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ABSTRACT

Two algorithms are presented to invert magnetotelluric data over 2D conductivity structures. Both algorithms use
approximate sensitivities that arise from the 1D conductivity profile beneath each station; this avoids the large computations
normally required to calculate the true 2D sensitivities. The first algorithm produces ‘blocky’ models by minimizing the [,
norm of the conductivity, whereas the second algorithm produces smoother models by minimizing the /, norm of the model.
The inversion of a large matrix in the /, norm minimization is obviated by using a sub-space solution. Our presentation is
motivated by three goals. The first is to provide details of these algorithms and to show their efficiency compared with more
commonly used techniques. The second goal is to illustrate the non-uniqueness inherent in these inversions and to
illuminate the importance of choice of norm that is minimized. To accomplish this we perform /; and /, norm inversjons on
a synthetic model. The third goal is to show the utility, the practical importance, and the limitations of inverting determinant
average data. The utility is demonstrated by the similarity that is often observed when comparing the inversion result
obtained by inverting transverse electric (TE) and transverse magnetic (TM) mode data jointly with that obtained from
inverting determinant average data. The importance of inverting determinant average data in field experiments arises
because determinant average data are insensitive to rotations of the impedance matrix and perhaps other artefacts of
processing the data. The limitations are shown by the loss of resolution in the model obtained by inverting the determinant
average data compared with joint inversion of TE and TM modes. We illustrate our algorithms by inverting synthetic data
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and the COPROD?2 data set.

1. Introduction

The approach for solving the magnetotelluric
(MT) inverse problem for 1D conductivity struc-
tures is well in hand. The Earth is first discretized
into a number of layers (generally more than
there are data) of constant conductivity. The
equations are linearized, sensitivities calculated,
an an iterative algorithm is used to generate a
conductivity for each layer so that the data are
adequately reproduced. Because the inverse
problem is non-unique the inversion is solved by
minimizing a functional of the conductivity sub-
ject to the data constraints. The conductivity
functional is usually designed to penalize rough-
ness. This procedure, used by Constable et al.
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(1987), Smith and Booker (1988), Dosso and Old-
enburg (1989) and others has been shown to work
well. Moreover, because calculation of the for-
ward modelled responses and the sensitivities (or
Frechet derivatives) are easily carried out, and
because the M X M matrix (where M is the num-
ber of layers) is easily invertible, the inversion
result can be rapidly achieved on a small worksta-
tion.

The above inversion method can, in principle,
be used to solve 2D and 3D inverse problems. An
example of this is the inversion of MT data in two
dimensions by deGroot-Hedlin and Constable
(1990). The practical issue, however, is the amount
of computation required. In typical 2D problems
the number of cells and the number of data may
both be of the order of a few thousand. The
computational roadblocks are: (1) computations
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required to carry out a forward modelling; (2)
calculation of the sensitivities; (3) solution of a
large matrix. As the size of the problem in-
creases, the computational burdens in these three
areas are exacerbated and eventually the re-
searcher tires of waiting for the output, even
when he or she has access to a larger computer.

This paper proposes an alternative solution to
the problem. Our goal is to obtain a conductivity
distribution that acceptably reproduces the obser-
vations but at the same time keeps the computa-
tions to a minimum. With reference to the three
computational roadblocks listed above, our gen-
eral philosophy is to use accurate forward mod-
elling but to keep the number of forward mod-
ellings to a minimum, and to use approximate
sensitivities in place of accurate values. The diffi-
culty with inverting a large matrix is addressed in
two ways. An efficient linear programming solu-
tion is advocated for mid-sized problems and a
generalized subspace technique is recommended
for large-scale problems. In implementing the
above philosophy, we have generated two algo-
rithms, both of which make use of sensitivities
derived from a 1D linearization of the electro-
magnetic (EM) equations with respect to the z
coordinate. The first inversion algorithm is a
modification of the AIM-DS algorithm of Olden-
burg and Ellis (1991) (hereafter referred to as
P1). It produces a block model having minimum
variation subject to an /; norm misfit criterion.
The primary modification to the algorithm in P1
is the introduction of prespecified values for the
Lagrange multiplier controlling the misfit at suc-
cessive iterations. This keeps the number of for-
ward modellings to one per iteration. The second
algorithm minimizes an /, norm objective func-
tion of the model subject to an /, norm misfit in
the data. The inversion of a large matrix is obvi-
ated by appealing to a generalized sub-space
method (Skilling and Bryan, 1984; Kennett and
Williamson, 1988; Oldenburg et al., 1993). In the
sub-space methods the perturbation to the con-
ductivity at each iteration is restricted to be a
linear combination of g search vectors. The effi-
ciency of the method lies in the fact that only a
g X g matrix needs to be inverted and the efficacy
of the method lies in the appropriate choice of

vectors. We follow closely the work presented by
Oldenburg et al. (1993) and henceforth refer to
this paper as P2.

