductorsin the recovered the determinantaveragedataandinverting (/3 :

(a) COPROD2 Observed Li DET Inversion

1O1~’÷1 ___________

—2.OOE+05 0. 2.OOE+05 —2.OOE+05 0. 2.OOE+05

~ ____________ ____________

—2.OOE+05 0. 2.OOE÷05 —2.OOE+05 0. 2.OOE+05

~ ____________

—2.OOE+05 0. 2.OOE+05 —2.OOEi-05 0. 2.OOE+05
Offset Offset

Fig. 6. Theobserveddata(pointswith errorbars)andthe predicteddata(curves)associatedwith the l~normmodelsproducedby
inverting(a)TE, (b) TM, (c) determinantaverageand (d) joint TE and TM modesfor COPROD2data.
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= 5: 1) producedthe model shown in Fig. 5(c). fields, of the conductivity structure along this
This modelgivesrise to the predicteddatashown profile.
in Fig. 6(c), which has ~ = 0.67. This inversion After successfulinversion of the determinant
resultclearlyshowsa blocky conductorassociated data, an attempt was madejointly to invert the
with the NACP and a smaller, more compact TE and TM mode COPROD2 data. A satisfac-
conductor associatedwith the TOBE anomaly. tory inversionresultcould only be achievedwhen
The predicted data associatedwith this model the 2D E fields were usedin the 1D sensitivity
overfit the observeddata in a statistical sense. function (Eq. (4)); usingthe 1D E fields resulted
However, as the true data errors are somewhat in extremelypoor convergence.The result of the
uncertain,we do not considerthis overfitting to successfulinversion(Ellis et al., 1993) of thejoint
be significant. More importantly, it hasbeenour TE andTM modedata(~3: = 1: 1) is shown in
experiencethat optimal resultsare producedby Fig. 5(d), and the observedand predicteddata
inverting the determinantdata when using 1D areshownin Fig.6(d). Thepredicteddatahavea
sensitivities,so that Fig. 5(c) representsour best normalizedmisfit xi” = 1.15. We were unableto
representation,with 1D sensitivitiesusing 1D E reduce the misfit to xi” = 1 without increasing

(b) COPROD2 Observed Li E—pol Inversion

~101 ~ ___________

—2.OOE+05 0. 2.OOE+05 —2.OOE+05 0. 2.OOE+05

~:b01 ~ ____________
—2.OOE+05 0. 2.OOE+05 —2.OOE+05 0. 2.OOE+O5

101

—2.OOE+05 0. 2.OOE+05 —2.OOE+05 0. 2.OOE+05
Offset Offset

Fig. 6 (continued).
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the numberof cells in the model. Even at the method.We first invert the determinantaverage

xi” = 1.15 misfit level, the NACP anomaly is data. The model obtained after 18 iterations is
clearly resolved into three conductors at a depth shown in Fig. 7(a). The resultwasachievedin the
of 20 km and dipping to the west. The TOBE following manner. The first six iterations were
anomaly is clearly resolved as a strong conductor performedwith a referencehalf-spacemodel of
at 10 km depth. Theseresultsconfirm, in a gen- 0.03 5 m* The resulting model was then aver-
eral sense, the finding of other workers (e.g. agedlaterally to yield a 1D referencemodel for
deGroot-Hedlinand Constable 1990) who have the remaining iterations. In these latter itera-
invertedthis dataset. tions,the modelcomponentof the objectivefunc-

tion wasdivided in variousways(layers,5 x 5 cell
groupings,a large rectangularblock centredon

8. COPROD2 data set 12 norm inversion the NACP anomalyand a rectangularblock cen-
tred on the TOBE anomaly). Steepestdescent

The COPROD2datasetwill now be inverted vectorsassociatedwith thesecell groupingswere
using the ‘2 norm minimization and the sub-space usedin conjunctionwith the data gradientvec-

