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Abstract. This paper explores some of the newer techniques for acquiring and inverting electromagnetic 
data. Attention is confined primarily to the 2d magnetotelluric (MT) problem but the inverse methods 
are applicable to all areas of EM induction. The basis of the EMAP technique of Bostick is presented 
along with examples to illustrate the efficacy of that method in structural imaging and in overcoming the 
deleterious effects of near-surface distortions of the electric field. Reflectivity imaging methods and the 
application of seismic migration techniques to EM problems are also explored as imaging tools. Two 
new approaches to the solution of the inverse problem are presented. The AIM (Approximate Inverse 
Mapping) inversion of Oldenburg and Ellis uses a new way to estimate a perturbation in an iterative 
solution which does not involve linearization of the equations. The RRI (Rapid Relaxation Inverse) of 
Smith and Booker shows how approximate Frrchet derivatives and sequences of ld inversions can be 
used to develop a practical inversion algorithm. The overview is structured to provide insight about the 
latest inversion techniques and also to touch upon most areas of the inverse problem that must be 
considered to carry out a practical inversion. These include model parameterization, methods of 
calculating first order sensitivities, and methods for setting up a linearized inversion. 

Introduction 

The development of a computational algorithm which has the ability to easily and 
robustly extract meaningful information about the conductivity structure of the 
earth has been a long-time goal of the geophysical community. In the special case 
when the conductivity structure is a function of depth only, a variety of methods 
have been proposed and implemented to extract information about a(z) from 
surface or borehole responses. For those ld problems however, the number of 
model parameters and data are generally limited to a hundred or less, and so the 
matrices involved in linearized approaches are readily manipulated numerically. It 
seems natural to solve 2d and 3d problems by using the same methods and indeed, 
much effort has been expended in this regard. Unfortunately, the computational 
complexity increases dramatically in higher dimensions and this has been a primary 
reason for slow progress over the last few years. Even in two dimensions, a typical 
MT survey involving 20 stations produces 103 complex responses to be fitted, while 
the geologic model, when cellularized, may consist of 104 or 105 parameters. In 
three dimensions the problem is compounded. Traditional linearized methods 
therefore require enhanced computing power but the recent availability of super- 
computers means that substantial progress is being made in this area. 

Another technological development available to researchers is the computer 
workstation with high resolution graphics and considerable computational power. 
This has opened other avenues for attacking the inverse problem. The data from an 
electromagnetic experiment constitute a blurred image of the earth structure and 
consequently the goal of an inversion algorithm can be to generate another image, 
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not necessarily conductivity as a function of spatial coordinates, which provides 
information about geologic structure. Image processing, ld inversions, and accurate 
2d forward modelling can be implemented on workstations and such abilities are 
spawning new approaches in the solution of the inverse problem. 

In this paper I will present some of these newer methods and also provide 
information about more traditional approaches. With respect to traditional ap- 
proaches to inverting EM data, there already exists a number of excellent reviews. 
Classic inversion papers by Weidelt (1975) and Jupp and Vozoff (1976) provide a 
solid foundation for linearized iterative analysis. The review by Varentsov (1983), 
the comprehensive reference lists given by Hermance (1983) and by Chave and 
Booker (1987), together with the compendium of papers edited by Vozoff (1986) 
provide pathways to most literature published up to 1986. A more recent summary 
of inverse approaches is presented by Hohmann and Raiche (1987). In addition, 
Whittall and Oldenburg (1900) provide a thorough review for the ld inverse 
problem. 

I will outline different ways in which surface electromagnetic data can be 
processed to yield information about electric conductivity and geologic structure. 
The emphasis will be on the newer techniques. My attention will be focused on the 
magnetotelluric (MT) problem, and in particular on the 2d problem. Magnetotel- 
lurics is an appropriate focus because it includes all of the problems of electromag- 
netic induction with the exception of spatial variability of the source field (at least 
in the usual approximation). A thorough understanding of the inversion of 2d MT 
data will form a solid foundation for solving controlled source problems and the 
ellusive 3d problem. For the most part, my presentation is ordered according to 
computational demands of the processing algorithm and, in general, from the least 
to the most sophisticated algorithms. 

A first approach to obtain useful information about the geological structure is to 
plot the data in various ways. Pseudosection plots can provide immediate insight 
about the degree of lateral inhomogeneity, and may also provide (to the experi- 
enced eye) some indication about the details of the conductivity variation. An image 
that may provide more direct information about the conductivity structure may be 
obtained by acquiring electric field data using a contiguous line of dipoles. The 
resultant data and processing constitute the EMAP technique. This method is new 
and I will present its basic ideas here. An imaging technique which converts 
surface-measured impedances into an electromagnetic pseudo-impulse response is 
presented. Successful imaging provides immediate information about conductivity 
structure which may be useful in itself, or in a second stage parametric inversion 
where an acceptable conductivity model is generated. A new iterative inversion 
method developed by Oldenburg and Ellis (1990) will be presented. Their AIM 
(Approximate Inverse Mapping) inversion uses accurate forward modelling and an 
approximate inverse mapping to construct a conductivity model which reproduces 
the data. The method does not require linearization of the equations or the solution 
of a large matrix system. Another inversion method which holds great promise is 
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the Rapid Relaxation Inverse (RRI) of Smith and Booker (1988b). Modified 
Frrchet derivatives are employed and a ld inversion is carried out for each station. 
Both the AIM and RRI methods have a number of impressive computational 
advantages over generalized linear inverse techniques and are ultimately applicable 
to the solution of 3d problems. Traditional linearized techniques require the 
evaluation of 2d Frrchet derivatives or sensitivities. Efficient computation of the 
sensitivities is necessary to make the approach feasible and I therefore summarize 
two methods to effect those calculations. Once these first order sensitivities have 
been developed, standard approaches may be used to iterate toward an acceptable 
model. Regularization approaches differ and I shall discuss briefly both the statisti- 
cal formulation of Tarantola (1987) and the construction of models having mini- 
mum structure. 

Before proceeding, I would like to emphasize that a thorough review of 2d and 
3d inversion procedures is too large an undertaking for a single paper (at least for 
this author), and it is for this reason that I have focused on the 2d magnetotelluric 
problem. Also, in putting this paper together I have received substantial help from 
many researchers and my review is correspondingly oriented towards works by 
those people. Unfortunately, there exist many excellent papers in the literature 
which are neither reviewed nor referenced in this manuscript. I offer my apologies 
at the outset to those who have been omitted. 

Preamble: Equations and Definitions 

The basic equations for EM induction are Maxwell's equations: 

~B 
V •  - - -  

~t 
c~D 

V x H = J + - -  
c~t 

(la) 

(lb) 

V . B = O  (lc) 

V. D = p  f, (ld) 

the equation of continuity, 

V. J + ~ t f =  O, (2) 

and the constitutive relations: 

J = a E ,  B = p H ,  and D = e E ,  (3) 

where all quantifies are standardly defined (Stratton, 1941: Ward and Hohmann, 
1988). At the boundaries between differing conductivities the tangential components 
of E and H, and the normal component of B are continuous; the normal 
component of E is discontinuous. 
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When the conductivity is a function of two coordinates, a = a(y, z), Maxwell's 
equations decouple if the coordinate axes coincide with directions parallel and 
perpendicular to strike (the strike direction is chosen to be ~ in this paper). By 
using Equations (1) and (3), by neglecting the displacement current and assuming 
harmonic time dependence e i~ of the fields, we obtain: the TE (transverse electric) 
mode equations 

02E~ ~2E x 
Oz 2 + ~yZ -- iwPoaEx = 0 

1 dEx (4) 
Hy= io9#o dz 

1 0 E x  
io#o Oy ' 

and the TM (transverse magnetic) mode equations, 

~ ( 1 3 H x ) +  O ( IOH~)  iw#oHx=O 
~z --~-z J ~ \a ey ] -  

1 0Hx (5) 
EY - a ~z 

1 ~Hx 
E Z  ~ - - - - - -  G~y 

MT data can be characterized in different ways. Two representations of the data 
will be used here. The TE and TM mode impedances are respectively 

Zxy=-~y and Z y x = ~ x  x. 

