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SUMMARY 
Realistic geologic features are 3-D and inverse techniques which rely upon 
linearization and computation of a sensitivity matrix to show how a change in the 
model affects a particular datum, can require prohibitive amounts of computation. 
Even lo4 data collected over an earth parametrized into 10’ x lo2 X 10’ elements has 
a sensitivity matrix which is lo4 x lo6. The generation of that matrix requires the 
solution of many 3-D forward problems and its solution is also computationally 
intensive. In this paper we formulate a general technique for solving large-scale 
inverse problems which does not involve full linearization and which can obviate the 
need to solve a large system of equations. The method uses accurate forward 
modelling to compute responses, but only uses an approximate inverse mapping to 
map data back to model space. The approximate inverse mapping is chosen with 
emphasis on the physics of the problem and on computational expediency. There 
are two ways to implement the AIM (Approximate Inverse Mapping) inversion. At 
any iteration step, AIM-MS applies the approximate inverse mapping to forward 
modelled data and also applies the same mapping to the observations; the model 
perturbation is taken as the difference between the resulting functions. In AIM-DS, 
an alteration to the data is sought, such that the approximate inverse mapping 
applied to the altered data yields a model which adequately satisfies the observa- 
tions. The approximate mapping inversion is illustrated with a simple parametric 
inverse problem and with the inversion of magnetotelluric (MT) data to recover a 
1-D conductivity model. To illustrate the technique in a realistically complicated 
problem we invert MT data acquired from a line of stations over a 2-D conductivity 
structure. TE and TM mode data are inverted individually and as determinant 
averages. As a final example we invert 900 data, with and without noise, to recover 
a model that is parametrized by 1500 cells of unknown conductivity. The inversion is 
found to be computationally efficient and robust. 
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1 INTRODUCTION 

Geophysical inverse problems are usually non-linear, 
ill-posed and often large-scale. The non-linearity is inherent 
in the mathematical relations used to describe the physical 
experiment, while the ill-posedness is caused by Irrelevant 
and Unimportant parameters (Jupp & Vozoff 1975), or 
sometimes by invalid assumptions used in defining the space 
of possible models used in the solution. The large-scale 
nature is the result of the real world applications which 
geophysical inverse problems attempt to address. Conse- 
quently, the solution of the geophysical inverse problem is 
non-trivial and has been attacked by several methods with 
varying degrees of success. 

There are several standard methods used in the solution 
of non-linear inverse problems with perhaps the two best 
known being the gradient method and the quasi-Newton 
method. When the inverse problem is also ill-posed a 
regularization scheme is required (Tikhonov & Arsenin 
1977); the more common regularization techniques use a 
spectral expansion of the sensitivity matrix and eliminate 
Unimportant and Irrelevant parameters by truncation, or 
reduce their effects using a damped least-squares method 
(Levenberg 1944; Marquardt 1970). Successful derivatives of 
the damped least-squares technique involve modification of 
the objective function to be minimized. These methods of 
solution for the non-linear ill-posed inverse problem can 
provide excellent solutions to many smaller scale problems; 
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however, they are computationally intensive and only 
marginally applicable to large-scale inverse problems. 

The large-scale nature of geophysical inverse problems 
and the high computational cost of existing methods 
encouraged us to seek an alternative inversion scheme. Our 
basic philosophy was that knowledge of the physics of the 
problem must be introduced in an optimal manner and 
wherever possible used to constrain the inverse problem and 
consequently reduce the computational cost. This differs 
from the standard methods which typically use mathematical 
techniques (e.g. Taylor series expansion) to simplify the 
problem. Instead we try to break the physics into several 
levels of importance with a division between the primary 
physical process and the residual physical effects. For 
example, in the 2-D or 3-D magnetotelluric problem the 
primary physical process is usually the 1-D attenuation of 
the magnetic and electric fields as they propagate through 
the conductive earth. The residual physical effects may be 
the scattering of the fields caused by 2-D or 3-D conductivity 
distributions. 

The philosophy of primary and residual physics leads 
naturally to the concepts of exact and approximate 
mappings. An exact forward mapping, F, by definition, 
maps from a space of models, Hm, into a space of data, ffe, 

using the complete physics of the system. Referring back to 
the magnetotelluric example, the exact mapping is derived 
from Maxwell's equations and maps a conductivity 
distribution into an impedance tensor. An approximate 
forward mapping, p, maps model space into data space 
using only part of the physics of the system. Again, for the 
2-D or 3-D magnetotelluric example, where impedances are 
to be computed at a number of sites on the earth surface, 
then a 1-D computation for the impedance at each site using 
the conductivity vertically under that site, would be an 
approximate forward mapping. 

/fl A Siidar manner we Introduce exact and approximate 
inverse mappings. Ideally, one desires an exact inverse 
mapping, F-' such that 
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~ ~ - - l ( ~ o b s )  cobs (0) 
where eobs are the observed data and = allows for 
discrepancies due to noise in the data. Unfortunately, F-' 
is not usually available. This leads us to introduce an 
approximate inverse mapping, ?', which produces a 
model F-'(eobS). Generally ?' is constructed in 
accordance with the primary physics of the problem. For 
instance, in the 2-D magnetotelluric problem ?' might be 
defined as a series of 1-D inversions. Application of the 
forward mapping to the constructed model yields predicted 
data 

~F-'(eobs) = e p .  (1) 
Most likely the difference between eobr and ep is sufficiently 
large that the constructed model would not be considered 
acceptable. With proper iterative improvement however, it 
may be possible to use ?' to converge to a model which 
reproduces the data to within some acceptable error 
tolerance. In this paper we develop two algorithms to 
accomplish this. At the heart of each of these algorithms is 
an Approximate Inverse Mapping and we refer to our 
procedures as AIM inversions. The algorithms differ in the 
space in which modification is camed out. In the first 

algorithm, an element in f-i,,, is updated and we refer to this 
as AIM-MS where MS is an acronym for Model Space. In 
the second algorithm, an element in f i e  is updated; we refer 
to this as AIM-DS where DS indicates Data Space. 

The concept of developing iterative inversion algorithms 
by exploiting the properties of the approximate inverse 
mapping has been presented before. In their 1-D inversion 
of MT data Goldberg, Loewenthal, and Rotstein (1982) 
computed a perturbation in model space by differencing the 
models obtained after applying the approximate inverse 
mapping to observed and forward modelled data; their 
algorithm is an example of an AIM-MS inversion. Zohdy 
(1974) inverts dc resistivity data using Dar Zarrouk curves 
and successively updates the data; his algorithm is of the 
AIM-DS type. No doubt there are other examples in the 
literature where these ideas have been used. The 
importance of the work in this paper however is to formalize 
the use of approximate inverse mappings and to show how 
they can be derived and used successfully to solve 
large-scale geophysical inverse problems. 