(c) COPROD2 Observed Li H—pol Inversion

~6O I ~1ii

40 ~ \~ ~ :
—2.OOE+05 0. 2.OOE-i-05 —2.OOE+05 0. 2.OOE+05

— I 24

10~ ____________________________ ~1~1II~~i~IIiII-IiIH-I-f~IJI
—2.OOE+05 0. 2.OOE+05 —2.OOE-I-05 0. 2.OOEi-05

~~01 : III ~‘24 4

I ~ E ~~IIJI~~iHHIRIf~i.’1~’I~~j1i1
—2.OOE+05 0. 2.OOE+05 —2.OOE+05 0. 2.OOE+05

Offset Offset
Fig. 6 (continued).
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tors.For all iterationsthe numberof vectorswas the misfit contributionfor amplitudesandphases
less than100. The constructedmodel in Fig. 7(a) for eachfrequency.The dashedline in Fig. 9(a) is
shows that both the NACP and the TOBE the misfit expected if each data group con-
anomaliesare well defined. The datamisfit for tnibutedequally to the desiredmisfit of 560. Only
the constructedmodel is 666. This is somewhat the misfits from the phasesat the threeperiods
morethanthe targetmisfit of 560. However,even given above contribute more than this average
at this level almostall of the dataarewell fitted. valueand, in fact, they contribute514 to thetotal
The major discrepanciesand principal contnibu- misfit of 666.
tons to the global misfit are the phasesat 5.33, To look moreclosely at the information in the
341 and-682 s. At theseperiods, the predicted COPROD dataset, we next invertedseparately
phasecurves are biaseddownward from the ob- the TE andTM modedata.The referencemodel
servations. The apparent resistivities at these fre- was the same 1D model asusedwhen inverting
quencies, however, are well reproduced.The mis- the determinant average data. The starting model
fit information is summarizedby the line plots in was the conductivity model shown in Fig. 7(a).
Fig. 8(a) and the plots in Fig. 9(a). Theseshow The initial misfit for the TE mode data was

(d) COPROD2 Observed Li Joint Inversion
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Fig. 6 (continued).
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= 2524. The model achievedaftersevenitera- The startingmisfit for the TM modeinversion
tions is shown in Fig. 7(b). It has a misfit of was = 2323. The model achievedafter 21 iter-

= 804. Again, the greatestmisfits occur at 5.33 ations,which had a misfit of ~d = 877, is shown
and 682 s but the fit is distributed much more in Fig. 7(c). There is no manifestationof a con-
uniformly than was the fit for the determinant ductiveNACP anomaly,eventhoughthat feature
averagedata. The summarymisfit plots aregiven waswell definedin the startingmodel. The other
in Figs. 8(b) and 9(b). The principal difference major difference betweenFigs. 7(c) and 7(a) is
betweenthe modelsin Fig. 7(b) and 7(a) is an the characterof the TOBE anomaly. Fig. 7(a)
enhancementof the magnitude of the NACP modelsthe TOBE anomalyas a strongconductor
conductivity by a factor of five andthe extension adjacentto a large resistor. Fig. 7(c), however,
of the anomalyto greaterdepths.In addition, the modelsthe anomalyas two separateconductors
inversionof the TE datahasincreasedthe physi- of different strengthand thereis no large resis-
cal size of the TOBE anomaly and generateda ton. The misfits are shown in Figs. 8(c) and 9(c).
model with somewhatgreaterroughness. Again, the largestmisfits are associatedwith the

(a) COPROD2 Observed DET Inversion

~101 ~ ____________

—2.OOE+05 0. 2.OOE+05 —2.OOE+05 0. 2.OOE+05

~1Oi ~ ____________
—2.OOE+05 0. 2.OOE+05 —2.OOE+05 0. 2.OOE+05

!boi ~ 1O!~~II,

—2.OOE+05 0. 2.OOE+05 —2.OOE+05 0. 2.OOE+05
Offset Offset

Fig. 8. Theobserveddata (pointswith errorbars)andthepredicteddata(curves)associatedwith the 12 normmodelsproducedby
inverting(a) determinantaverage,(b) TE, (c) TM and(d) joint TE andTM modesfor theCOPROD2data.
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dataat the shortestand longestperiodsand the sensitivitiesand the restrictionsimplicit in a sub-
phasesareparticularlyerroneous.The phasemis- spacemethodhaveconspiredto preventthealgo-
fits at 5.33 and682 s accountfor 480 of the total rithm from working satisfactorilyin the joint in-
misfit of 877. version.Thismight be expected,asthe incorpora-

The large differencesobservedbetween the tion of 1D E fields in Eq. (4) meansthat the
determinantdata inversionsand separateinver- sensitivities for both TE and TM data are the
sion of the two modesis a strongmotivation for same.This makesit extremelydifficulty to model
carrying out a joint inversion. Severalattempts the mode splitting which is observedin the data.
were madeto do this but the algorithmwasnot As in the 11 inversion,we thereforeuse an im-
successfulin finding an adequatelyfitting model. provedsensitivity obtainedby substitutingthe 2D
Using the samemodel normandreferencemodel E fields into Eq. (4). The resulting model, ob-
as in the determinantdata inversion and begin- tamed with the algorithm presentedhere, but
ning with the model in Fig. 7(a), the smallest extractedfrom the studyby Ellis et al. (1993), is
misfit achievedby the joint inversion was about shownin Fig. 7(d). Threewell-definedconductors
4500. It appearsthat the combinationof only 1D describetheNACP anomalyandthereis a strong