The [, and [, inversion algorithms can invert
individually or jointly transverse electric (TE) and
transverse magnetic (TM) mode responses over a
2D conductivity model. We illustrate the algo-
rithms by inverting data obtained from the test
mode!l of Smith (1988) and the COPROD2 data
of Jones and Savage (1986) and Jones (1988). For
the COPROD2 data set we illustrate the extra
resolution obtained by inverting the TE and TM
modes jointly compared with the inversion of the
determinant average data.

2. Inversion algorithms

Great flexibility exists in setting up any inverse
problem. We begin by presenting details of our
choices for: (1) forward modelling; (2) data; (3)
inversion model; (4) sensitivities. These items are
the same for both algorithms. Explicit details on
the model norm to be minimized and the method
of solution will be given after these four items
have been considered.

To effect our forward mapping, the 2D con-
ductivity model is first cellularized with rectangu-
lar elements. The model is partitioned into n,
horizontal cells and n, vertical cells and the 2D
conductivity o(y, z) is partitioned to an n, X n,
array o;,i=1,...,n,;j=1,...,n, The thick-
ness of the cells increases (usually logarithmi-
cally) with depth. Lateral partitioning in the sur-
vey region is dictated by the observation locations
which are specified to be at the centre of each
surface cell. This grid is terminated laterally by
uniform layers and below by prisms elongated
with depth. The conductivity is assumed to be
constant in each cell and the 2D MT responses
are computed using a transmission surface mod-
elling code (Madden, 1972).

TE or TM impedances at n, observation sites
and at n, frequencies can be inverted individu-
ally, jointly, or as determinant averages. Determi-
nant average impedances are generated by

12
Zdet= (Zxeyy——nyZyx) (1)
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(Berdichevsky and Dmitriev, 1976, p. 208). When
data are provided in the form of apparent resis-
tivity and phase, we transform these to the re-
sponse

H(yj, 0, w,)

R,=py——"——,j=1,...
Jl Mo E(yj, 0, wl) s J s n

sI=1,...,n,

(2)
and choose as data the amplitude and phase of
this complex quantity. Errors are converted by
numerical simulation, assuming that the errors on
the initial data are Gaussian, unbiased and inde-
pendent.

For the 2D MT inverse problem we choose
In(o) as the ‘model’ for the inverse problem. We
let my,i=1,...,n,;j=1,...,n, denote the cel-
lularized array of In(o;;) values where the cellu-
larization is the same as used for the forward
modelling.

A major goal of this paper is to illustrate the
practicality of using approximate sensitivities. Nu-
merous approximations exist but the simplest is
to generate the 1D sensitivities, as done in P1.
We begin by linearizing, in the z direction, the
exact forward mapping, %, about a model m™®
which in this case represents o(y, z) at the nth
iteration. This yields

y[m’ w]|y=)’0
=F[m™; w]|y=y0+f0wgm[m("); Yor 2, @]

[m(yo, z) —m™(y,, z)] dz+ ... 3)

where g, is the 1D kernel function associated
with the conductivity o(y, z) at model offset y,.
The expression of g, for the amplitude and
phase responses used here has been given by
Oldenburg (1979, Eq. (7)):

ng[m(”); Yos 2, w]
E(yy, z, ) 2
E(y4,0, ®)

where E(y,, z, w) is the electric field strength at
the point (y,, z). In the simplest approximation,
E(yg, z, @) is taken to be the E(z) field in a 1D
Earth with conductivity o(y,, z). Most of the

4

=/“00'(n)( Yo, Z)

work in this paper adopts this approximation. A
better approximation to the 2D sensitivities
(Smith and Booker, 1991) can be obtained by
taking E(y,, z, @) to be the electric field at
(y9, 2) in a 2D Earth o(y, z). Of course, the E
fields are different for the TE and TM modes
and so the approximate sensitivities will also be
mode dependent in this approximation.

3. I, norm inversion algorithm

The /, norm inversion used here is essentially
the AIM-DS algorithm in P1. The basic AIM-DS
equation is

Fmr D] =g + F[m™W) - F[m™]  (5)

where & denotes a true forward mapping and F
denotes an approximate forward mapping. Defin-
ing the approximate forward mapping by keeping
only the first two terms in (3) yields

Fm; a)]|y=y0
=7 Im™; ol,.,, + [£16[m™; vy, 7, ]
[m(yo, z) —m™(y,, z)] dz (6)
and substituting into (5) yields
fng[m(n); Yo> 2, w]m(”“)(z) dz

=d0bs()’0, w) “d(")()’o, @)

+/g1D[m(n); Yo> 2, w]m(n)(Z) dz (7)

Discretizing this equation produces

n, n,

+1) _ Job
Y AumG T =d* —dP + Y AymP,
i i

j=1,...,n,,k=1,...2n; (8)

where A;;, is the integral of the kth 1D kernel
function g, at model offset y; over/the ith
depth partition. The model norm minimized is a
discretization of the functional

n=8]/

amdd ‘amdd 9
E:V—yz+yff¥yz &)