This paper is divided into four major sections. We first 
derive the basic AIM algorithms. Particular emphasis is 
placed on the duality of perturbations in Hm and He and 
upon quantification of a mapping error defined in each of 
those spaces. In the next section we illustrate the AIM 
algorithms with a simple parametric example of relevance to 
electromagnetic induction. This example sets a foundation 
for understanding the essential components of the AIM 
inversions even though model space and data space are both 
2-D. The next section illustrates how the AIM technique can 
be used to recover a 1-D conductivity depth function which 
accurately reproduces surface measured magnetotelluric 
responses. In the final section we present examples of 2-D 
magnetotelluric inversions which may ultimately serve as a 
template for sohng large-scale 3-7-0 geophysical problems. 

There we use an approximate inverse mapping based upon 
1-D inversions to recover a 2-D electrical conductivity 
structure that reproduces magnetotelluric data acquired 
from a line of stations. The geologic models consist of one 
and two prisms buried in a two-layer earth. Both TE and 
TM mode data are inverted individually, and after being 
combined into a determinant average (Berdichevsky & 
Dmitriev 1976). 

2 APPROXIMATE MAPPING INVERSION 

There are at least two ways to derive the recursive solution 
for the AIM-MS algorithm. Although the final formulae will 
be shown to be identical, the justification for presenting 
both is that they provide different insight into the inversion 
algorithm, In the first derivation, the model is built up 
through successive additions of perturbations whose 
magnitude depends upon the difference between the 
observations and the forward modelled data at the current 
iteration. This is perhaps the viewpoint that is most closely 
related to linearized methods. The second derivation is 
formulated directly from the definition of a mapping error 
defined on model space. 

Let m(O) denote the starting model and let rn(n) be the 
model constructed at the nth iteration. Let the forward and 
approximate inverse mappings be denoted by F and F-' 
respectively. Application of the forward mapping to rn@) 
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produces the predicted responses 

F[m(")] = e(n).  

Application of an approximate inverse mapping F- ' yields 
a model denoted by a tilde: 

F-l[e(n)] = m ( n ) ,  (3) 

When the approximate inverse mapping is applied to the 
observations, the result is frobs. 

Because the inverse mapping is approximate, it is not 
expected that application of F to any model rn E ti,,, 
followed by application of F-' will reproduce the initial 
model. The discrepancy can be quantified in terms of a 
model space mapping error defined as 

A,,,(rn) E r n  - ?'F(rn) = (9, - F-'F)(rn), (4) 

where 9,,, is the identity mapping on ff,,,. By using the 
definitions in (2) and (3), the mapping error for the nth 
model can be written as 

( 5 )  A,[rn(n)] = rn(") - m ( n )  

All of the above mappings, data, and models are illustrated 
in Fig. 1. This figure is fundamental to the development of 
the AIM-MS procedure and it provides considerable insight 
into understanding the AIM approach. 

To formulate the inversion steps we proceed as follows, 
At the nth iteration, the predicted responses e(") are not in 
sufficient agreement with the data, and a model perturbation 
brn(") is desired which, when added to m("), reproduces the 
data. That is 

+ brn'") (6) 

F [ m ( n + l ) ]  =cobs. (7) 

m ( n + l )  =,,,("I 

and 

The mapping error A,,,[rn("+l)], obtained by combining 
equations (4) and (7), is 
A In [ r n ( n + l ) ]  = r n ( n + l )  -frobs (8) 

(9) 

Unfortunately A,[rn("+')] is not known, but if we assume 

that the mapping errors at the nth and (n + 1)th models are 
approximately the same, that is, if A,,,[rn("+')] i= A,[rq(")], 
then the final perturbation, obtained by using (5) to evaluate 
(9), is given by 
hrn(n) = frobs - mi(") (10) 

The appropriate model perturbation is therefore the 
difference in model space between the application of F-' to 
the observations and to the data predicted by the current 
model. 

It may have been possible to intuit this result directly 
from Fig. 1. That figure suggests that under the application 
of the approximate inverse mapping, there is a 1-1 
relationship between a specific change in data space and a 
specific change in model space. The misfit in data space, 
eobS-ee'"', is mapped to a model difference, 6iobs-fi("). 
Using these discrete differences, a new model which adjusts 
for the data misfit discrepancy, is given by (11). It is perhaps 
this insight that has prompted previous use of equation (11). 
For example, Goldberg, Loewenthal & Rotstein (1982) use 
this model space update when inverting MT data. The 
advantage of our formal derivation lies in the explicit 
introduction of the approximate inverse mapping and the 
associated model space mapping error, and the development 
of a necessary condition for convergence of the iterative 
algorithm. That convergence condition requires that the 
difference between the mapping errors at successive 
iterations must tend to zero. 

The second derivation for the AIM-MS algorithm can also 
be observed from Fig. 1. By definition of the mapping error 
given in equation (4), any model in ff, can be written as 

rn = m + A,(m). (12) 

If rn is a solution to the inverse problem, that is, if 
F(m)  = cobs, then (12) can be written as 

However, since rn is not known, iteration is used. 
Substituting for the current (known) model on the 

Model Space Data Space 

Figure 1. A diagrammatic representation of the AIM-MS inversion. The inversion starts with ?' applied to eobs to produce a first model 
estimate rizobs. Either the mapping error A,[rn'"'] at the current model, rn'"', or the perturbation 6rn'"' are used to produce the (n + 1)th 
model. 
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right-hand side yields an updated model 

(14) 

Equation (14) is the desired iterative solution to the 
inverse problem. It has great appeal, not only because of its 
computational simplicity, but also because of the physical 
insight that it conveys. It shows that the final solution is 
composed of two parts. The first is tFiobs. Loosely speaking, 
we think of the exact mapping F as containing the primary 
and residual physics of the problem but think of ?' as 
containing only the primary physics. As a result mobs can be 
thought of as that part of the model which is consistent with 
the primary physics. The second part of equation (14) is a 
remainder needed to account for the neglect of the residual 
physics in the inverse mapping. We note that A,,, = 
(9,,, - ? 'F)  has the form of a projection operator. It's 
application to any element of ff, quantifies that part of the 
model which is annihilated by the approximate inverse 
mapping. The two terms in (14) therefore bring to the 
model both primary and residual physics contributions even 
though F-' is concerned only with the former. 

The two recursive solutions in (11) and (14) are, of 
course, identical. Writing out the mapping error in (14) 
yields 

, , ,(n+l) - -ohs - rn + A,[rn(")]. 

(15) m ( n + l )  = &obs + [ rn(n)  - fii'n)]. 