Apparent resistivities and phase are Obtained through the formulae 

(6) 

1 
~ m  Pa #o~olZl: and r  (7) 

where Z refers to Zxe for TE, and Zy x for TM. 
Data acquired at the earth's surface can be thought of as a blurred image of the 

subsurface geoelectrical structure. A first goal in interpretation is to plot the 
observations to obtain an image from which geologic structure may be inferred. 
Plots of apparent resistivities and phases are generally produced. Each of these may 
provide immediate insight about lateral variability and existence of large scale 
conductive or resistive structures. In 2d environments Ranganayaki (1984) has 
shown that apparent resistivity and phase pseudosections derived from the determi- 
nant of the impedance tensor may yield semiquantitative information about the 
conductivity structure. 
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Unfortunately, the potential insight offered by apparent resistivity pseudosections 
is often obscured by the 'static' shifts that generally affect field data. Local 
inhomogeneities near the receiver can cause first-order distortions of the electric 
field which affect the recovered impedances. At sufficiently long periods, this 
distortion manifests itself as a multiplication of the apparent resistivity by a 
constant value. The effects are due to charge buildup and occur only when there is 
a component of the electric field which is parallel to a conductivity gradient. The 
impedance phases also provide information about the lateral variability and they 
have the advantage of not being affected by 'static' shifts. In addition to interpret- 
ing phase information directly, it is often advantageous to Hilbert transform the 
phases to recover apparent resistivity data. In doing this, however, a normalization 
constant, for example the surface resistivity, is required. 

Although information about geologic structure can sometimes be inferred directly 
from apparent resistivity and phase plots, the extraction of information is hampered 
for two reasons. The first is due to the near-surface distortions of the electric field 
referred to above. The second reason is that the conductivity structure is often 3d 
and complex; data acquired along a single linear array can be difficult to interpret. 
However, if field data could be acquired and processed to yield directly a simple 
picture of the conductivity beneath the traverse, then this would be a major step 
forward. This is the goal of EMAP. 

EMAP (ElectroMagnetic Array Profiling) 

To overcome the effects of static shifts caused by near surface conductors, F. X. 
Bostick Jr. (1986) has developed a new approach to acquiring and processing MT 
data. The modified MT experiment is referred to as EMAP which is an acronym for 
ElectroMagnetic Array Profiling. The field acquisition involves collecting electric 
field data using a contiguous set of dipoles along a traverse which can be specified 
as the :~ direction. The magnetic field is recorded at a single reference site so data 
are acquired in a Telluric-Magnetotelluric (T-MT) mode. The field observations are 
reduced via standard methods to compute impedances of the form 

E~(co) 
Zxy(CO) = Hy(a 0 

where Hy denotes the magnetic field in a direction perpendicular to the traverse. 
Acquisition of electric field data using contiguous dipoles is fundamental to the 

technique. For each dipole, an average value of the electric field is obtained by 
dividing the measured potential difference by the electrode spacing. Since electrode 
spacing is constant, the observed surface fields are the true electric fields convolved 
spatially with a box-car averaging function whose width is equal to the electrode 
spacing. This ensures that electric field data are not spatially aliased. 

Further processing is motivated by the following understanding. Consider a 
near-surface feature of scale length L. An impinging EM field sets up a surface 
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charge on the body whose magnitude is independent of period if the period is 
sufficiently long. Electric fields estimated from dipoles with length w where w ~ L 
will show strong lateral variations when the dipoles are in the vicinity of the charge 
localization. Conversely, if w >> L the charges will have minimal effect because the 
dipole has averaged out the electric field anomaly. It follows that the effect of 
near-surface conductors is reduced if the effective length of the dipoles is increased. 
Even though the spacing between field electrodes is small, larger effective spacings 
are generated by applying a further smoothing to the measured electric fields, or 
equivalently, to the measured impedances. Bostick advocates the use of a Hanning 
window whose width is dynamically determined; that is, for each station location 
and for each frequency, a window is adjusted in accordance with the penetration 
depth of an EM signal in a medium which has a resistivity equal to the apparent 
resistivity derived from the smoothed average impedance. 

The mathematical justification for the EMAP procedure and further insight into 
the nature of the required filter is obtained from a linearized analysis of the 
magnetotelluric problem under the assumption of the Born approximation. This 
analysis has been outlined in the excellent thesis of Torres-Verdin. A brief summary 
of highlights from that thesis is provided. The reader is referred to the original 
thesis, Torres-Verdin (1985), or to papers by Bostick (1986) and Torres-Verdin and 
Bostick (1988) for more complete details and discussion. 

The mathematical development proceeds by first writing the conductivity as 
a(x, y, z )= ao + ~a(x, y, z) where a0 is a constant. The Earth is assumed to be 
excited by a vertically propagating plane wave with time dependence e i~ By 
breaking the field into primary and secondary components as 

E(r) = Ep(r) + e(r), (8) 

one can write the differential equation for the secondary electric field as the 
inhomogeneous Helmholtz equation 

V2e - i~o#oe = icop08aE (9) 

for which a solution may be written in terms of a dyadic Green's function as 

= .Iv G(r ] r~ "E(r~176 dv. (10) e ( r )  

To linearize the equations, it is first assumed that the conductivity perturbation is 
small; that is, 13al ~ ao. With this assumption, the scattered fields are small and the 
total electric field in (10) may be replaced by the primary inducing field. Let the 
inducing field be 

Ep(r0) = XExo e -ik~o (11) 

Then only the first column of the dyadic Green's function becomes important and 
(10) reduces to 

e:(r) = r G:l(r]r~ e - ikzo ~ f f (  ro ) dTo (12) 
.pr o 
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where j = 1, 2, 3 delineates ~, 3~, ~ components. Define the spatial Fourier transform 

with respect to x and y to be 

ej(~,tl, z ) = f x f y e j ( x , y , z ) e - i ( r  

Taking the 2d transform of  (12) and making use of  the fact that Gjl(r [ r o) depends 

upon ( r -  ro) yields 

ej(~, t/, z) = fz Exoe-ikZOGjl(r zo)ba(r zo) dzo . (13) 
0 

The spatially Fourier transformed secondary fields at the surface z = 0 can there- 

fore be written as 

0) = f Kj(~, r/, Zo)ba(~, ~1, Zo) dzo. (14) ej(~, t/, 
dz o 

The characteristics of  the kernel function Kj for j = 1 (that is, for evaluating the 
electric field in the direction of  the inducing field) are given below for the cases of 
1, 2, and 3 dimensional structures. 
ld: 

KI(0, 0, Zo) - a~/~oao e_~(k + k)~o (15a) 
k 

2d (E parallel to strike): 

K1 (0, ~, Zo) -- ~176 a~ (rl ) e - i ( ~  + k)z 0 (15b) 

2d (E perpendicular to strike): 

KI(~ ,  0, Zo) - r176 (1) e -(r + k)~o + r e -(r k)~~ (15C) 

3d: 

COpo ao ,  , r 2 
K l (~, t/, Zo) = ( I.r 2) e - (~ + k)zo + ~- e - (~ + k)zo. 

In the above 

= ( k  2 - 4 2  _ ,72)  1/2 

is the vertical wavenumber and 

k2 = _ io)# ~ ao" 

The absolute value of  the complex 
according to 

l~<lr, l~< 1 and 1 

(15d) 

(16) 

(17) 

reflection coefficients rl and r2 is bounded 

(18) 
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It is seen that all kernels in Equation (15) have a first term which behaves as 

C~ Re-;(c + k)~. (19) 

Variability in the amplitude and the phase of this term for the four kernels arises 
from differences in the vertical wavenumber of the scattered field and in the value 
of a (complex) reflection coefficient R. Note that the premultiplying amplitude 
coefficient depends upon co/~ and thus Equation (19) goes to zero as frequency goes 
to zero. 

The 2d TM and 3d kernels however, have an additional term whose amplitude is 
proportional to ~2/~. For specified horizontal wavenumbers and for sufficiently small 
frequencies, this quantity approaches a constant. If the decay term in the exponent 
is small, i.e. the depth z0 under consideration is small compared to the skin depth 
of the incident wave, then the exponential term will be of appreciable size. Under 
these conditions, the second term in Equations (15c-d) will be appreciable and will 
accordingly amplify any wavenumber component of the conductivity perturbation 
at that depth. It is this effect which gives rise to the static shift observed in MT data. 

Realizing that this second term is a source of difficulty, it follows that more 
interpretable MT data may be obtained if its effect could be removed. Ratioing the 
two terms in Equation (15c) shows that the second term is smaller than the first if 

42 ,~ CO~o~ro. (20) 

It follows that the 'static' component, which predominates at high horizontal 
wavenumbers, can be attenuated by applying a spatial digital filter in the 2 direction. 