180 D.W. Oldenburg, R.G. Ellis / Physics of the Earth and Planetay Interiors 81 (1993) 177-200

The inverse problem is solved by minimizing the
objective function

nzn—l

#=PL T z|mizid-my

n,—1 n,
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Robs R(n)
— (10)
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where ¢, is the standard deviation of the datum
R°bs The parameters 8 and vy control the relative
welghting of the y and z variations and are fixed
for each inversion. The Lagrange multiplier u is
generally sought so that the final misfit achieves a
target value consistent with the errors associated
with the data; however, rather than start with this
value of u, a schedule of u values is found to be
desirable. This schedule is a monotonically in-
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creasing sequence which asymptotically ap-
proaches a constant. The increasing nature of u
prevents unnecessary roughness being accumu-
lated in the model at intermediate steps. Al-
though this approach has the possible disadvan-
tage that a non-optimum sequence of w values
may be selected, the major advantage is that only
one forward modelling needs be carried out per
iteration. This may be compared with the ap-
proach where a schedule of target misfits is cho-
sen and then a line search performed to find the
corresponding Lagrange multiplier u at each iter-
ation. Of course, here there is the possible disad-
vantage that a non-optimum sequence of target
misfits may be selected, with the associated non-
optimum number of line searches. Although the
best approach is somewhat model dependent we
find, in general, that the computational savings
associated with a simple schedule of u values can
be substantial because line searches typically in-
volved 3-8 forward modellings.

Fig. 1. Synthetic conductivity model consisting of a 1000  m resistive prism and 10 Q m conductive prism in a 100 Q@ m
background, all overlying a 10 QO m conductive basement. The scale on the right is logy0.
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The use of /; norm requires the definition of
an appropriate misfit measure. Here we follow
Parker and McNutt (1980) and define

obs
Ry — Rf-z)

: (1)

1 T 1/22nfny
t-7—(3) L

2nfny k j €k

and note that E[x}]1=1.

The problem of minimizing (10) subject to the
constraints in (8) is solved using linear program-
ming (LP) techniques and was outlined in P1.
Here, we simply note that minimization of an /,
model norm gives rise to models with large re-
gions of constant conductivity, i.e. block type
models, and the use of an /; data norm provides
robustness in the presence of non-Gaussian noise
on the data. These two characteristics of the /;
norm are well suited to inverting MT data with
static shift effects.

4. I, inversion of synthetic data

We now invert data from a model suggested by
Smith and Booker (1991) and used in P1. The
model has n, =50 horizontal cells and n, =30
vertical cells. It consists of a 1000 2 m resistive
prism and a 10 Q m conductive prism in a 100
)} m background, all overlying a 10 {2 m conduc-
tive basement. This model, shown in Fig. 1, was
chosen mainly because of its similarity to models
already used by other workers (Smith, 1988; deG-
root-Hedlin and Constable, 1990). It is hoped
that a comparison of the same model inverted by
different techniques will provide information
about the strengths and weaknesses of different
methods. The cellularization of the model we use
has logarithmically increasing cell thickness with
depth and constant cell width in the region of
interest. When referring to data associated with
this model we consider nine frequencies in the
range 1.0-0.00033 Hz, with +5% unbiased
Gaussian noise added to the apparent resistivities
and +2° noise to the phases.

It is well known that the inversion of a finite
number of noisy data can yield a wide range of
models depending on the choice of model norm
regularization. To illustrate the significance of

this fact we present the results of the inversion of
the determinant data associated with the model
shown in Fig. 1 for three choices of the ratios
B:y,10:1,1:10 and 1:1, in Figs. 2(a), 2(b) and
2(c), respectively. These three models all have the
same misfit x5 =1 and have significantly differ-
ent character. For comparison, we show in Fig.
2(d) the results of a joint inversion of the TE and
TM mode data with B:y=1:1 and x)=1. All
four inversions were performed with 1D sensitivi-
ties (Eq. (4)), using the E field associated with
the corresponding 1D Earth. As a test case (not
shown), the joint inversion was repeated with 1D
sensitivities (Eq. (4)), using the E field associated
with the 2D Earth conductivity: only a minor
improvement was observed in the final model and
the rate of convergence. It should be noted that
the joint inversion has twice the number of data
compared with the determinant inversions and
correspondingly produces a better representation
of the true model than the determinant inversion.
However, we remind the reader that the determi-
nant inversion does not require knowledge of the
TE and TM modes, is a smaller inverse problem,
and yet yields a very good approximation of the
true model. In practical terms, this makes the
determinant inversion an appealing tool.

5. 1, norm inversion algorithm

The blockiness in models produced by the [,
norm inversion may be a desirable characteristic
for some Earth geologies but other geologic envi-
ronments might be better emulated by smoother
models. Correspondingly, we present an algo-
rithm which minimizes the /, norm of the con-
ductivity model. In this algorithm we also allow
for a base model in the objective function so that
structure is minimized with respect to that back-
ground model.