This expression is identical to equation (11) except for the 
way in which the elements are grouped. The two ways of 
thinking about the AIM-MS solution: (i) generating a 
sequence of model perturbations based upon a specialized 
finite difference, and (ii) generating a model made up of a 
portion which is sensitive to the primary physics and adding 
a corrective term due to the model space mapping error, 
thus lead to the same solution. 

The question of convergence aside, there is an important 
point to emphasize. The AIM-MS inversion is iterative but 
it does not necessarily involve linearization. This means 
there is no need to generate a sensitivity matrix or a FrCchet 
derivative to relate a small change in the model to a small 
change in the data. There is also no requirement in 
AIM-MS that differences in the data or differences in the 
model be small. When a model perturbation is constructed 
using equation (10) there is no necesssity at the early 

iterations that the difference between eobs and e(") be small, 
even though, as convergence is achieved, dn) tends to eobs 
and consequently 6m(")-+0. Also, in (14) there is no 
requirement that the final mapping error be small, in fact 
IlA,[rn(")]ll will often be of comparable size to Ilfiobs((. 
What is required in both derivations of AIM-MS is that 
IlA,[m("'"] - A,,,[rn("']ll +O. This requires that small 
changes in the data, map to small changes in the model 
under the approximate inverse mapping; that is, the 
approximate inverse mapping must be stable. 

In AIM-MS the final model is generated by successive 
additions of perturbation functions. Without any smoothing 
or regularization, we generally find that the model continues 
to increase in complexity and we have no explicit control 
over the type of model that is generated. It is not possible 
within the AIM-MS formalism to construct directly a model 
which minimizes a global objective function of the model 
and this has motivated a different formulation of the AIM 
inversion. The goal in AIM-DS is to find a 'correction' to 
the observed data so that when F-' is applied to the 
corrected data, the resultant model reproduces the observed 
data when it is operated upon by the exact forward 
mapping. That is, the inverse problem is solved by finding a 
data perturbation such that a new datum 2=eobs+ $I 
satisfies 

(16) FF-'(C) = FF-'(eohs + 9) = eohs. 

The advantage of this approach is that the desired 
characteristics of the final model may be built directly into 
F-' since the final model is computed directly by a single 
application of ?'. Again there are two ways to derive the 
recursive solution. We present both because different insight 
is involved. 

The first method generates 9 as a sequence of additive 
perturbations. The basic procedure is illustrated in Fig. 2. 
Application of the approximate inverse mapping to the 
observations yields 

(17) rn(0) = F-l(eobs). 

An exact forward mapping applied to r n ( O )  yields the 
predicted data 

Data Space Model Space 

Figure 2. A diagrammatic representation of the AIM-DS inversion. The inversion starts with ?' applied to eohs to produce a first model 
estimate m(O). An exact forward mapping is applied to yield predicted data do). The difference between cobs and do) is an estimate of the data 
space mapping error. The predicted data are corrected by this difference to yield a new datum 2('). The updating of data is continued 
recursively. 
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refer to F as an approximate forward mapping. The first 
estimate of the corrected data is 6(')= F(m*)  and the 
iteration formula (27) can be subsequently used to complete 
the inversion. 

The introduction of a pair of mappings F and ?' which 
have the property that F?' =.Ye is very useful in the 
AIM-DS formulation. The reasons are two-fold. Firstly, in 
some non-linear problems it is possible to derive an explicit 
form for F perhaps based upon asymptotic analysis or from 
an understanding of the primary physics. This, plus the 
requirement that FF-' = can be used to define ?'. 
We shall present an example of this in the parametric 
inverse problem given in the next section. The second area 
of importance can be seen by writing equation (27) in terms 
of the approximate forward mapping. Substituting P = F(m) 
yields 
F [ l ? l ( n + l ) ]  =cobs 

We note that if F is a linear operator, then an updated 
model can be found by solving a linear inverse problem. It is 
important to note that the assumption that F is linear does 
not imply that F-' is also linear. In practice, the linear 
inverse problem associated with solving equation (28) is 
usually ill-posed and requires some form of regularization. 
Regularization generally involves the introduction of an 
objective function defined in terms of (semi) norms on the 
spaces of models and data, and a regularization parameter 
controlling the trade-off between misfit and model norm. 
This regularization introduces non-linearity into F-' if any 
of the following conditions exist: the regularization 
parameter is not held fixed; if a semi-norm is used to define 
the objective function; if a norm other than an L, norm is 
used. There are special circumstances when ?' is linear, 
for example, when one is working in a Hilbert space with 
fixed regularization parameter, however this circumstance is 
rarely of interest in practical problems. The rare case when 
F-' is linear is trivial. 

+ F[m(")]  - F[m(")].  (28) 

The first estimate for the correction to the data is 

(19) @ ( O )  = &'0' = p b s  - 

Application of F?' to P( ' )  yields the predicted data e'" 
which are likely closer to eobs than were do), but the 
discrepancy is probably large enough that a further 
adjustment is required. The total perturbation is built up 
cumulatively and the recursive equations are 

1, m ( n + l )  = F- l [p+ l )  

- e  + + c n ) ,  (21) 
p ( n + I )  - obs 

@ ( n )  = #(n- l )  + {cobs - ~F-l[&n)]). 

Combining the last two equations yields 

The above derivation is analogous to the first derivation for 
the AIM-MS. Here however, it is the final data which are 
built up from a sequence of additive perturbations. We 
might expect therefore that these perturbed data will 
eventually exhibit enhanced structure as the iterations 
proceed. 

In AIM-MS, we introduced a companion derivation based 
upon the mapping error in model space. We carry out an 
analogous derivation for AIM-DS. Define a mapping error 
on data space as 

A,(e) = (Se - F k ' ) ( e )  (23) 

where 
yields 

is the identity map. Applying equation (23) to Fen) 

(24) F(n)  = e(") + A [$")I. 
Since our goal is to find an F(") such that e(")=eobs, the 
desired form of equation (24) is 

(25) E(n) = cobs + A,[g(n)] 

Because the left- and right-hand sides of equation (25) 
contain the desired function, we alter it to an iterative 
equation 
p(n+l )  = 

which is valid so long as A,[Z("+')]-A,[C?(")] i.e. t(") 
converges to a fixed point of cobs+ Ae. Equation (26) 
represents the final form for the recursive relation. It shows 
explicitly that the desired perturbation + in equation (16) is 
the data space mapping error. Using the definition of Ae we 
obtain 
&n+l)  = cobs + [,-(n) - ,(n)]. 

This is the same as equation (22) except for the way in 
which the terms are grouped. 