The main difficulty in applying this filter is to ensure that the data to be filtered 
have been initially sampled in accordance with the sampling theorem, i.e. the data 
were not aliased upon acquisition. This can be assured if the electric fields are 
acquired from a contiguous line of dipoles. In such a scheme, each voltage represents 
an average value of the electric field over the distance between the electrode positions. 
If data are recorded in this manner, further filtering is easily effected. Bostick chooses 
to use a Hanning window for low passing. The window is 

0, Ixl > L/2 

where L specifies the length of the window and is to be determined. If the Earth were 
a halfspace, then Equation (20) suggests that 

or (22) 

y r 

1 
L>> m 
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where fl is a constant to be specified by the interpreter. Values in the order of one 
to three are reasonable. With the choice of L given in Equation (22), the electric 
field at the surface will be smoothed over a spatial length that is related to the skin 
depth of the wave in the medium. In practice, the appropriate value of the halfspace 
conductivity is not available (there is no halfspace) and L is selected to be 
proportional to the apparent skin depth for the frequency in question. Let wi(L) 
denote the weights for the Hanning window of length L. The smoothed impedance 
at location xj and frequency O~k is 

1 

Zj~ = 2(xj ,  o~) = y~ wiZ(xj_i,~o~). 
i = - - I  

The EMAP apparent resistivity is 

1 
= 

and the desired length is 

Ljk = /~  / ' ~  - IZjk(L)I �9 
N//~o~k #otOk 

(23) 

(24) 

(25) 

If Ljk is not equal to the value of L used to generate the Hanning weights, then the 
weights are recalculated using Ljk and the procedure is iterated until a consistent 
smoothing length is achieved. 

There is no doubt that the application of this technique to 2d structures (and 
probably to 3d structures ) produces significant attenuation of near-surface static 
distortions. An example is presented in Figure 1. Numerous other examples by 
Bostick show similar improvements. Moreover, the EMAP image is often indicative 
of the geologic structure. This is especially true when the geology consists of a few 
(perhaps dipping) layers with simple buried bodies or thrust zones. It seems 
therefore that the images observed in EMAP processed data may well provide 
significant information about geologic structure. 

Having established the importance of EMAP in attenuating near-surface effects 
and in structural imaging, the next question that arises is concerned with how to get 
further quantitative information from EMAP data. Looking again at the kernels in 
Equation (15) we see that if the static terms are attenuated then only the first, 
frequency-dependent term remains. Although the terms for all kernels are similar in 
form, there are significant quantitative differences caused by variability in the 
vertical wavenumbers and in the reflection coefficients; these can produce substan- 
tial quantitative differences between the kernel values. There are further complica- 
tions. EMAP data are acquired only by measuring the electric field in a direction 
parallel to the traverse direction. Within the Born approximation, the electric fields 
perpendicular to this direction should not produce significant fields in the direction 
parallel to the traverse. In practice, however, conductivity contrasts can be large, 
and the Born approximation will not be valid. All statements made in conjunction 
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Fig. l. The conductivity model with a near surface chaotic zone is shown in (a). The apparent 
resistivities obtained from forward modelling are shown in (b) and the EMAP processed data are shown 
in (c). Panels (d) and (e) are the forward modelled apparent resistivities and the EMAP data when the 
variable surface layer in (a) is replaced by a layer with resistivity 200 f~. m. The panels are taken from 
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with the Born approximation will fail to some extent and the magnitude of the 
consequences will be unknown. 

To obtain some insight about quantitative aspects of EMAP data, the EMAP 
processing is applied to 2d MT data generated from a conductive prism buried in 
a halfspace. This idealistic model is shown in Figure 2a. The original and processed 
data are displayed as gray scale panels in Figure 2b-e. The apparent resistivities in 
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Fig, 2. The conductivity model is shown in panel (a). The TM mode apparent resistivity and phase are 
shown in panels (b) and (c). The finite element modelling code of Wannamaker e t  al. was used to 
generate the forward responses. EMAP processing applied to those data yields the images in (d) and (e). 

Figure 2b show the drop out caused by charge density buildup along the boundaries 
of the block. As shown in Figure 2d, this undesirable feature is eliminated by 
EMAP processing and thus, from a geologic imaging perspective, EMAP is 
successful. Figure 2e shows that the general.character of the phase pseudosection is 
not greatly altered by the processing. These are positive aspects of EMAP process- 
ing. More quantitatively however, Figure 3 shows profiles of the processed and 
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Fig. 3. Quantitative comparison of apparent resistivities and phases for 2-D TE and TM mode data, 
1-D data, and EMAP processed data for a station located directly over the centre of the conductive 

prism shown in Figure 2a. 

unprocessed TM mode data taken at a station located directly above the center of  
the prism. Also plotted are the responses from a ld model corresponding to the 
conductivity beneath the station, the 2d TE responses, and the output of  applying 
the EMAP processing to the TE mode data. The latter was done because within the 
context of  the Born approximation, EMAP processing should not significantly alter 
TE mode data. It is conceded that the processing carried out here may not be 
optimum; a value of  fl = ~ was chosen for all stations and for all frequencies. 
Nevertheless, it appears that the EMAP data cannot be interpreted as either the ld 
or 2d TE mode data as might have been envisaged originally. It follows that further 
inversion of  the processed data must proceed by incorporating directly the fact that 
each EMAP datum is a smoothed impedance. This appears to be an area of  fruitful 
research. 
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Reflectivity Formulation to Recover Structure 

A number of inversion techniques proposed over the years regularize the problem 
by introducing a simple geologic parameterization for the earth model. Conductiv- 
ities, and perhaps layer or block boundaries, are adjusted so that predicted data and 
observations agree. The success of such algorithms depends upon the initial 
parameterization. 

To pursue this approach it would be helpful if the structural geometry could be 
determined directly from the field data. The full inversion could proceed in two 
phases; the first would generate the parameterization, the second would create a 
valid conductivity model. Essentially, this philosophy follows that used in reflection 
seismology where reflection seismograms are processed to produce a stacked section 
on which correlatable events are interpreted as reflections from an interface. 
Inversion follows as a subsequent processing step. Kunetz (1972), Loewenthal 
(1975), Szaraniec (1976) and others have expounded upon the mathematical 
similarity of the ld EM induction equation and the wave equation. To exploit this 
relationship, Levy et al. (1988) used a linear programming approach to construct a 
pseudo-impulse response for MT data. In their method, apparent resistivities and 
phases are used as input to a linear inverse problem and the constructed time 
function is made up of discrete pulses whose amplitudes depend upon the electro- 
magnetic reflection and transmission coefficients at various layer interfaces. The 
arrival time of an individual pulse corresponds to the time for a reference signal to 
travel a particular raypath from the surface to the reflector and back. The display 
of the impulse responses recovered from many stations produces an MT reflectivity 
section from which geologic structure may be inferred. 

To summarize the essential steps, consider a ld layered earth and a vertically 
propagating plane wave source with a time dependence e iC~ Displacement currents, 
as usual, are neglected. The earth is parameterized so that x/~h, (root conductivity 
and the layer thickness) is a constant for each layer. This Goupillaud parameteriza- 
tion (Goupillaud, 1961), requires that for a given frequency o9, the amplitude 
attenuation of the wave and the time required for the wave to travel through the 
layer, will be the same for each layer. The discretization for the problem is therefore 
specified by choosing the physical parameters al and hi for the first layer. 

Let to = ~ x / / ~ o ~ l h l  �9 Physically t o has the dimensions of x / ~ ,  but numerically its 
value corresponds to the two-way traveltime (in seconds) of an EM wave with 
angular frequency o~ = 2 propagating through a medium of thickness h i and 
conductivity try. Introducing 

u = e - 2C~to (26) 

and following standard procedures (Loewenthal, 1975, Claerbout, 1976) it is 
straightforward to show 

R(c9) = ~ qmUm= ~ q,ne--2"/~"'o. (27) 
m = l  m = l  
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The series of coefficients {qm } in (27) represents the 'time-domain' impulse response 
for the EM plane wave. The {qm} series is not directly analogous to the observed 
surface EM fields that would arise from an impulsive plane-wave source. Rather, it 
is the response obtained when all aspects of wave attenuation and dispersion have 
been removed. The series is therefore called a 'pseudo-impulse' response. This 
response depends upon the reflection and transmission coefficients for a layered 
earth. 