In the /; norm inversion the recovered model
is achieved by explicitly solving for the conductiv-
ity in each cell. Effectively, each cell is a basis
element in model space and finding values of the
conductivities requires solving a large matrix sys-
tem. This is efficient for an LP solver (Marsten,
1981, D’Azevedo et al., 1991) for the size of
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problem just considered. The /, norm inversion,
however, requires the solution of an M X M ma-
trix, where M is the number of cells, and this
computation can become prohibitive as the num-
ber of cells increases. To obviate this difficulty we
appeal to a generalized sub-space method. We
adopt the formalism outlined in P2 but present
the essence of the calculation here.
We first define a model objective function

() = | W(m —mo) | (12)
where m, is abase model and W,, is a weighting
matrix. The minimization of ¢, yields a model
that is close to m, with the metric defined by W,
and so the characteristics of the recovered model
are directly controlled by these two quantities.
The data misfit may be characterized by

$a(d) =||W,(d ~a™)| (13)

where the relationship between the jth datum
and the model is d; = #[m]. The functionals .%;
are assumed known. In (13), W, is an NXN
matrix. If the noise contaminating the jth obser-
vation is an uncorrelated Gaussian random vari-
able having zero mean and standard deviation ;
then an appropriate form for W, is W,=
diag{1/e,,...,1/€y}. With such assumptions, ¢,
is a random variable distributed as x? with N
degrees of freedom. The expected value of ¢, is
therefore approximately equal to N and, accord-
ingly, the model sought from the inversion algo-
rithm should reproduce the observations to about
this value. The inverse problem of minimizing
¢,,(m) such that ¢,(d)=¢}, a desired misfit, is
solved by minimizing

d(m) = ¢,(m) + p[d,(d) — 6}] (14)

where p is the Lagrange multiplier. The mini-
mization problem is nonlinear and is addressed
by linearizing (14) about the current model m™
and iterating. If m is a model perturbation, then
a truncated Taylor expansion which has terms
only up to second order is

$(m™ + dm)

=¢,, +vIém+ ;6mTH, m

+u{d,+yiom + 36m™H,6m — ¢}}  (15)

where v,=V,¢, and y,=V, ¢, are gradient
vectors, H,=V,V,¢,, and H,=V.V ¢, are
Hessian matrices and V,, is the operator (3/3m,,
3/dm,,...,38/dm,)". In (15), ¢,, is understood to
be ¢,(m™) and ¢, is ¢, (d™).

In a sub-space approach, the ‘model’ perturba-
tion m € RM is restricted to lie in a g-dimen-
sional sub-space of R™ which is spanned by the
vectors {»;} i = 1, g. The model perturbation can
be written as

q
dm= ) apy,=Va (16)
i=1

and is therefore specified once the parameters «;
are determined.

The sub-space equations are generated by sub-
stituting (16) into (15) to yield

Sd(m'™ + Va)
=¢, +yiVa+3a"V'H, Va
+u{d,+yiVa+3e"VTHVa — o3} (17)

This is a quadratic objective function to be solved
for the parameter vector «. Differentiating (17)
with respect to a and setting the resultant equa-
tions equal to zero yields

VI(H,+pH)Va=—uVTy,—VTy, (18)

The solution of this system requires that a line
search be carried out to find the value of the
Langrange multiplier 1 so that a specific target
value ¢% is achieved. This involves an initial
guess for u, solving (18) by singular value decom-
position (SVD) for the vector «, computing the
perturbation §,, carrying out a forward mod-
elling to evaluate the true responses and misfit,
and then adjusting p. The estimation of an ac-

‘ceptable value of u typically requires three or

four forward modellings.

At each iteration in the inversion we desire a
model perturbation which minimizes ¢,, and al-
ters ¢, so that it achieves a specific target value
¢X. To prevent the build-up of unnecessary
roughness, the target misfit begins at an initial
value (usually a fraction of the misfit generate by
the starting model) and decreases with successive
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iterations towards a final value selected by the
interpreter. Convergence is reached when the
data misfit reaches this final target and no fur-
ther reduction in the model norm is obtained
with successive iterations.

The success of the sub-space method depends
strongly upon the choice of basis vectors. In P2,
considerable success was achieved by subdividing
the misfit objective function and using steepest
descent vectors associated with each data gradi-
ent. Here we segment the data misfit objective
function according to frequency, amplitude and
phase. The ith search vector becomes

i* obs 2

Ej

;= (Wn{wm)—lvm Z

j=G-D=*n,+1

i=1,..,2n, (19)

so that the datum in the sum is an amplitude (or
phase) at a single frequency. Every inversion car-
ried out contains these vectors, the constant vec-
tor and also (WW, )"V ¢, =m —m,, which is
the steepest descent vector associated with the
model objective function. In addition, we also
segment the model norm objective function and
form steepest descent vectors from each of the
minor objective functions. The segmentation is
invoked by choosing a rectangular region of the
model and subdividing this region into smaller
groups. The projection of (m —m,) onto any
group of cells provides a new search direction.
The rectangular region can be the entire model
or a smaller portion. In the initial iterations we
used each row of cells to make a basis vector and
sometimes also subdivided the entire model into
groupings of n Xn cells, where n is typically
5 X 5. In later iterations, when features of inter-
est appeared, we have centred the rectangle over
the area to see if structure is enhanced or attenu-
ated in a subsequent iteration. This process can
be both interactive and dynamic. The attractive
aspect of the dynamic use of additional search
vectors is that in the sub-space inversion only a
model perturbation is sought. At worst, a poor
choice of vectors produces little benefit.