Although the AIM-DS inversion would generally begin 
with the application of F-l to the observations as suggested 
by equation (17), it is not necessary to do this. Suppose we 
wished to start with an arbitrary model m*. The iteration 
procedure can begin by applying a forward mapping F 
which has the property that FF-' = 9,. It is convenient to 

eobs + A,[6(n)] (26) 

(27) 

3 AIM INVERSION: PARAMETRIC 
EXAMPLE 

A simple example which illustrates the essential features of 
the AIM inversion can be formulated by considering the 
electromagnetic induction caused by a periodic uniform 
horizontal magnetic field incident upon a conducting earth. 
The incident field has an angular frequency w and time 
dependence e'"'. The electrical structure of the earth is a 
function of depth only and is specified by the conductance or 
vertically integrated conductivity. 

Under general circumstances the conductance function 
z(z) is sought from a finite number of surface measure- 
ments. Here we consider only simple structures which have 
a conductance sheet of magnitude tl at the surface and a 
perfect conductor at depth z = h. Thus 

if z < h, 
if z a h .  

Effectively the conductivity is completely represented by a 
two parameter set (tl, h). We denote the space of two 
parameter conductance models by f fm,  and denote the F 
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image of tim2 by He,. We select as data, apparent resistivity 
as a function of frequency. 

The exact forward mapping F can be derived from 
Maxwell's equations in 1-D. Following Parker (1980), the 
magnetic field induces a perpendicular, horizontal electric 
field E(z ,  w )  governed by the integral equation 
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E(2,  w )  = E(h,  0)  - (h - z)E'(h,  0 )  

(30) 

where the prime denotes differentiation with respect to z .  
The apparent resistivity is defined by 

In the case where t ( z )  E ffm2 this reduces to 

Equation (32) defines the exact forward mapping for any 

There are two asymptotic limits to the exact forward 
mapping given in equation (32). The low- and high- 
frequency limits are 

4 2 )  E t-'m*. 

These are straight lines when plotted on a double 
logarithmic plot. The intersection of the asymptotes occurs 
at a central frequency w, = (pOhrl)- ' .  The primary physics 
behind these relations is that an electromagnetic wave 
attenuates as o - ' ~  as it propagates in a conductor. 
Consequently the high-frequency limit corresponds to the 
electromagnetic wave attenuating completely in the surface 
conducting sheet and being insensitive to the perfect 
conductor at depth h. The low-frequency limit corresponds 
to the electromagnetic wave propagating to the perfect 
conductor; it is not attenuated by the surface sheet and it 
only provides information about the depth to the perfect 
conductor. 

To illustrate the exact forward and asymptotic mappings 
we consider a numerical example with z=2OS and 
h = 500 m. Fig. 3(a) shows the model and Fig. 3(b) shows 
the resultant true data and the asymptotic curves. The data 
and the asymptotic curves are in reasonable agreement 
provided that the correct asymptotic branch is used, that is, 
if the low-frequency asymptote is used when w < w,, and if 
the high-frequency asymptote is used when w > w , .  The 
central frequency for this example is w, = 79.58 rad s-l or, 
in terms of linear frequency, f, = 12.67 Hz. The largest 
discrepancies occur at w = w,, where apparent resisivities 
differ by about a factor of 2. This agreement, and the fact 
that the asymptotic mappings incorporate the primary 
physics, leads us to choose the asymptotic formulae to 
construct both approximate forward and inverse mappings. 

The approximate forward mapping is defined as follows. 
Given model parameters ( zl, h ) ,  the apparent resistivity is 

estimated as 

(34) 
w 5 w,. 

The approximate inverse mapping is defined to be some 
fitting procedure from a number N of coordinate pairs 
(pA,. wi ) ,  i = 1, . . . , N from data space to yield a two 
parameter model m E t im2.  Since we are looking only for 
two parameters it is sufficient to have N = 2. We select two 
pairs (pAI,wl) and (pA2,w2)  where w 1 < w 2 .  The 
approximate inverse mapping is defined as 

(35) 

In the derivation of the approximate inverse mapping we 
have assigned the low-frequency pair (pA, ,  wl) to the 
low-frequency asymptote and thus that datum yields the 
depth to the perfect conductor. The high-frequency 
asymptote yields the surface conductance. For simplicity we 
assume a priori knowledge that w1 < w,< w2.  In fact w, is 
easily estimated from pA(u)  since pA(w)  has a maximum at 
WC. 

The exact forward mapping, equation (32), and the 
approximate inverse mapping, equation (35), can be used to 
invert the data with the AIM technique. We first 
demonstrate the AIM-MS inversion and begin by choosing a 
data element eobs E ffe2 to be inverted. Each data element 
consists of two apparent resistivities: we choose linear 
frequencies fl = 2 Hz and fi = 75 Hz. These are shown in 
Fig. 3(b) as triangles. Following the procedure outlined in 
the Section 2 and defined in equation (15) we form a series 
of models {m,} each of which is represented as a coordinate 
pair (tl, h) .  From the development of equation (35) it is 
expected that the approximate inverse mapping would 
rapidly give an excellent representation of the true model. 
Table l(a) gives the predicted model and predicted data for 
successive iterations. Convergence is rapid and only three 
iterations are required before the model parameters are 
recovered to five significant figures. 

The AIM-MS inversion given above began with a model 
obtained by applying the approximate inverse mapping 
directly to the data. This is not necessary as equation (15) 
indicates. To illustrate this we show in Fig. 3(c) the direction 
and magnitude of the perturbation step generated by the 
inversion algorithm starting with any model (tl, h), 
5 < rl < 55, 100< h < 1000. In Fig. 3(c) a small pointer is 
used to indicate the perturbation step direction and a circle 
of varying radius indicates the magnitude of the 
perturbation step; the larger the radius, the greater the 
perturbation step. This diagram indicates that good 
convergence is expected for a large range of starting models. 
As a specific example we show in Fig. 3(f,g) (solid curve) 
the convergence when the starting model is (tl, h )  = 

We next demonstrate the AIM-DS inversion. The series 
of models generated by the AIM-DS algorithm, equation 
(27), are given in Table l(b). Convergence is rapid for this 
example where the first model was obtained by applying the 
approximate inverse mapping to the observations. Fig. 3(d) 

(5, 300). 
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c A I M - M S  500, 20 2 0 0 0 0 0  750900 

MODEL a 

+ 20 zE21 10 0 0 200 400 800 

depth z [m] 

DATA b 

d AIM-DS 500, 20, 2.00000 75.0000 

zoo 400 600 800 1000 
h 

f 

0 1 2 3 4 5 6  
Iteration :::pi 500 f. .. 

c 450 

400 .' 