(b) COPROD2 Observed EMT Inversion

~~o1 ~T~~~T11____________
—2.OOE+05 0. 2.OOE+05 —2.OOE+05 0. 2.OOE+05
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Fig. 8 (continued).
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conductorcorrespondingto the TOBE anomaly. so that a single model can be constructed.The
The inversionbeganwith the model in Fig. 7(a) main decisionpoints concernthe data to be in-
and used the samereferencemodel as in that verted and the model objective function to be
inversion. The final misfit is 4d = 3200, which is minimized. Processingandacquisitiondifficulties
higher than desired,but againmostof the misfit and 3D effects make it difficult in general to
occurs at the longest period. The misfits are specify dataand their error statistics.Yet when
summarizedin Figs.8(d) and9(d). an inversion is carriedout, the data, estimated

errors and desiredfit criterion are specified at
the outset and assumedfixed. The next major

9. Discussion hurdle facedby the researcheris to specify the
model objective function to be minimized. Is a

The inversionof MT datato producemeaning- ‘blocky’ or ‘smooth’ model desired? Is there a
ful information about the Earth’s conductivity basemodel, andif so, what is it? If a final model
structureis a difficult task.Any inversionmethod is to be close to a basemodel and yet smooth,
involvesa sequenceof decisionsby the researcher what is the relative ratio for thesequantities?

(c) COPROD2 Observed HMT Inversion

__________ loll,,
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Fig. 8 (continued).
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What are the additional multiplicative functions hapsotherprocessingdifficulties aswell. Also, in
in the norm componentsneededto obtain the someof our inversions, the conductivity models
desired results (e.g. progressivelymore lateral from inverting determinant average data pro-
smoothingwith increaseddepth?).Alteration of vided acceptablefits to TE and TM mode re-
any of the abovefactorsdictatesthat the databe sponses.In suchcases,thereis little to be gained
reinvented.Consequently,a particular data set from carrying out a joint inversion.Additionally,
must ultimately be invertednot once,but many the inversion result from determinantaverage
times,andpracticalitydemandsthat theinversion datacan be usedas the starting model and/or
computationbe efficient. This has beenthe goal the referencemodel for a joint inversionif oneis
of this paper.First, with respectto the data, we to be carried out. Exploration of the effects of
advocateworking with determinantaveragedata, details of model objective function on the inver-
at least in the formative stagesof the inversion. sion resultcan be exploredby inverting determi-
Not only doesthis keepthe problemsmallerbut nant data. We havedemonstratedthat very dif-
it avoids the difficulties associatedwith maccu- ferent modelscan be producedby altering the
rate rotationsof the impedancetensor andper- objective function to be minimized. This explo-

(d) COPROD2 L2 SubspaceJoint Inversion
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Fig. 8 (continuea).
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ration will provide the researcherwith a greater responses,it is necessaryto modify thepurely 1D
understandingof the resolvingpowerof the data approximationto include the 2D field variation.
and will also be useful in designinga final objec- The successof this simple improved approxima-
tive function to produce a conductivity model tion motivatesfurther researchinto developing
which bestsatisfieshis or herpersonalprejudices evenbetter approximationswhich are still corn-
andgeologicintuition. There is no substitutefor putationallylessdemandingthancarryingout an
this exploration, accurate2D linearization.

Numerical efficiency in both the l~and 12 The other importantaspectof numericaleffi-
algorithmshasbeenachievedthroughthe use of ciency for the l2 solution is the implementationof
1D sensitivities. These sensitivities are surpris- a sub-spaceapproachto avoid the inversionof a
ingly beneficialin 2D problems,at leastif misfits largematrix. The crucial aspecthereis the choice
of about5% on the apparentresistivities and2° of basis vectors. There is still researchto be
on the phaseare adequate.The fact that the 1D carried out in this area. In this paperwe have
sensitivitieswork as well as they do suggeststhat introduceda dynamic mode where the types of
rather crude approximationsto 2D sensitivities searchvectorsvary with iteration, changingfrom
may work extremelywell. We note that for the horizontalstripsto subdivisionsof localizedareas
successfuljoint inversionof the COPROD2data, of interest.The resultswere encouragingbut we
which have very different TE and TM mode werenot alwaysableto achievethe desiredtarget
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Fig. 9. Summaryplotsof themisfits. (a)—(d) Misfits for the modelsshownin Figs.7(a)—7(d),respectively.In (a)—(c): ~, cumulative
amplitude misfits for all stationsat eachfrequency; *, similar information for the phasemisfits. In (d): ~, TE amplitude; *, TE
phase;o,TM amplitude; +, TM phase.
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misfit, and it is likely that the constructedmodel cient. The algorithms presentedin this paper
still contains some unnecessaryroughness.The were designedwith flexibility and efficiency as a
fact that the l~inversion, in which eachcell is a highest priority, and we have shown that they
basisvector,wasableto generatesomewhatlower providethe meansfor a preliminary investigation
misfits than that achievedwith the sub-space of model space.
approachsuggeststhat the choice of searchvec-
tors may not havebeenoptimum. On the other
hand,the large improvementin the invertedre- Acknowledgements
sults obtained by using the same sub-space
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