6. I, norm inversion of synthetic data

The [/, norm inversion results illustrated effec-
tively the dependence of the inversion result on
the model norm. The same dependence exists for
the I, inversions, but this aspect does not need
further investigation here. As such, for the [,
inversions, we select a single objective function.
Our choice for ¢,, is guided by a desire to find a
model which has minimum structure in the verti-
cal and horizontal directions and at the same
time is close to a base model m,. To accomplish
this we minimize a discretized approximation to

¢m(m? mO)

=asffws(y, z)(m —mo)2 dy dz

o a0

+aw,(y, z)[g(m—z;m"l] } dydz (20

where a,, a, and «, are adjustable constants
having suitable dimensions to make (20) dimen-
sionless. The weighting functions w(y, 2),
w,(y, z) and w,(y, z) provide additional flexibil-
ity to control the characteristic of the final model.
The discrete form of (20) is

=, +¢,+ ¢,
= a,|W,(m ~m,) ”2 + ay"Wy(m —m,) "2
+a,|W.(m—my) "2
= (m—mo) (@, WW, +a WW, +a WIW,}
X(m—my)
= (m—my) WIW,(m—m,) (21)

In (21), W, is a diagonal matrix with elements
(AyAz)'?, where Ay is the length of the cell
and Az is its thickness, W, has elements +Az/
(Az,dy)'/?, where dy is the distance between
the centres of horizontally adjacent cells, and W,
has elements +(AyAz/Az, dz)/2, where dz is
the distance between the centres of vertically
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adjacent cells. The factor (Az/Az;)'/* in the
specification of the W, and W, matrices accounts
for non-constant w/(y, z) and w/(y, z) and
causes the constructed model to discriminate
against conductivity variation at depth. This is in
accordance with the reality of strong surface con-
ductivity variations that are often found in geo-
physical surveys and the reduced resolution with
depth for EM investigations. We have chosen
a,=107% a,=10, and a, = 1.0.

For the first inversion of the Smith and Booker
model we invert Berdichevsky determinant aver-
age data and use m,=0.03 S m~! as a reference
model. The starting model is a half-space of 0.01
S m~'. The inversion is carried out with 49 search
vectors; there are 18 data gradient search vectors
(two for each period), the constant vector and 30
steepest descent vectors for the model objective
function (one for each row of cells in the model).
Before showing the result we justify the grouping
of the data in forming our search vectors. In Fig.
3 we show four selected vectors at the first itera-
tion. These vectors are clearly useful search di-
rections for they have manifestations of surface
roughness, manifestations of the conductive
blocks and have the potential for altering the
half-space model toward the two-layer model.

The model shown in Fig. 4(b) was achieved
after 15 iterations. The final fit to the data is
¢, =988, which is acceptably close the number of
data, 900. The improvement in the data misfit is
rapid in the initial iterations and decreases be-
yond the seventh iteration. The general features
of the true model are visible; the 1D background
is reasonably well defined and the sharp conduc-
tivity contrast at 40 km is seen as a smoothed
transition zone; this is a typical result in an [,
inversion. The resistive and conductive anomalies
are fairly well determined in the horizontal direc-
tion but there are dropouts beneath both prisms.
There is also a conductive overshoot visible be-
neath the conductive prism. The top of the con-
ductive prism is close to that in the true model
but the resistive prism has been pushed to greater
depth. We notice also that the near-surface layer
exhibits more lateral variability, which is in accor-
dance with our weighting function.

The 1D background is often of limited interest

geophysically and usually we are more interested
in deviations from that background. Accordingly,
we carry out another inversion where the base
model has been altered from a half-space of 0.03
S m~! to a 1D conductivity structure obtained by
taking the lateral average of the conductivity
shown in Fig. 4(b). The result after seven itera-
tions is displayed in Fig. 4(c). The data misfit for
this model is ¢, = 976. The two prisms are visu-
ally enhanced and the conductivity overshoots
(especially beneath the conductivity prism) are
reduced from that shown in Fig. 4(b). We deem
this to be a beneficial result.

The inversion above was performed using de-
terminant average data. We now compare those
results with that obtained by jointly inverting the
TE and TM mode data. That inversion result,
obtained after 10 iterations and using a reference
model of 0.03 S m~!, is shown in Fig. 4(d). The
final misfit to the data was ¢, =2487. This is
somewhat greater than the desired fit of 1800,
but this seemed to be approximately the limit that
could be achieved using these basis vectors. The
joint inversion used 38 data gradient vectors, the
constant vectors and 30 vectors associated with
each row of cells, making a total of 69 vectors.
The results are not substantially different from
those in Fig. 4(c), and in fact, the result in Fig.
4(c) might be moderately superior.