350 ; 

300 
0 1 2 3 4 5 6  

Iteration 

Figure 3. A two parameter model consisting of a 20 S surface conductance sheet and a perfectly conducting basement at 500 m is shown in (a). 
The apparent resistivity versus frequency data space response generated from that model is shown in (b). Data obtained using the exact 
forward mapping are shown as the solid line and data generated from the approximate forward mapping is shown as the dashed line. The two 
frequencies used in the parametric inversion are denoted by A's. The perturbation steps for AIM-MS, AIM-DS, and linearized methods 
beginning at different locations in model space are shown in (c)-(e) respectively. For each point in the (tlr h )  plane these plots show the 
magnitude and direction of the perturbation step predicted by the inversion algorithm. The magnitude of the perturbation step is represented 
by the radius of the hatched circle, the direction is indicated by the pointer. Specific convergence paths for the parametric model inversions for 
a starting model ( r , ,  h)  = (5,300) are shown in panels ( f )  and (g). The predicted surface conductance at each iteration is given in (f) and the 
depth to the perfect conductor is given in (g). The results for the AIM-MS, AIM-DS and linearized inversions are marked by 0, 0, A ,  
respectively. 

shows the perturbation steps for starting models in the 
domain (tl, h ) ,  5 <  tl < 5 5 ,  100<h < loo0 and is the 
AIM-DS analogue of Fig. 3(c). Good convergence is 
indicated for all models. Comparison between Fig. 3(c) and 
Fig. 3(d) clearly shows that AIM-MS has faster convergence 
than AIM-DS for small conductances. This is also 
emphasized in Fig. 3(f) (course dash) where convergence is 
shown for a starting model (tl, h )  = (5, 300) 

It is of interest to compare the AIM results using F-' 
based on the asymptotic mappings of equation (35) with 
those obtained by an F-' based on conventional 
linearization. To find an F-' based on conventional 
linearization a 2 X 2 sensitivity matrix can be generated by 
performing a Taylor expansion of equation (32) and 
applying it to the two data to be inverted. Applying the 
inverse of this matrix to the discrepancy between the 
observed and predicted data yields the model perturbation. 

Note that this linearization is an example of the rare case 
where F-' is linear: AIM-MS and AIM-DS then degenerate 
to the same algorithm, 6rn = ?'lie. This rare degeneracy 
happens only because the example has the same number of 
parameters as exact data. In Table l(c) we show the series 
of models obtained by the AIM inversion based on 
linearization. We refer to this inversion as the linearized 
inversion. The initial starting model for the linearized 
solution was the same as that in the AIM inversions in Table 
l(a, b). To obtain an overview of the convergence 
properties we show in Fig. 3(e) the first perturbation step 
for the linearized inversion initiated from a variety of 
starting models. This plot is analogous to those in Fig. 
3(c,d). A specific convergence plot for a starting model 
(tl, h )  = (5, 300) is given in Fig. 3(f, g). Comparison of Figs 
3(c), (d) and (e) indicates that the linearized inversion 
shows better convergence than the AIM-DS inversion, 
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Table 1. The recovered surface conductance and depth to the 
perfect conductor for the parametric example are given as a func- 
tion of iteration. The predicted apparent resistivities at frequencies 
fi = 2 Hz and fi = 75 Hz are shown in the last two columns. Tables 
l(a), (b), and (c) respectively show the results for the AIM-MS, 
AIM-DS, and linearized inversion. 

a AIM-MS Inversion 

Iteration Conductance 

0 493.88 

1 499.95 
2 500.00 

3 500.00 

4 500.00 

b AIM-DS Inversion 

Iteration Conduciancc 

0 493.88 

1 499.87 

2 500.00 

3 500.00 

4 500.00 

c Linearized Inversion 

0 493.88 

1 500.04 

2 500.00 

3 500.00 

4 500.00 

Lkpth h 

20.263 

19.997 

20.000 

20.000 

20.000 

Depth h 

20 283 

20.009 

20.000 

20 000 

20 000 

lxpch h 

20.283 

19.994 

20.000 

20.000 

20.000 

A p p a re n t 

resistivity 1 

3.7578 

3.8510 

3.8517 

3.8518 

3.8518 

Apparent 

resistivity 1 

3.7578 

3.8498 

3.8518 

38518 

3.8518 

Apparent 

rcsistivily I 
3 7578 

3.8524 

3.8518 

3.8518 

3.8518 

Apparent 

resistivity 2 

3.9912 

4.1058 

4.1047 

4.1047 

4.1047 

Apparent 

resistivity 2 

3.9912 

4.1012 

4.1045 

4.1047 

4.1047 

Apparent 

resistivity 2 

3 9912 

4.1071 

4.1047 

4.1047 

4.1047 

however, worse convergence than the AIM-MS inversion. 
This is most evident in the region t < 20 and is emphasized 
in Fig. 3(f) (fine dash). Note in particular that the linearized 
inversion overshoots the desired depth at the first iteration 
contrary to the behaviour of the AIM-DS and AIM-MS 
algorithms. 

This simple parametric example using AIM-MS, AIM-DS 
and linearized inversions demonstrates some important 
features of the approximate mapping inversion technique. 
First, it shows that the technique can converge rapidly when 
the approximate mapping is a good approximation to the 
exact mapping. This convergence seems to be maintained 
even when the approximate inverse mapping is a poorer 
approximation to the exact mapping. For example, when the 
above inversions used frequencies close to the centre 
frequency, thereby accentuating the difference between the 
true and approximate forward mappings, both AIM 
algorithms converged to the desired solution. Convergence 
was also noted even under more extreme cases where both 
frequencies were less than the centre frequency or both 
were larger. A second feature of the AIM algorithms is that 
the convergence paths can be significantly different for 

different approximate inverse mappings: the AIM-MS and 
AIM-DS inversion based on asymptotic mappings (35) have 
very different convergence paths compared with the AIM 
inversion based on linearization. This follows from the fact 
that the approximate physics used to generate the 
approximate mapping may be non-linear and consequently 
the approximate inverse mapping is also non-linear. As 
such, an AIM algorithm with appropriate F-' has the 
potential for superior convergence compared to conven- 
tional linearized inversion algorithms. 

4 AIM INVERSION: MT IN 1-D 

The parametric examples illustrate the essential steps in the 
AIM inversion and they also provide some indication about 
the robustness and convergence properties of the algo- 
rithms. The examples are restrictive however, in the sense 
that model space and data space are each two parameter 
subspaces. Our ultimate goal is to use the AIM inverse 
formalism to solve large-scale geophysical problems. 
Therefore, as a next example, we consider the inversion of 
many MT data to recover a conductivity u(z).  To keep a 
formulation which is analogous to the parametric example 
we choose apparent resistivities as data. The approximate 
forward and inverse mappings are again derived through 
asymptotic analysis. These mappings have been investigated 
by many workers, (e.g. Niblett & Sayn-Wittgenstein 1960; 
Word, Smith & Bostick 1970; Bostick 1977); a review can be 
found in Whittall & Oldenburg (1991). Although the 
mappings vary in particulars, they are all derived from the 
physical understanding that the attenuation of an electro- 
magnetic wave is governed by the conductance of the 
medium. 