The relationship between the mathematical form of the response in (27) and the 
measured impedances is given by 

R(co) = 12 \N/iCO#o ( / al Z(co) - 1). (28) 

Equations (27) and (28) form the basic relationship between the measured data and 
the pseudo-impulse response. If R j -  R(coj) is known at N different frequencies, 
then 2N real constraints exist on the infinite sequence {qm }" A particular solution 
corresponding to a minimum structure conductivity model is obtained by minimiz- 
ing 

~= ~ Iqm] 
m = l  

subject to fitting the data constraints. 
A simple numerical example corresponding to 2 layers over a halfspace is shown 

in Figure 4. Thirteen data in the frequency range 0.1 to 1000 Hz were used to 
recover the pseudo-impulse response shown in trace 3 of Figure 4d. The times of 
the impulse events are consistent with waves traversing the raypaths shown in panel 
(e). 

Although the mathematics is developed for a ld earth, the technique can be 
applied to recover information about 2d conductivity structure. In areas where the 
earth is composed of dipping layers or smoothly varying lateral boundaries, it is 
expected that the impulse response section will yield direct information about 2d 
structure. In cases where lateral variation is extreme and 2d effects are manifest, 
then the recovered {qm} series will contain these effects and further processing will 
have to be done before the true geologic structure is revealed. 

An application of the method to a 2d structure simulating a salt dome is shown 
in Figure 5. TE mode responses were generated using a finite element program 
provided by Wannamaker et al. (1985) and the inversion was carried out by 
allowing a 10% relative error misfit on each observation. The recovered reflectivity 
image features three reflection events on the left-hand side of the dome correspond- 
ing to three conductivity discontinuities there. Only two reflections are observed on 
the right; this is in accordance with the conductivity model. The high amplitude 
negative reflection (event 5) is the primary event from the top of halfspace. The 
large travel time pullup of event 5 for traces in the center of the image is caused by 
the high velocity of EM waves as they travel through the resistive salt. 
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Fig. 4, A layered model is shown in (a), Apparent resistivities and phases are given m (b) and (c). The 
traces in (d): (1) the primary reflectivity series; (2) the theoretical pseudo-impulse response series; 
and (3) the recovered impulse response series obtained by inverting the apparent resistivities and 
phases in (b) and (c). The physical interpretation of the events observed on the pseudo-impulse response 
series is shown in (e). Events (D), (E) and (F) are composite events made up of arrivals of energy 

following different paths. 

Al though this imaging approach has great intuitive appeal, it is not  without 
difficulties in practical application. Successful recovery of  an interpretable impulse 
response depends both upon choice o f  norm to be minimized (that given in 
equation (29) may  not  suffice for some geologic  structures) and the degree o f  

accuracy to which the data equations are fit. The non-uniqueness,  inherent in 
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Fig. 5. A 2-D conductivity structure simulating a resistive salt dome buried in a layered medium is 
shown in (a). The EM reflectivity time section obtained by inverting the TE mode data  is shown in (b). 
Events (1 ) - (5 )  are reflections from corresponding interfaces in (a). The only event requiring additional 
explanation is (5), a primary reflection from the top of  the halfspace. The large traveltime decrease arises 

because of  the high resistivity (and therefore large velocity) of  the salt formation. 

estimating a function whose moments  with exponentially decaying kernel functions 

constitute the observed data constraints, is ever present. 
There have been other approaches which make use of  the similarity between 

seismic and EM waves. In all cases the goal has been to process the EM data to 
recover information about  structure or relative conductivity. The most  thorough 
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and sophisticated studies in this regard have been pioneered by Zhdanov and his 
coworkers. In this first method Zhdanov and Frenkel (1982, 1983) developed an 
electromagnetic migration technique that is applicable for transient electromagnetic 
data. The Stratton-Chu integrals are used to back-propagate the observed surface 
fields through a medium of specified conductivity. These fields are imaged at any 
value of reversed time and these images delineate the locations of anomalous 
currents or charges. The method has been successfully applied to interpreting MHD 
sounding date from the Kola Peninsula (Velikhov et  al., 1987). 

The second method offered by Zhdanov (1987) is really a recipe for solving the 
inverse problem; the imaging portion is but an intermediate step. Observed fre- 
quency domain data are first separated into normal and anomalous fields and these 
latter fields are further disected into near surface and deep parts. The techniques 
outlined in Berdichevsky and Zhdanov (1984) are used to downward continue the 
deep anomalous fields. The shapes of the downward continued fields localize the 
anomalous conductivity structure and therefore guide the parameterization for a 
subsequent inversion. Application of the technique to data from the Carpathian 
region appears to have been successful. 

In an approach which is intimately related to Zhdanov and Frenkel's electromag- 
netic migration, Lee et  al. (1987) downward continue surface observed E and H 
fields to recover a 2d resistivity image of the substructure. Their work is a direct 
parallel to seismic migration and they use the one-way wave equation and an 
assumed background conductivity to back-propagate the waves. The algorithm is 
implemented in the frequency domain and independent images of relative conduc- 
tivity are obtained by processing E and H pseudosections separately. In order for 
their algorithm to work, it is required that the background conductivity be known 
and that the conductivity contrasts are small so that multiple reflections can be 
ignored. They also require data from a large number of closely spaced stations and 
at many frequencies. Nevertheless, the results of synthetic examples presented in 
their paper were quite successful and the method deserves further research. 

Specification of the Model and the Data 

Plotting the data, applying reflectivity or electromagnetic migration imaging, or 
carrying out EMAP processing may produce significant insight about geologic 
structure. Generally however, more quantitative information is desired from a 
formal inversion method to determine a conductivity model which adequately 
reproduces the observed data. The fundamental questions to be asked are 'what is 
the model', and, 'what are the data?' These need to be explicitly defined because it 
is the compatibility between the (possibly processed) data and the assumed mathe- 
matical model that permits quantitative inversion to be effected. If the geology is 
modelled as a 2d structure, then either it must be 2d, or the data should be 
processed so that 3d effects are minimized. Accomplishing the latter task is not 
easy. 
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In defining the mathematical model, one needs to specify the parameterization. 
Many options are possible. The model may be parameterized so that a few major 
features are sought. For example, the model might consist of a number of buried 
bodies embedded in a halfspace or in a ld background conductivity structure. 
Justification for this may come from geologic knowledge, from EMAP results or 
from reflectivity imaging. The earth model may also be descretized into many 
individual cells and the inverse problem formulated so as to find a minimum 
structure conductivity model which reproduces the data. 

As in ld inversions, there is never a best method of parameterization which is 
applicable to all problems. Parameterizations which yield underdetermined systems 
of equations offer the greatest flexibility in model construction but the characteris- 
tics of the computed model are dictated by the model norm to be minimized. While 
a particular choice (for instance minimizing the curvature of the conductivity) may 
produce a good description of the true conductivity structure for a particular data 
set, it may be totally incorrect for another data set. The electromagnetic inverse 
problem is nonunique. Geologically meaningful answers can be obtained only when 
all available information and intuition are incorporated into the inversion. This is 
where insight from plotting the data, EMAP results, reflectivity imaging, geologic 
information, and well control can aid significantly. 

In certain investigations, it makes geologic sense to model the earth as a set of 
major discrete units. The inverse problem is solved for parameters which specify the 
conductivity interior to each unit (cellular values or parameters of a specified 
function). The location of block boundaries may also be included as formal 
parameters. This hybrid model has been adopted by numerous authors including 
Zhdanov and Golubev (1983), Park (1987), Mackie et al. (1988) and Wannamaker 
(personal communication). 

As a guiding philosophy one should always attempt to reduce the mathematical 
model to as few parameters as are required to yield a reasonable geologic descrip- 
tion of the earth. All information available should be used to guide the parameter- 
ization, but it must be remembered that incorrect parameterization means that the 
earth model can never be recovered. When in doubt about the parameterization, it 
is generally better to discretize the earth structure as finely as computing practical- 
ities dictate, incorporate geologic/geophysical constraints directly in the inversion, 
and regularize by finding a minimum norm solution. 

I now turn to the question of 'what are the data?' At the time of writing this 
review, most quantitative inverse attacks are directed towards the 2d inverse 
problem. If a 2d model is adopted, then the effects of 3d earth conductivity 
variations will cause difficulties in the inversion. The problem is compounded by the 
short spatial wavelength of some variations. This is made apparent by comparing 
the responses from nearby stations. In Figure 6 I have plotted the responses for 
two pairs of MT stations located near Nelson, B.C. in the southern Cordillera. The 
station locations are shown in Figure 6e. The data were acquired by Jones 
et al. (1988). The maximum distance between adjacent stations is 500m, yet the 
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responses are highly dissimilar. Presumably the variability is caused by large 
distortions of the surface electric field and of course, it is this variation that EMAP 
attempts to suppress. From the point of view of inverse modelling however, these 
results are disconcerting and the question, 'which features of the data at adjacent 
stations should be reproduced?', is left unanswered. 