7. COPROD?2 data set I, norm inversion

We now invert a subset of the COPROD?2 data
set provided by A.G. Jones. These data were
collected along an east—west traverse in southern
Saskatchewan and Manitoba in Canada. There
are 35 stations with spacings of approximately 10
km. The data have been analysed by Jones and
Savage (1986) and Jones (1988), and have been
used as test data for inversion algorithms. We
now present the results of the application of the
AIM [, inversion to a subset of the COPROD?2
data. The subset chosen consists of the data at all
35 stations and at the eight frequencies 0.187,
9.37E — 02, 4.69E — (02, 2.33E — 02, 5.86E — 03,
2.93E — 03, and 1.46E — 03 Hz. From this subset
we have extracted and inverted four data sets; the
TE mode data, the TM mode data, the determi-
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nant average data and the joint TE and TM
mode data. Following deGroot-Hedlin and Con-
stable (1990), we attribute minimum errors of
+10% to the apparent resistivities and +5° to
the phases.

The model produced by the AIM [/, inversion
using 1D sensitivities operating on the TE mode
data with B8:y=>5:1 is shown in Fig. 5(a), and
the observed and predicted data are shown in
Fig. 6(a). The predicted data have y; = 0.97. The
TE mode apparent resistivity and phase data
have a strong conducting signature in the vicinity
of the NACP and the TOBE anomalies and this
leads to compact conductors in the recovered
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model. We note that both conductivity anomalies
are split vertically into two conductors. However,
we emphasize that this is only one of many mod-
els which fit these data at this misfit level.

The result of inverting the TM mode data with
B:¥y=5:1 and with 1D sensitivities gave the
model shown in Fig. 5(b). The observed and
predieted data are shown in Fig. 6(b). The data
misfit is y = 0.86. The TM mode apparent resis-
tivity and phase data show little manifestation of
the conducting anomalies and consequently there
is little structure in the recovered model.

Combining the TE and TM mode data to form
the determinant average data and inverting (B:y

DET Inversion
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Fig. 6. The observed data (points with error bars) and the predicted data (curves) associated with the /; norm models produced by
inverting (a) TE, (b) TM, (c) determinant average and (d) joint TE and TM modes for COPROD? data.
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=5:1) produced the model shown in Fig. 5(c).
This model gives rise to the predicted data shown
in Fig. 6(c), which has x¥ =0.67. This inversion
result clearly shows a blocky conductor associated
with the NACP and a smaller, more compact
conductor associated with the TOBE anomaly.
The predicted data associated with this model
overfit the observed data in a statistical sense.
However, as the true data errors are somewhat
uncertain, we do not consider this overfitting to
be significant. More importantly, it has been our
experience that optimal results are produced by
inverting the determinant data when using 1D
sensitivities, so that Fig. 5(c) represents our best
representation, with 1D sensitivities using 1D E

fields, of the conductivity structure along this
profile.

After successful inversion of the determinant
data, an attempt was made jointly to invert the
TE and TM mode COPROD?2 data. A satisfac-
tory inversion result could only be achieved when
the 2D E fields were used in the 1D sensitivity
function (Eq. (4)); using the 1D E fields resulted
in extremely poor convergence. The result of the
successful inversion (Ellis et al., 1993) of the joint
TE and TM mode data (8:y=1:1) is shown in
Fig. 5(d), and the observed and predicted data
are shown in Fig. 6(d). The predicted data have a
normalized misfit y¥ = 1.15. We were unable to
reduce the misfit to x¥ =1 without increasing
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the number of cells in the model. Even at the
x=1.15 misfit level, the NACP anomaly is
clearly resolved into three conductors at a depth
of 20 km and dipping to the west. The TOBE
anomaly is clearly resolved as a strong conductor
at 10 km depth. These results confirm, in a gen-
eral sense, the finding of other workers (e.g.
deGroot-Hedlin and Constable 1990) who have
inverted this data set.

8. COPROD2 data set I, norm inversion

The COPROD?2 data set will now be inverted
using the /, norm minimization and the sub-space

method. We first invert the determinant average
data. The model obtained after 18 iterations is
shown in Fig. 7(a). The result was achieved in the
following manner. The first six iterations were
performed with a reference half-space model of
0.03 S m'l. The resulting model was then aver-
aged laterally to yield a 1D reference model for
the remaining iterations. In these latter itera-
tions, the model component of the objective func-
tion was divided in various ways (layers, 5 X 5 cell
groupings, a large rectangular block centred on
the NACP anomaly and a rectangular block cen-
tred on the TOBE anomaly). Steepest descent
vectors associated with these cell groupings were
used in conjunction with the data gradient vec-
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tors. For all iterations the number of vectors was
less than 100. The constructed model in Fig. 7(a)
shows that both the NACP and the TOBE
anomalies are well defined. The data misfit for
the constructed model is 666. This is somewhat
more than the target misfit of 560. However, even
at this level almost all of the data are well fitted.
The major discrepancies and principal contribu-
tors to the global misfit are the phases at 5.33,
341 and- 682 s. At these periods, the predicted
phase curves are biased downward from the ob-
servations. The apparent resistivities at these fre-
quencies, however, are well reproduced. The mis-
fit information is summarized by the line plots in
Fig. 8(a) and the plots in Fig. 9(a). These show

the misfit contribution for amplitudes and phases
for each frequency. The dashed line in Fig. 9(a) is
the misfit expected if each data group con-
tributed equally to the desired misfit of 560. Only
the misfits from the phases at the three periods
given above contribute more than this average
value and, in fact, they contribute 514 to the total
misfit of 666.