For this example we take the following asymptotic 
mappings. For the forward mapping 

and for the inverse mapping 

(37) 

We have chosen to include a stretching factor E in depth. 
This is a slight generalization over the usual equations 
although depth stretchings have been incorporated in the 
past; e.g. Gamble (1983). The incorporation of E will 
produce a different model for the AIM-MS solution than 
was given in Whittall & Oldenburg (1991) in their summary 
of the work of Goldberg et al. (1982). 

The asymptotic mappings establish a bijection between a 
2-D data space (pA, w )  and a 2-D model space (r,  z). For 
example the data space function pA(w) = w-' maps to the 
model space function t(z)=l&. Note that these 
approximate mappings are a more general form of equations 
(34) and (35) used in the parametric example. 

There are a number of ways to implement the above 
mappings. Here we choose to recover a layered conductivity 
structure (u,, zj) ,  j = 1, . . . , N where zj is the depth to the 
bottom of the jth layer of conductivity uj. We also define zj 
to be the conductance at depth zj, that is, rj is the integrated 
conductivity from the surface to the depth I,. Given a set of 
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data (pAi, mi), j = 1 ,  . . . , N the layered conductivity 
structure is given by: 

h. = z .  I - z.  1 - - 1 ,  aj =(ti- rj - i ) /hj .  

In the inverse problem flexibility exists in defining the 
model and the data. Ultimately the set (aj, zj ) ,  j = 1, . . . , N 
is the physical quantity desired and this is considered as the 
'model' when the forward mapping is carried out. However, 
conductivity in earth materials varies over many orders of 
magnitude. With respect to the inverse problem, it is better 
to consider (In a, In t) as the model. The AIM-MS iterative 

Iteration 0 

,---. 10-1 l a  . I  

. .. . . . . . ., 
E 
E 10-2 : ;...... 
\ 

b ............................ 

10-3 
101 102 103 104 

Iteration 1 

10-3 , 
101 102 103 104 

Iteration 15 

- 
B 
u 10-2 2 
b 

10-3 
101 102 103 104 

= [ml 

where 5 and f are evaluated via equation (38). 
To illustrate the AIM-MS inversion algorithm we use the 

test model shown in Fig. 4. Since each datum will generate a 
single layer, we have used 50 accurate data spanning a 
frequency range 10-4-104Hz. This ensures that a 
reasonably complicated model can be generated by the 
inversion. Models at selected iterations, and fits to the data 
are shown in Fig. 4(a-f). The models predicted by the 
inversion, a'"), are shown plotted (solid curve) over the test 
model (dashed) which was used to generate the data to be 
inverted, cobs. Opposite each model plot is the predicted 
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Figure 4. The convergence of the AIM-MS algorithm using the 1-D asymptotic mappings. Shown on the left are the true model (dashed) and 
the predicted model (solid) at iterations 0, 1 and 15. Shown on the right are the true data (*) and the predicted data (solid). The normalized x2 
misfit as a function of iteration (evaluated by assuming that the data are contaminated with 1 per cent Gaussian error) is shown at the bottom. 



334 D. W. Oldenburg and R .  G. Ellis 

data, e(") (solid curve) and eobs (denoted by *). A stretch 
factor of = 2.1 was selected for this example. The model at 
iteration 0 (Fig. 4a) is the result of applying the approximate 
inverse mapping directly to the observations. The 
conductivity is greatly underestimated compared to the true 
model and the computed apparent resistivities are biased 
upward compared to the true data in Fig. 4(d). However, a 
single correction using the model space mapping error 
produces the results at iteration 1. Dramatic improvements 
in the model (Fig. 4b) and in the fit to the data (Fig. 4e) are 
evident; a single non-linear perturbation step has reduced 
the misfit by more than two orders of magnitude. To 
quantify the misfit we have initially assigned a Gaussian 
error of 1 per cent to each amplitude and normalized the 
resultant x2  misfit by the number of data. The normalized 
misfit, & = x 2 / N ,  at successive iterations is shown in Fig. 
4(g). We note a monotonic decrease in the misfit and by the 
15th iteration the data are fit to within &=0.03. 

Iteration 0 

i..? 

E 

- 10-2 
10-3 

\ m 
.... .. 

. . . . . . . . . . . . . ...... . ....... 

101 102 103 104 

Iteration 1 

10-3 - 
10' 102 103 104 

Iteration 6 

10-3 
10' 102 103 104 

= rm1 

Equivalently, the rms fit to the data is 0.17 per cent. The 
final model (Fig. 4c) is a good representation of the true 
model but it does exhibit oscillations which may be 
undesirable. 

Next, the AIM-DS algorithm is implemented with the 
same approximate inverse mapping defined by equations 
(37) with a stretch factor 5 = 1.2 Models at selected 
iterations and the misfit convergence are shown in Fig. 
5(a-f). The x; misfit monotonically decreases by about an 
order of magnitude for each of the first four iterations and 
then plateaus at a value of about x; = 0.44. At this final 
stage each datum is fit to within about 0.66 per cent. We 
note the increase in roughness of the model at progressive 
iterations. This results because the final data to be inverted 
are obtained through a sequence of additive perturbations 
and hence data having significant structure are eventually 
generated. If there is no regularization in the approximate 
inverse mapping then this increase in structure on the 
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Figure 5. The convergence of the AIM-DS algorithm using the 1-D asymptotic mappings. Shown on the left are the true model (dashed) and 
the predicted model (solid) at iterations 0, 1 and 6. Shown on the right are the true data (*) and the predicted data (solid). The normalized xz 
misfit as a function of iteration (evaluated by assuming that the data are contaminated with 1 per cent Gaussian error) is shown at the bottom. 
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forward mapping at the nth iteration is given by 
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modified data will be transformed to structure on the 
recovered model. We note for algorithms of this type that 
the reciprocal of the number of iterations acts as a 
regularization parameter (Defrise & De Mol 1987), thus 
increasing structure with increasing iteration number is to be 
expected. 