In less extreme cases there may be a geological reason for assuming that a 2d 
inversion will be approximately valid. Regarding the question of 'what are the 
data?', Wannamaker et al. (1984), based upon results of forward modelling, 
have argured that it it best to use a 2d TM modelling algorithm if the profiles 
of apparent resistivity and phase are centrally located across elongate, geometrically 
regular 3d bodies. The vertical magnetic field can also supply essential informa- 
tion about the conductivity and it should be included if possible (eg Kurtz et al. 

(1986)). An alternative approach however, is to attempt to fit simultaneously both 
modes of data and tipper information (if possible). Because of the inconsistency 
between the earth model and its mathematical representation, only the major 
characteristics, and not individual small scale features of the data, should be fit. The 
validity of this latter approach depends upon the magnitude of the 3d effects and 
upon how closely a 2d structure can be expected to emulate 3d responses. If the 
discrepancies are extreme, then the suggestion by Wannamaker et al. (1984) may be 
better. 

Before leaving the subject of data specification, I offer another example of 
difficult data. Data taken by Jones et al. (1988) on the Nelson Batholith show 
anomalous phases in one of the components. Phase variations extend over 135 
degrees and yet are extremely consistent across the array (see Figure 7). These 
phase excursions are not unique to the Nelson Batholith. Similar phases were 
encounted by Flores et al. (1985) in a survey at Meagre mountain. To my 
knowledge such phase variation is not a predictable response from 3d structures. 
This suggests that it may be the result of processing or that our exploration in 
forward modelling 3d data has been too limited. Whichever, the hope of inverting 
these data cannot be entertained until explanation of the anomalous phases is at 
hand. 

Approximate Inverse Mapping 

I now turn attention to the problem of generating a 2d conductivity structure which 
fits the observed data. Many approaches can be applied; a usual approach linearizes 
the equations and uses the 2d Frrchet derivatives to compute a perturbation step in 
an iterative solution. Although this approach may ultimately have an advantage in 
being able to fit precise details of the data, it is computationally demanding. 
Moreover, in any linearized scheme, the Frrchet derivatives are evaluated at the 
current model and hence accurate computation of 2d sensitivities is not warranted 
in the early stages of model construction; other simpler approaches may yield 
equally good or better perturbation steps. 
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One possible approach is the Approximate Inverse Mapping (AIM) technique 
proposed by Oldenburg and Ellis (1990). They use an approximate inverse mapping 
in conjunction with accurate 2d forward modelling to construct a conductivity 
perturbation. They present two basic ways to do this. In one of their methods, and 
the one I will illustrate here, the approximate inverse mapping is applied both to the 
observations and to the predicted responses; the model perturbation is obtained by 
subtracting the two results. 

The approximate inverse mapping is ideally chosen to incorporate the major 
physics of the problem. For a ld inversion, the approximate inverse mapping can 
be derived from asymptotic equations which show that vertical conductance is the 
controlling factor in the attenuation of EM data. In 2d problems the approximate 
inverse mapping may be selected as a composite of ld inversions carried out at each 
station. There is no need to linearize the equations in the AIM inversion and hence 
the computation of the sensitivity matrix and the need to solve a large matrix 
system of equations are obviated. As a consequence, the inversions are easily 
carried out on a computing workstation. 

The AIM approach is iterative. Let m (~ denote the starting model and let m (n) be 
the model constructed at the n'th iteration. Let ~- denote the forward mapping (a 
precise 2d forward modelling algorithm in this case) and let ~ - 1  denote the 
approximate inverse mapping. 

Application of the forward mapping produces the predicted responses 

~ [ m  (n)] = e (n) . (30) 

Application of an approximate inverse mapping ~ - 1  yields a model which is 
denoted by a tilde: 

~# - i  [e(n)] =/~(n) . (31) 

At the n th iteration we desire to find a perturbation 8m (n) which, when added to 
m (n), reproduces the data. That is 

m(~ + 1) = m ( n )  + 3m(~), (32) 

and 

~[m(~+ 1)] = eObS. (33) 

Since the inverse mapping is approximate, it is not expected that its application to 
e (~) would reproduce m (n). Denote this mapping error by 

Am (n) = rn (~) - ~ -I[~[m (~)]] (34) 

= m (n )  _ f f l ( n )  �9 

If the updated model m (n+l )  is expected to reproduce the observations, then the 
mapping error Am (n+ 1), obtained by combining Equations (33) and (34), can be 
written as 

A m ( .  + 1) = m ( , ,  + 1) _ rhObS. (35) 
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Applying (32) yields 

3m(.) = f f / o b s  _ m(.) + Am(.+ 1) 

An assumption is required in order to proceed. Am (" + 1), the 'error' in the inverse 
mapping for the updated model, is not known, but if we assume the mapping errors 
at the n'th and (n + 1)'th models are approximately the same, then 

Am(n+ 1) ,~, Am(n) = m(.) _ rh(.) 

and the final perturbation is 

(~m(n) ~, f f / o b s  - -  F/~/(n) . 

Oldenburg and Ellis (1990) explore a number of possible inverse mappings. The 
basic criterion is that the approximate inverse mapping incorporates the major 
physics of the problem. As a simple illustration, in the ld induction problem, the 
asymptotic MT mapping yields a l -1  relationship between the conductance-depth 
domain and the apparent resistivity-frequency domain. This mapping incorporates 
the major physics and hence it can be used as an approximate inverse mapping. In 
face, the use of this mapping in an iterative scheme has been successfully applied by 
Goldberg, Loewenthal and Rotstein (1982) and it was their paper that helped 
formulate this particular approach of the general AIM inversion method. 

The forward and inverse mapping for the asymptotic equation are 

z 1 
FORWARD p,, z(z) co #oZZ(Z) 

INVERSE ~ ( z )  - 1 

N/l.,lO(.Opa((s ) Z : ~ [ #0  (D . 

(37) 

is a depth mapping factor which adjusts the inverse mapping. This mapping 
(without the factor 4) is often referred to as Bostick/Niblett mapping. 

As an illustration of how the mapping can work in a ld setting, Figure (8) shows 
the results of applying it to the test model of WhittaU and Oldenburg (1990). A 
value ~ = 1.2 was chosen to carry out the inversion. The model constructed at the 
6th iteration reproduces all apparent resistivities to within 1% and all phases to 
within 0.4 ~ . 

In applying the AIM approach to the inversion of 2d MT data, Oldenburg and 
Ellis chose, as an approximate inverse mapping, a composite of ld inversions 
carried out at each station. For the example presented here, the following approach 
is used. At each iteration, the 2d MT responses are computed using the transmis- 
sion line modelling code supplied by Ted Madden. The same cellularization is used 
for the inverse problem although the model elements are taken to be log conductiv- 
ity. ~ - 1  is assigned to be a series of ld inverse mappings, each of which is 
formulated as a linear programming problem (Dosso and Oldenburg, 1989). At 
each station for the nth iteration we desire to invert apparent resistivities and 
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Fig. 8. The AIM inversion is applied to MT data taken from the I-D structure shown by solid line. 
Apparent resistivities and phases at 25 frequencies were inverted. The dashed line shows the conductivity 

structure recovered after 6 iterations. 

phases predicted from accurate 2d forward modelling applied to a(")(y, z). Denote 
these responses generically as e ("). Let e = (c~, c2 . . . . .  c , )  be the discretized array 
of log a(z) values in the cells beneath the station of  interest. The goal of  the ld 
inversion is to find a vector e whose predicted ld responses are in acceptable 
agreement with the data e ("). To  carry out this inversion the 1 d problem is linearized 

and written as 

Ajkc~ 0 = e} ") -- e~ + ~ Ajkc ~ -  1) + nj. (38) 

The index l refers to the iteration number of the ld inversion. In (38) e~ is the 
datum predicted from a ld  forward modelling applied to e (~- t~, Ajk is the integral 
of  the ld Frtchet  derivative over the k ' th  partition element and nj is a noise value 
for the j ' t h  datum. The ld inverse model is obtained by minimizing 

~,(d')) - j= ,  ~j + w~__Z wN(f+, - 4')1 
(39) 

N z - - 1  

+ ~ Y~ ~k14 ')-4 '- ' )1,  
k = l  

where ej is an estimate of  the standard deviation of  each datum; Wz and Wy are 
respective weights controlling the tradeoff between misfit, vertical roughness and 
horizontal roughness, wk and ~/k are partition weightings for the spatial roughness 
norms, and ?~k/- 1) is a reference model evaluated from the conductivity structure at 
nearby stations. The collection of  all ld  inversions produces a 2d model estimate 
n~ (n) which is subtracted from th ~ to yield the 2d conductivity perturbation. The 
above procedure can be applied separately or jointly to TE and TM mode data. For  
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Fig. 9. A conductive prism ( 10 f~ �9 m) and resistive prism ( 1000 fl �9 m) buried in a 40 km thick layer o f  
100 f~. m, and overlying a I0 f~. m halfspace is shown in (a). The result of  the AIM inversion applied 

to the Berdichevsky determinant  average data is shown in (b). 
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a joint inversion, at each iteration the perturbation estimates from each data set can 
be combined through averaging or by extracting a common signal to give a modified 
perturbation. Alternatively, one can first combine TE and TM mode data to generate 
determinant averages (Berdichevsky and Demitriev, 1976) and consider these as data 
to be reproduced. Although this approach is not likely to fit individual TE and TM 
mode data as accurately as the determinant average data, it may suffice for some 
examples. I illustrate this in the example shown here. 