To look more closely at the information in the
COPROD data set, we next inverted separately
the TE and TM mode data. The reference model
was the same 1D model as used when inverting
the determinant average data. The starting model
was the conductivity model shown in Fig. 7(a).
The initial misfit for the TE mode data was
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¢4 = 2524. The model achieved after seven itera-
tions is shown in Fig. Ab). It has a misfit of
¢, = 804. Again, the greatest misfits occur at 5.33
and 682 s but the fit is distributed much more
uniformly than was the fit for the determinant
average data. The summary misfit plots are given
in Figs. 8(b) and 9(b). The principal difference
between the models in Fig. 7(b) and 7(a) is an
enhancement of the magnitude of the NACP
conductivity by a factor of five and the extension
of the anomaly to greater depths. In addition, the
inversion of the TE data has increased the physi-
cal size of the TOBE anomaly and generated a
‘'model with somewhat greater roughness.

The starting misfit for the TM mode inversion
was ¢, = 2323. The model achieved after 21 iter-
ations, which had a misfit of ¢, =877, is shown
in Fig. 7(c). There is no manifestation of a con-
ductive NACP anomaly, even though that feature
was well defined in the starting model. The other
major difference between Figs. 7(c) and 7(a) is
the character of the TOBE anomaly. Fig. 7(a)
models the TOBE anomaly as a strong conductor
adjacent to a large resistor. Fig. 7(c), however,
models the anomaly as two separate conductors
of different strength and there is no large resis-
tor. The misfits are shown in Figs. 8(c) and 9(c).
Again, the largest misfits are associated with the

(a) COPROD2 Observed DET Inversion
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Fig. 8. The observed data (points with error bars) and the predicted data (curves) associated with the /, norm models produced by
inverting (a) determinant average, (b) TE, (¢) TM and (d) joint TE and TM modes for the COPROD2 data.
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data at the shortest and longest periods and the
phases are particularly erroneous. The phase mis-
fits at 5.33 and 682 s account for 480 of the total
misfit of 877.

The large differences observed between the
determinant data inversions and separate inver-
sion of the two modes is a strong motivation for
carrying out a joint inversion. Several attempts
were made to do this but the algorithm was not
successful in finding an adequately fitting model.
Using the same model norm and reference model
as in the determinant data inversion and begin-
ning with the model in Fig. 7(a), the smallest
misfit achieved by the joint inversion was about
4500. 1t appears that the combination of only 1D

sensitivities and the restrictions implicit in a sub-
space method have conspired to prevent the algo-
rithm from working satisfactorily in the joint in-
version. This might be expected, as the incorpora-
tion of 1D E fields in Eq. (4) means that the
sensitivities for both TE and TM data are the
same. This makes it extremely difficulty to model
the mode splitting which is observed in the data.
As in the [, inversion, we therefore use an im-
proved sensitivity obtained by substituting the 2D
E fields into Eq. (4). The resulting model, ob-
tained with the algorithm presented here, but
extracted from the study by Ellis et al. (1993), is
shown in Fig. 7(d). Three well-defined conductors
describe the NACP anomaly and there is a strong

(b) COPROD2 Observed EMT Inversion
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conductor corresponding to the TOBE anomaly.
The inversion began with the model in Fig. 7(a)
and used the same reference model as in that
inversion. The final misfit is ¢, = 3200, which is
higher than desired, but again most of the misfit
occurs at the longest period. The misfits are
summarized in Figs. 8(d) and 9(d).

9. Discussion

The inversion of MT data to produce meaning-
ful information about the Earth’s conductivity
structure is a difficult task. Any inversion method
involves a sequence of decisions by the researcher

so that a single model can be constructed. The
main decision points concern the data to be in-
verted and the model objective function to be
minimized. Processing and acquisition difficulties
and 3D effects make it difficult in general to
specify data and their error statistics. Yet when
an inversion is carried out, the data, estimated
errors and desired fit criterion are specified at
the outset and assumed fixed. The next major
hurdle faced by the researcher is to specify the
model objective function to be minimized. Is a
‘blocky’ or ‘smooth’ model desired? Is there a
base model, and if so, what is it? If a final model
is to be close to a base model and yet smooth,
what is the relative ratio for these quantities?

(c) COPROD2 Observed HMT Inversion

0
™
p
<]
<
QU
—-2.00E+05 0. 2.00E+05
3 1
o .
Ve
w
<
101 L‘ ) S R L L1
—-2.00E+05 0 2.00E+05
3 10t
™
[+p]
—
o
-C
Q
—~2.00E+05 0 2.00E+05

Offset
Fig. 8 (continued).

@40r ﬁ{}
L

o 20

> 1o} !
~2.00E+05 0.