We are not proposing that the 1-D MT inverse problem 
be solved with an AIM inversion which uses an asymptotic 
inverse as an approximate inverse mapping and employs no  
explicit regularization. The purpose of the above illustra- 
tions is to show that the AIM formalism, when applied in 
this manner, can converge to a model that (at least 
approximately) reproduces the data. The steady decrease in 
misfit is extremely encouraging. On the other hand, the 
progressive increase in model roughness is an indication that 
the algorithm is not robust, at least if arbitrarily small misfits 
are required. This negative aspect of the constructed model 
follows from the fact that the asymptotic mappings, by 
themselves, are a poor choice for an approximate inverse 
mapping. There is no allowance for errors on the data, there 
is no attempt within the algorithm to minimize an objective 
function of the desired model, and there is no way to 
incorporate additional information about the conductivity 
structure. , The rather unattractive oscillations of the 
conductivity structure are a reflection of these omissions. 
They do not however, detract from the fact that the 
algorithms have marched progressively toward a solution. 

Building upon these observations we now choose to 
design an approximate inverse mapping that generates a 
model which minimizes an objective function and 
incorporates data errors directly. The AIM-DS formulation 
is adopted and specifically, we use equation (28) in which an 
approximate forward mapping F is introduced. If F is a 
linear mapping then it is straightforward to find an updated 
model m(m+l )  by solving a linear inverse problem. In doing 
so, the linear inverse can be constructed to minimize an 
objective function of the model, subject to appropriate 
misfit of the data and any additional linear constraints that 
might be available on the model; this effectively defines 
F-I. 

The implementation of the AIM-DS procedure given by 
equation (28) requires the specification of F. One possibility 
for F can be obtained by linearizing the exact forward 
mapping F about a model m("). Applied to an arbitrary 
model rn this yields 

F(m; w )  = F[m("); w ]  

+ g[rn(");  z ,  w ] [ m ( z )  - rn(")(z)] dz + a * * ,  (40) I 
where g is the associated kernel function (Oldenburg 1979) 
and the ellipsis represents higher order terms in the 
functional expansion. An approximate forward mapping can 
be obtained by keeping terms up to first order. We define 

+ g[m("); z ,  w ] m ( z )  dz.  (41) I 
By writing the first two terms as A("), the approximate 

F(m; o) = A(") + I g[rn("); z ,  w ] m ( z )  dz. (42) 

Substitution of equation (42) into equation (28) yields 

Ig [m(n) ;  w]m("+"(z) dz = eobs(w) - e(") (w)  

+ g[m'"); w]rn(")(z) dz. (43) I 
It is noted that the constant A(") does not appear in the final 
equation. For notational purposes and for application, the 
approximate forward mapping could equivalently have been 
defined by omitting A(") in equation (42). 

The inversion proceeds by minimizing an objective 
function which includes data misfit and model norm. It is 
noted that this special choice of the AIM-DS algorithm has 
been successfully used in the past. Oldenburg (1983) used it 
to find upper and lower bounds to average values of the 
conductivity in a I-D MT inversion. Also, Constable, Parker 
& Constable (1987), Smith & Booker (1988a), and Dosso & 
Oldenburg (1989) have used this formulation to obtain 
minimum structure conductivity models for the 1-D MT 
inverse problem. 

We now illustrate this form of AIM-DS applied to the 1-D 
MT inverse problem. In defining the inversion algorithm, 
there are choices as to definition of the model for the 
inverse problem, characterization of the data, specification 
of the objective function to be minimized, and method of 
regularization. In the forward mapping the parameter of 
interest is conductivity, however In(a) will be used as the 
'model' for the inverse problem. Let us denote 
( m l ,  m 2 , .  . . , rn,,) to be the discretized array of In(a) 
values associated with a set of n, depth partitions. There is 
also a choice for what are regarded as 'data' within the 1-D 
inversion. Here we choose the complex variable 

specified at nf frequencies. At each frequency the complex 
datum is represented as an amplitude and phase and so 2nf 
real data are used in the inversion. 

With the above definitions, equation (43) is written as 
n, 9 Aikm,("+') = eibs - e?) + c Aikm,("), 

i i 

k = 1, . . . ,2nf, (45) 
where Aik is the integral of the kth kernel function over the 
ith depth partition. 

We minimize an objective function 

where E~ is the standard deviation of the kth datum. The 
frequencies associated with the data are the same as in the 
preceding example, so nf = 50. However, here we choose to 
parametrize the depth by n, = 169 logarithmically spaced 
depth partitions; these remain fixed throughout the 
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inversion. The parameter p, held constant throughout the 
inversion, controls the trade-off between data misfit and 
model variation. The problem of minimizing (46) subject to 
the constraints in (45) is solved using linear programming 
(LP) techniques. 

To illustrate the technique we have inverted two sets of 
data: the exact data used in the previous examples, and data 
with Gaussian independent noise of standard deviations 5 
per cent added to the apparent resistivities and 2" to the 
phases. The result of the inversion of the exact data is 
shown in Fig. 6(a-f). The true model is shown dashed and 
the corresponding data to be inverted, cobs, as *'s. The 
starting model is a half-space. The models m(") produced 
from the inversion, are shown for iterations n = 1, 3, 10 and 
are plotted as solid curves. The predicted data e@) are also 
shown. After 10 iterations the inversion result and the true 
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- E lo-lb,; ............ , ( , ,  r;.., 
I ........... 

\ 
E 10-2 
b ................. 

10-3 
102 1 o3 104 

Iteration 3 

10-1 
,--- 
E 
3 10-2 
\ 

b 

w... ... .......... 

......... 

10-3 
102 103 104 

model are indistinguishable. Of course the MT inverse 
problem, even with data at 50 frequencies, is non-unique 
and there are other models (some very different) which will 
reproduce these data to within the same accuracy. The fact 
that we have such remarkable correspondence between the 
constructed and true models is an excellent illustration of 
the results that can be achieved by minimizing the 'right' 
objective function in an inverse problem which is inherently 
underdetermined. In Fig. 6(g) we show the x2 misfit of the 
predicted data e(") compared with the observed data cobs. 

Similar plots are shown for the inversion of data with 
noise in Fig. 7. In this case the data to be inverted are 
plotted with error bars. After 10 iterations a 'minimum 
structure model' is obtained with a misfit & = 0.98 for the 
apparent resistivities and &= 1.1 for phases. In the past 
much theoretical effort has been devoted to finding the 
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Figre 6. The convergence of the AIM-DS algorithm using the I-D linearized mapping for data without noise. Shown on the left are the true 
model (dashed) and the predicted model (solid) at iterations 1, 3 and 10. Shown on the right are the true data (*) and the predicted data 
(solid). The normalized x2 misfit as a function of iteration (evaluated by assuming that the standard deviations are 5 per cent on the apparent 
resistivities and 2" on the phases) is shown at the bottom. 
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Figure 7. The convergence of the AIM-DS algorithm using the 1-D linearized mapping for data contaminated with Gaussian noise of standard 
deviations 5 per cent on apparent resistivities and 2" on the phases. Shown on the left are the true model (dashed) and the predicted model 
(solid) at iterations 1, 3 and 10. Shown on the right are the true data with error bars and the predicted data (solid). The normalized ,yz misfit as 
a function of iteration is shown at the bottom. 

proper choice of regularization parameter, f i  such that the 
appropriate data misfit is achieved. For the inversions 
considered here it suffices to find fi by trial and error. 