The AIM inversion is generally very stable and remarkably good reduction in the 
Z 2 misfit is usually observed during the first few iterations. The stability is inherent 
in the formulation because a global minimum structure norm is incorporated into 
the ld inversion of the approximate inverse mapping. The tradeoff for this stability 
may be a loss of detailed structure in the constructed model and precise data fits for 
complex models may not be found. This is not of great concern. The guiding 
philosophy for the AIM inversion is to produce a computationally efficient algorithm 
which can be run on a small computer to generate a conductivity structure which 
approximately satisfies all available data. 

As an example, the AIM procedure is applied to a conductivity structure which 
consists of two prisms (one conductive and one resistive) buried in a layer of 
moderate resistivity and overlaying a conductive halfspace. The conductivity struc- 
ture is shown in Figure 9a. The starting model for the inversion was a half space and 
9 periods in the range 1 to 3000 seconds were inverted at 50 station locations. 
(Although not necessary, a station was put at each grid location). The determinant 
average of TE and TM mode data were inverted and the model obtained after 7 
iterations is shown in Figure 9b. The r.m.s, misfit error for the determinant data is 
2% on the apparent resistivities and 1 ~ on the phases. The responses from this model 
fit the TE and TM mode apparent resistivities and phases to r.m.s, values of 
(4.3%, 2.3 ~ and (3.7%, 1.6~ respectively. 

Overall, the correspondence between Figure 9b and a is quite good. Both prisms 
are well imaged, and the background conductivities in the upper layer and in the 
bottom halfspace are well approximated. There are artifacts however. The conduc- 
tive prism is smeared out in both the lateral and vertical directions and the resistive 
prism has moved somewhat toward the surface. These features result because of the 
choice of weighting parameters in Equation (39) and the way in which the reference 
model for horizontal roughness was selected. 

Although further research is needed on the AIM approach, in particular to explore 
the characteristics of the approximate inverse mappings as they relate to stability and 
convergence, the method is promising. It provides an inexpensive procedure by which 
to determine a conductivity structure which reasonably fits the data. 

Rapid Relaxation Inverse 

The more usual approach to solving the inverse problem is to linearize the 
equations and to map a data misfit directly into a model perturbation. There are 
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two computationally intensive steps. First, it is necessary to compute the Frrchet 
derivatives or sensitivities which quantitatively relate changes in the model to 
changes in the data. This requires a large amount of computation because, 
irrespective of the method adopted for computing the sensitivities, the forward 
model equations need to be solved many times. The second computationally 
intensive operation is the solution of the matrix equation. For the sake of example, 
suppose that the conductivity model is characterized by 2500 cells; this establishes 
the number of unknowns. If there are 20 MT stations, each of which has measured 
impedances (both modes) at 20 frequencies, then the number of (real) data is 1600. 
The discretized equations 

G~a = 6e 

involves a matrix G which is 1600 • 2500. 
The computational complexity of the full linearized solution for even moderate 

2d problems has spawned a new approach which appears to have great potential. 
Smith and Booker (1988) refer to it as Rapid Relaxation Inverse (RRI). Approxi- 
mate Frrchet derivatives are generated, and ld inversions are carried out at each 
site. The effects of lateral changes in conductivity are incorporated by using the 2d 
electric field to evaluate the approximate Frrchet derivatives. Data for the inver- 
sions are the misfit between the observations and the responses obtained from 2d 
modelling, and the ld inversions are regularized by minimizing a norm which 
relates to the curvature energy of the model in both the horizontal and vertical 
directions. 

For brevity, I shall only summarize Smith and Booker's work for the TE mode. 
They present an analogous formulation for the TM mode. By introducing the 
variable 

1 ~E 
V = - - -  (40) 

E Oz 

the TE mode differential Equation (4) can be written as 

OV 2 f l 02E)  
~--~- + V + ~ -  io9#oO" =0.  (41) 

The effect of lateral gradients are determined by the term in brackets. Let a = O-o be 
a starting model, and let V0 and Eo satisfy Equation (41) when tr = ao. If the 
conductivity is perturbed to a = ao + &r, and if the term in brackets in (41) is 
assumed not to change significantly, then the perturbation for V(z, o9) becomes 

d 
dz 3 V + 2 Vo3 V -- iogltoba = 0. (42) 

This equation can be solved to yield 

r ~-Eo(yj, _~]_1 6tr(yj, z) dz (43) 0) = j , o g . o k  z ) 2 



258 DOUG OLDENBURG 

where the integration extends from the surface to a depth at which the electric field 
has decayed to zero. We note that the approximate Frrchet derivative in (43) has 
the same form as the ld Frrchet derivative (Oldenburg, 1978; Parker, 1980) and 
that the change in the surface datum depends only upon the change in the 
conductivity directly beneath the station. The numerical value of the kernel in (43) 
differs from that of the ld solution because the electric fields are those obtained 
from a precise 2d forward solution. The zeroth-order effects of lateral conductivity 
change are therefore included, at least for the TE mode. 

The inversion proceeds as follows. At each iteration the 2d equations are solved 
to compute the surface responses and the electric fields at depth. The kernel 
functions in (43) are evaluated by using these fields. For each station, a norm 

82 82 2 f[{-c3(log(z-_+Zo))2+(Z+Zo)O/2'(Ay)3/2O~y2}log(a) 1 d(log(z+Zo)) 
(44) 

is minimized subject to the data constraints specified in Equation (43). In (44) Ay 
corresponds to the distance between the two neighbouring stations, ~ is a variable 
which controls the relative importance of vertical to horizontal smoothing. The 
norm is constructed so that the conductivity model and depth coordinate are 
logarithmic variables. At each iteration the current model is updated with only a 
percentage of the 6a(y, z) and the conductivities are interpolated between sites to 

produce a new a(y, z). 
To illustrate the RRI technique I have reproduced an example given by Smith 

and Booker (1988) and Smith (1988). It is the same conductivity as used in the 
AIM example (Figure 9). Data for both TE and TM modes for 6 periods between 
10 and 320 sec at 23 sites were inverted. The starting model for the inversion was 
a halfspace. The results of the TE and TM mode inversions after 16 iterations are 
shown in Figure 10. The rms data misfits are 0.7% for TM and 0.6% for TE. The 
conductive prism is well imaged for the TE mode, and although the resistive prism 
is seen, its boundaries are not well located. For the TE mode, the surface responses 
are related to the anomalous currents. The larger current flowing in the conductor 
makes this feature more visible than the resistor. In the TM inversion however, the 
lateral boundaries of both prisms are well imaged. This is in accordance with the 
charge accumulated on the boundaries. 

Overall, the inversion has been fairly successful in delineating the two bodies and 
background conductivities. As in the AIM inversion in Figure 9b however, the final 
image shows artifacts. The conductive prism has tails emanating from its 
boundaries and the TM inversion displays a drop out beneath both prisms. 

Linearized Solutions 

A traditional approach to solving the inverse problem is based -upon linearization 
of the equations. The iterative analysis begins with an estimated conductivity 
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Fig. 10. Rapid Relaxation Inverse of the tw o prism model. The conductivity model is given in panel (a) 
and panels (b) and (c) respectively, show the conductivity structures from inverting TE and TM mode 

data. The figure is extracted from Smith (1988). 
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structure for which Fr6chet derivatives or sensitivities are computed. A system of 
equations is solved to recover a model perturbation which is added to the starting 
model; the procedure iterates until some convergence criterion is satisfied. 