40
30

20

1 T [ 1 1

v 853 (s)

10

—2.00E+05 0. 2.00E+05

w
T

9 21.33 (s)
— 0 N
D o
b 1

T

12 (RN N S S S T L
-2.00E+05 0. 2.00E+05
Offset



D.W. Oldenburg, R.G. Ellis / Physics of the Earth and Planetay Interiors 81 (1993) 177-200 197

What are the additional multiplicative functions
in the norm components needed to obtain the
desired results (e.g. progressively more lateral
smoothing with increased depth?). Alteration of
any of the above factors dictates that the data be
reinverted. Consequently, a particular data set
must ultimately be inverted not once, but many
times, and practicality demands that the inversion
computation be efficient. This has been the goal
of this paper. First, with respect to the data, we
advocate working with determinant average data,
at least in the formative stages of the inversion.
Not only does this keep the problem smaller but
it avoids the difficulties associated with inaccu-
rate rotations of the impedance tensor and per-

haps other processing difficulties as well. Also, in
some of our inversions, the conductivity models
from inverting determinant average data pro-
vided acceptable fits to TE and TM mode re-
sponses. In such cases, there is little to be gained
from carrying out a joint inversion. Additionally,
the inversion result from determinant average
data can be used as the starting model and/or
the reference model for a joint inversion if one is
to be carried out. Exploration of the effects of
details of model objective function on the inver-
sion result can be explored by inverting determi-
nant data. We have demonstrated that very dif-
ferent models can be produced by altering the
objective function to be minimized. This explo-

(d) COPRODZ2 L2 Subspace Joint Inversion
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ration will provide the researcher with a greater
understanding of the resolving power of the data
and will also be useful in designing a final objec-
tive function to produce a conductivity model
which best satisfies his or her personal prejudices
and geologic intuition, There is no substitute for
this exploration.

Numerical efficiency in both the {; and [,
algorithms has been achieved through the use of
1D sensitivities. These sensitivities are surpris-
ingly beneficial in 2D problems, at least if misfits
of about 5% on the apparent resistivities and 2°
on the phase are adequate. The fact that the 1D
sensitivities work as well as they do suggests that
rather crude approximations to 2D sensitivities
may work extremely well. We note that for the
successful joint inversion of the COPROD?2 data,
which have very different TE and TM mode
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responses, it is necessary to modify the purely 1D
approximation to include the 2D field variation.
The success of this simple improved approxima-
tion motivates further research into developing
even better approximations which are still com-
putationally less demanding than carrying out an
accurate 2D linearization.

The other important aspect of numerical effi-
ciency for the /, solution is the implementation of
a sub-space approach to avoid the inversion of a
large matrix. The crucial aspect here is the choice
of basis vectors. There is still research to be
carried out in this area. In this paper we have
introduced a dynamic mode where the types of
search vectors vary with iteration, changing from
horizontal strips to subdivisions of localized areas
of interest. The results were encouraging but we
were not always able to achieve the desired target
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Fig. 9. Summary plots of the misfits. (a)-(d) Misfits for the models shown in Figs. 7(a)-7(d), respectively. In (a)—(c): A, cumulative
amplitude misfits for all stations at each frequency; *, similar information for the phase misfits. In (d): a, TE amplitude; *, TE

phase; 0, TM amplitude; +, TM phase.
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misfit, and it is likely that the constructed model
still contains some unnecessary roughness. The
fact that the /; inversion, in which each cell is a
basis vector, was able to generate somewhat lower
misfits than that achieved with the sub-space
approach suggests that the choice of search vec-
tors may not have been optimum. On the other
hand, the large improvement in the inverted re-
sults obtained by using the same sub-space
method but substituting the 2D electric fields
suggests that the focus for improving the inver-
sion should be on obtaining better, but still ap-
proximate and quickly computable, sensitivities.
These caveats aside, the algorithm presented here
is still extremely valuable in performing many
inversions of the data and exploring the effects of
the details of the objective function on the recov-
ered model.

The main computations for the algorithms pre-
sented here are connected with forward mod-
elling. An average of about four forward mod-
ellings per iteration for the line search were used
in the /, inversion and 8-20 iterations were re-
quired to achieve a final result. With the matrix
to be inverted having a dimension of 100 or less,
and with the sensitivities easily computed, the
time required to carry out the inversion is only
fractionally longer than the time required for the
forward modellings. The /, solution is even more
efficient because only one forward modelling is
carried our per iteration. This requires, however,
that a good strategy is implemented for specifying
the value of the Lagrange multiplier at each
iteration. Typically, 15-30 forward modellings are
required for each /; inversion. The computational
time for the /, solution is divided between the
forward modelling and the need to solve a large
sparse linear programming problem.

In conclusion, we emphasize that the funda-
mental difficulty with geophysical inverse prob-
lems is that they are ill-posed. Of particular con-
cern is their inherent non-uniqueness, which can
only be addressed by considering the class of
models which fit the data to the desired level.
One method for exploring the class of models is
by performing a significant number of inversions
with different model norms, and this can only be
done if inversion algorithms are flexible and effi-

cient. The algorithms presented in this paper
were designed with flexibility and efficiency as a
highest priority, and we have shown that they
provide the means for a preliminary investigation
of model space.
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