Numerical computations in the above demand that the model be parameterized. 
The choice of parameterization is crucial since the nature of the inverse solution 
and the convergence properties of the algorithm are intimately tied to it. Parameter- 
izations usually fall into one of two categories. In the first, the conductivity is 
assumed to be geologically simple (for example, a layered earth with a few buried 
bodies). In this format the conductivities and structural values (layer thicknesses, 
location of buried bodies) are to be determined. At first sight it might seem that 
posing the problem in terms of a few parameters would make the inverse solution 
easily attainable. In fact, the quest to determine both conductivities and structural 
parameters can greatly increase the nonlinearity of the problem. Moreover, if the 
model parameterization is grossly incorrect, then the inversion may never be able to 
recover meaningful information. Much work will have been done to solve a 
mathematical problem whose answer has little geophysical relevance. On the 
positive side however, if the earth is parameterized correctly then the nonuniqueness 
of the inverse problem is greatly restricted and the constructed model may be a 
good representation of the earth conductivity. Ku (1976) and Rodi (1976) have 
provided examples of this approach. An in-depth analysis on the benefits and 
practicalities of using both conductivity and geometric parameters is provided by 
Pek (1987). 

In the second method of parameterization, the earth is divided into a number 
of ceils in which the conductivity of each cell is constant. Equivalently (almost), 
the conductivity can be characterized by its value at specified nodal locations 
and can be determined everywhere throughout the domain by interpolation. Gener- 
ally, the number of cells is large so that the inverse problem is underconstrained. 
This gives rise to nonuniqueness in the inverse solution, but the nonuniqueness 
can be overcome by minimizing an appropriate norm of the model and by 
incorporating additional information about the conductivity structure if it is 
available. The algorithm generated by Rodi et at. (1983) can be implemented in this 
manner. In an effort to reduce the number of unknowns, and yet restrict the 
unknowns to be cell conductivities, Jupp and Vozoff (1976) introduced a dual mesh 
system. A basic mesh (Madden, 1973) is used to delineate the geologic structure and 
the block resistivities to be determined; a finer mesh is used for solving the forward 

problem. 
Both major types of parameterizations given above have merit, but the final 

choice depends upon a priori information and the type of model solution desired. In 
some cases a hybrid parameterization is used (Zhdanov and Golubev, 1983; Park, 
1987; Mackie et al., 1988). The earth is segmented by major block boundaries 
(possible moveable) and the interior of each block is represented by many cells or 
equivalent parameters. Such parameterizations are especially appropriate when 
modelling regions with known geologic boundaries. 
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Irrespective of the parameterization, the linearized analysis produces a system of 
equations 

G/inl = t~e (45) 

where G is the sensitivity matrix, ~m is the vector of model perturbations, and ~e 
is a vector of data residuals. For problems of realistic size however, the system of 
Equations (45) is large and the numerical computations required to generate G and 
the residual vector ~e can be prohibitively expensive and time consuming, even on 
a large computer. In this review paper, it is therefore worthwhile to present some of 
the more efficient methods to compute these quantities. 

With regard to the calculation of the responses, we can assume that the 
conductivity model is partitioned into a number of cells and a finite difference or 
finite element matrix system of equations of the form 

A f =  s (46) 

is solved to obtain the field values f (either electric or magnetic fields) at the nodal 
positions. If rectangular prisms are used, and Ny and Nz respectively denote the 
number of cells in the )9, ~ directions (for the 2d problem), then the number of 
unknowns in the problem is (Ny + 1)(Nz + 1) = Np and the matrix A is Np x N e. 
Fortunately, this matrix is bandlimited and is usually symmetric. This reduces the 
computational burden and storage requirements for the solution. An efficient 
solution is effected by decomposing A into the product of an upper and lower 
triangular matrix A = LU (or LL r if A is symmetric), and to solve (46) in two 
steps. First solve Lz = s for z by back-substitution, and then solve U f =  z by 
forward-substitution to recover f. Although this decomposition standardly involves 
4NyN 2 floating point operations, a rapid technique, based upon the incomplete 
factorization method (ILU) with orthomin acceleration (Bethie and Vinsome, 
1982), offers substantial improvement. Only 40NyN~ computations are required and 
storage requirements are also reduced (Smith and Booker, 1988). 

Regarding computations of the partial derivatives, there are three ways to 
proceed. The first (and least desirable) is to perturb an individual parameter and 
then compute the forward responses. The numerical difference between the j ' th  
datum for the perturbed and unperturbed systems yields the estimates for the 
matric element 

Aej (47) 
Gjk = Amk" 

This approach, although conceptually straightforward, suffers from two drawbacks. 
Computations of the matrix G at each iteration requires NyNzN I forward computa- 
tions. This can be prohibitive. There is also difficulty in obtaining good estimates 
for G using a differencing technique (Glenn et al., 1973). The method is not 
recommended. 
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The two drawbacks listed above can be overcome by differentiating the initial 
differential equations with respect to the various parameters and solving for the 
sensitivities directly (Rodi, 1976; Jupp and Vozoff, 1976; Cerv and Pek, 1981; 
Hohmann and Raiche, 1988; McGillivray and Oldenburg, 1989). An important 
advantage of this approach is that the differential equation for the sensitivity is 
identical (except for the right hand side) to the differential equation for solving the 
forward problem. If the initial matrix factorization was stored, then the sensitivities 
can be computed efficiently. 

The essential steps in the sensitivity equation method are seen by starting with the 
forward solution 

A f = s .  

Differentiate this equation with respect to an unknown parameter ink. Since the 
source is independent of the model, ~s/Omk = 0 and hence 

0f 0A 
A Om----~ = - Omk f" (48) 

The fight hand side of Equation (48) shows that the field variable at any node is 
altered by a change in the model. The matrix A is known analytically and OA/Omk 
is easily calculated (there are only a few elements of A which depend upon mk); f 
is known from the forward solution. Equation (48) is easily solved if the LU 
decomposition of A made in the forward computation is stored. 

The remaining step is to compute tgej/Omk. The datum ej generally involves the 
values of f at the observation site and also vertical derivatives of the field. For 
example, in the 2d TE mode, the field vector f corresponds to the electric field at the 
nodal points. If the data are the apparent resistivities, then one needs to compute 
OE/Ornk and OH/Omk and combine them to obtain Opa/Orn~,. These computations can 
be carried out once Of/Omk has been computed. (See Rodi, 1976; Jupp and Vozoff, 
1976; or Cerv and Pek, 1981 for details and examples.) 

At each iteration, the generation of the matrix Equation (48) involves a forward 
computation and a factorization of the matrix A. Evaluation of the sensitivity 
matrix then requires NyNzNf further solutions of the same system of equations but 
with a different right-hand side. Again, this is efficient if the matrix has been 
factored. 

The second method for computing the sensitivity matrix G in equation (45) 
makes use of the adjoint equation. This formulation, also referred to as the Green's 
function approach, has been presented by Weidelt (1975). General formulations for 
the adjoint equation can be found in Morse and Feshbach (1963), Lanczos (1961), 
and Roach (1982); detailed derivation for the 3d electromagnetic induction prob- 
lem has been given by Park (1987). The adjoint solution appears not to be as well 
known as the sensitivity equation method and for this reason I shall present it in 
more detail. My formulation follows that of Park (1987) except that it is restricted 
to the 2d TE mode. 
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Equation (4) is the basic equation for TE mode induction. Consider two 
conductivities trl(r), tr2(r) and two corresponding electric fields El(! ) and E2(r ) 
which satisfy 

VEEI -- if.O~oO'IE I = 0 

V2E2 - iOg#oa2E 2 = 0. (49) 

Subtracting these equations yields 

V23E - io#0tr I fiE = io#03trE 2 (50) 

where f E  = E2 - E1 and 6~ = tr 2 - tr 1 . Homogeneous boundary conditions for (50) 
are applicable on all boundaries (d6E/dn = 0 on the top and vertical boundaries 
and fiE = 0 on the bottom boundary). 

To find the adjoint we proceed as follows. First rewrite Equation (50) in a more 
compact form 

Du = iCO#o~aE 2 

where (51) 

D = (V 2 - i(.O~oO'1) 

and u(r) is a complex scalar valued function. Let 9 denote the adjoint operator and 
let v(r) be a complex scalar valued function in the domain of 9 .  Then 9 is specified 
by finding the differential operator and associated boundary conditions such that 

(v, Du) = (u, 9v)* 

or (52) 

A v*Du da = :A ug*v* da. 

The complex conjugates are cumbersome, and in addition, a further simplification 
ensues if we define 

[ 3 = 9 "  and ~ = v * .  (53) 

T h u s / )  is the algebraic adjoint of D and ~ is a scalar valued function in its domain. 
With these definitions Equation (52) becomes 

I ~Du da = ; uD~ da. (54) 

Substitution on the left for Du, and application of Green's second identity, shows 
that 

/~  = V 2 - -  iO)pot r l .  ( 5 5 )  

It is straightforward to verify t ha t /~  satisfies the same (homogeneous) boundary 
conditions as D. This is notable since it means that the adjoint problem can be 
solved with the same numerical code that was used for the forward problem. 
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The general adjoint equation is 

/~g = 7 (56) 

where ? = 7(r) is (as yet) an unspecified source function. The differentials for the 
MT problem are found by appropriately choosing ~ in (56) and then using 
Equation (54). First, substitute 6E for u and use Equation (51) to obtain 

f,, da = fA g(r)itolZo&r(r)EE(r) da. (57) 

This is a general equation; we are free to choose whatever source function is useful. 
From the form of (57) we see that the perturbation at an observation point r0 could 
be obtained if the adjoint equations were solved with a delta function source at to. 
That is, g should be the solution of 

/St~ = ,5(r - ro). (58) 

If we denote this solution by ~(r I r0) then, using the properties of a delta function, 
we obtain 

6E(ro) = io)/~o t f(r I r~ da. (59) 
JA 

This is the desired form except that the electric field E2 is demanded in the integral. 
If we make the assumption that 6E is small, then E2 = E1 + rE can be replaced (to 
first order) by E1 in the integrand. If the conductivities are constant within each cell, 
then the sensitivity equation can be written as 

6E(r:) = irO#o~ Gjkfak, (60) 
k 

where 
/ ,  

= Jak 17(r I rj)Ea(r) dak. 

The sensitivities for the j ' th  location are therefore computed by solving the adjoint 
equation once and carrying out the integrals over each cell. 

The foregoing shows that the matrix G can be computed by using either the 
sensitivity equation method or the adjoint method. The choice depends upon the 
relative number of unknowns compared to the number of data. For the adjoint 
equation one forward modelling solution and Ns solutions (where Ns is the number 
of station locations) of the adjoint equation need to be computed for each 
frequency. Since the adjoint problem uses the same program as the forward 
modelling, there are NI(N s + 1) forward solutions to be computed (N i is the 
number of frequencies). This compares with Nr(NyNz + 1) forward solutions for the 
sensitivity equation method. Generally, the adjoint equation method is more 
computationally efficient but the sensitivity equation method can be economical in 
those cases where cells are grouped to restrict the number of unknowns. 
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Having found first order sensitivities, the next step is to compute the model 
perturbation by solving the equations 

Gt~m----- 3e. (61) 

At the heart of all computational methods is the realization that the solution to (61) 
is nonunique and that the matrix equations are ill-conditioned. Minimization of an 
objective function which includes model characteristics and a misfit to the data can 
overcome these difficulties. As an example, minimizing 

�9 ( a = )  = II w  =ll = + 4(11We( e-- 2 - Z2), (62) 

where W,, is a weighting matrix for the model elements, We is a weighting matrix 
for the data, and 2 is a Lagrange multiplier, will produce a model perturbation that 
globally misfits the data by a value ~2 and has a minimum weighted norm. 
Perturbations having different characteristics can be obtained by altering the 
weighting matrix Wm and by using different accepted misfit values. There exists a 
plethora of literature which focuses upon the solution of (62) and convergence of 
the iterative schemes. It serves little purpose to summarize those works here, even 
in a review paper. The reader is referred to Jackson, 1972; Jupp and Vozoff, 1974; 
Weidelt, 1975; Cerv and Pek, 1981; Gill et al., 1981; Menke, 1984; Constable et al., 
1987. 

The minimization of (62) produces a conductivity perturbation which has a 
minimum norm structure. However, this normed attribute does not apply to the 
final conductivity model which fits the data. For instance, successively finding 
perturbations which have the smallest energy in their first or second derivative does 
not imply that the final constructed model will share this same attirbute. This is 
unattractive if the goal is to find a globally minimum structure model. However, a 
simple reformulation of the perturbation equations, first used to estimate upper and 
lower bounds to the conductance over arbitrary depth for ld MT problem 
(Oldenburg, 1983), can overcome this. The transformation is effected by writing 6m 

in the integral or matrix equations as 6rn = m 2 -  ml .  Substitution of this into 
Equation (62) yields 

Gin2 = Gin1 + ~e. (63) 

The left hand side of (63) involves the conductivity model; the right hand side is the 
modified data. The norm in (62) altered to be 

= II W,,, m2112 + , (11We( e .Jr_ 61111 _ 61112)112 _ z2). (64) 

With appropriate choice of weighting function W m in Equation (64) it is possible to 
compute a globally flattest or smoothest model. These models are often desirable 
since they have minimum structure and hence observed features have a greater 
likelihood of being representative of structure in the earth. This global norm 
solution has been used by Constable et al. (1987) and by Booker and Smith (1988) 
with excellent results in 1-D inversions. 
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A somewhat different formulation for linearized inversion has been proposed by 
Tarantola and Valette (1982), and Tarantola (1987). The approach, referred to as 
total inversion, is also called maximum likelihood and stochastic inversion 
(Franklin, 1970). The technique produces a model which simultaneously minimizes 
the difference between the observed and predicted data, and the difference between 
the constructed and an a priori conductivity model. In its complete form, this 
approach can produce substantially different results from that outlined in the 
previous section. However, when data and model errors are uncorrelated and when 
Gaussian statistics are assumed, the norm to be minimized is 

�9 (~m (k)) = (re - Gk~m (k)) t r ia l  (re -- Gk~m <k)) + 

+ (m (k) -- m0 + 6m (k)) r R ~  (m <~) - mo + 6re(k)) �9 (65) 

In Equation (65), Rda is the covariance matrix for the data, Rmm is the covariance 
matrix for the model parameters, m0 is an a priori model, m (*) is the model at the 
beginning of the k'th iteration and G, is the sensitivity matrix. The updated model 
is obtained by adding 6m (k) to m (k). The two convariance matrices determine the 
form of the achieved model. In particular, the fluctuations of the final model away 
from the a priori model are controlled by the diagonal terms R,n-m 1 and the roughness 
is controlled by off-diagonal terms. The relative weighting regarding the tradeoff 
between fitting the data and producing a model that is close to the a priori model 
is controlled by the norms of the two matrices. Maximum likelihood inversion has 
been implemented to invert magnetotelluric data over an assumed 2d earth by 
Mackie et al., (1988), Park (1987), and Neumann and Hermance (1987). The reader 
is referred to those papers for further details regarding practicalities of setting up 
the method and convergence of the solution. 

Discussion 

The last few years have seen significant progress in achieving our goals of solving 
the electromagnetic inverse problem. The development of more efficient forward 
modelling schemes like those employing adaptive meshes (e.g., Travis and Chave, 
1986) and availability of supercomputers, means that the evaluation of responses 
from complicated 2d models are now possible. Efficient codes for solving the 3d 
forward simulation problem are on the horizon. Since the solution of the forward 
problem plays such a key role in any inversion, this means that numerical linearized 
inversions will progress quickly. The rapid relaxation inverse of Smith and Booker 
is already an important step in this regard. 

I also expect that new algorithms for solving the inverse problem will arise 
because of the availability of computer workstations. The output of EMAP 
processing, the electromagnetic migration and reflectivity imaging techniques, 
and the AIM inversion are ideally suited to such computational and graphics 
environments. The inverse problem is nonunique, and in our efforts to invert for 
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geologically plausible earth structures we will see the next generation of algorithms 
incorporate more information into the inversion. Not only will this involve satisfying 
all data from a particular experiment, but information from other experiments (not 
necessarily electromagnetic) will be included. Interactive, graphics oriented, comput- 
ing environments are ideally suited to this approach. 

In addition to the numerical and new graphics-oriented attacks on the inversion, 
there has also been substantial progress made in data acquisition. A template for this 
is EMAP which acquires data along a continuous survey line. Not only does such 
a survey provide more data, it eliminates interpretation problems that arise from 
having collected spatially aliased data. As we attempt to solve the 3d problem 
however, data acquired over an areal survey will be demanded. Such data sets are 
already in existence in the mining industry where targets are closer to the surface and 
hence the size of the areal array is limited. 

The information attainable from electromagnetic induction studies seems poised 
to take a major step forward. With large field data sets of improved quality, with 
improved methods in data processing, and with improved and new methods for 
imaging/inverting the data, it is anticipated that major advances in electromagnetic 
interpretation and results will be evident by the time of the next electromagnetics 
workshop. 
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