The preceding 1-D inversion will form the basis of the 
subsequent 2-D inversion so it is appropriate at this time to 
mention some characteristics of the inversion algorithm. We 
have used a LP package (Marsten 1981) designed to take 
advantage of a sparse tableau in order to minimize memory 
requirements. The user has some control over partial pricing 
and the candidate list which are required to avoid spurious 
degeneracy. The package also has the capability of starting 
with a predefined basis. We start a new model iteration with 
the final LP basis from the preceding model iteration. This 
can yield a decrease in CPU requirements of orders of 
magnitude, particularly when small changes are made to the 
models at each iteration. For the inversion of data with 

noise shown above n - 50, n, = 169, the initial iterations 
took -200 s, the final iterations took -5 s, with an average 
CPU time per iteration for 10 iterations of -70s. All 
computations presented in this paper were performed on a 
SUN 4/370 with 8 MB of memory. 

f.- 

5 A I M  INVERSION: 2-D 
MAGNETOTELLURICS 

The motivation for the AIM inversion technique is to 
develop a computationally efficient method for solving large 
multidimensional inverse problems. In the preceding section 
we demonstrated that the AIM inversion could be used 
successfully in the 1-D inverse problem. We now 
demonstrate the AIM inversion in 2-D magnetotellurics. 

We begin by defining the exact forward mapping which 
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follows from Maxwell’s equations. When the conductivity is 
a function of two coordinates, . a = a ( y ,  z), Maxwell’s 
equations decouple. By neglecting the displacement current 
and assuming harmonic time dependence elo‘ for the fields, 
we obtain the TE mode equations in terms of the strike 
component of the electric field Ex = E, (y ,  z, a): 

#Ex #Ex - + 7 - iwpoaE,  = 0, 
Sz2 Sy 

(47) 

and the TM mode equations in terms of the strike 
component of the magnetic field H, = H,(y ,  z, w ) ,  

For a thorough discussion of these equations, appropriate 
boundary conditions and numerical solution, the reader is 
referred to Stratton (1941), Kauffman & Keller (1983) or 
Ward & Hohmann (1988). 

To effect our forward mapping, the 2-D conductivity 
model is first cellularized with rectangular elements. The 
model is partitioned into ny horizontal cells and n, vertical 
cells and the 2-D conductivity a ( y ,  z )  is partitioned to an 
n, x ny array ujj, i = 1, . . . , n,; j = 1, . . . , ny. The thick- 
ness of the cells increases (usually logarithmically) with 
depth. For simplicity, lateral partitioning is uniform in the 
area of the survey and exponentially increasing outside the 
area of interest. The conductivity is assumed to be constant 
in each cell and we have chosen to put an observation site at 
the centre of each surface cell. The 2-D MT responses are 
computed using a transmission surface modelling code 
(Madden 1972). 

To define the inversion algorithm we must choose the 
characterization of the data, specification of the objective 
function to be minimized, and method of regularization. For 
the 2-D MT inverse problem we choose ln(a) as the ‘model’ 
for the inverse problem. Let us denote mij to be the 
cellularized array of ln(aij) values where the cellulanzation 
is the same as used for the exact forward mapping. We 
choose as data the amplitude and phase of the complex 
variable 

(49) 
j = l ,  . . . ,  n,,; 

specified at ny observation sites and at nf frequencies. 
We now turn to the important question of what is an 

appropriate for this problem. In the preceding 
examples for 1-D magnetotellurics the approximate 
mappings were based on the 1-D asymptotic relations: the 
conductance in the first skin depth was the controlling 
parameter. In the 2-D magnetotelluric problem we suggest 
that the primary physics at any measurement site is due to 
the conductivity structure directly under that site. The 
justification for this suggestion can be seen by examining the 

l = l ,  . . . ,  nf, 

sensitivity matrix, J, associated with the change in apparent 
resistivity (or phase) data, 6p,(y’, w )  resulting from a 
perturbation in conductivity, 6 a ( y ,  z), ie. 

In general, J is diagonally dominant with respect to y ,  y’ i.e. 
J deviates most significantly from zero when the datum 
p A ( y ’ ,  w )  is directly above the perturbed conductivity 
6 a ( y ,  z). This will be illustrated in an example presented 
later. It follows from this choice of the dominant physics 
that an approximate inverse mapping, ?’, for the 2-D 
magnetotelluric problem may be taken to be a composite of 
1-D inversions. Clearly, there are many other choices for 
?’ and that selected here may not be the best possible. 
However, it is physically well motivated, simple to 
implement, and builds on previous knowledge gained in the 
study of the 1-D magnetotelluric problem. 

Our use of an approximate inverse mapping which is 
based upon compositing 1-D inversion results is not new. 
Geophysics abounds with examples. Ryu, Morrison & Ward 
(1972) composited 1-D inversions of em soundings to 
construct a conductivity profile across the Santa Clara 
Valley; Vozoff (1972) generated a 2-D conductivity section 
across South Texas by performing layered model interpreta- 
tions of MT data, and in seismology, the plus-minus 
method of Hagedoorn (1959) is still used to estimate 
laterally varying thickness of the weathering layer. Smith & 
Booker (1988b) have recently used such a mapping in their 
iterative technique for constructing a 2-D conductivity 
profile that for MT data. 

Taking the approximate inverse mapping to be a 
composite of 1-D inversions requires an algorithm which will 
invert data at each station to generate 1-D conductivity 
profile beneath that station. We select as a 1-D inversion the 
AIM-DS algorithm presented in the last section and which 
gave the results shown in Figs 6 and 7. The objective 
function in equation (45) however, involves only data misfit 
and vertical variation of the conductivity model. Our 
ultimate goal is to minimize structure in both the vertical 
and horizontal directions; it is therefore necessary to alter 
the objective function so that lateral variation is included. 
Unfortunately, this is not a straight forward procedure. We 
have taken two different approaches. The first involves the 
incorporation of a ‘base-model’ which is defined by the user. 
Lateral variability is evaluated as deviations from this 
model. The second approach minimizes directly an objective 
function of the model by solving a system of equations 
which involves all of the unknown model elements. 

The inclusion of lateral variability in the objective 
function can be effected by introducing a base-model, m. 
The base-model may take a variety of forms depending 
upon what is known about the regional conductivity 
structure. It may be a 1-D conductivity model (that is, the 
same base-model is used for each station) or it may be a 2-D 
model that is estimated by some means. The base-model can 
be chosen at the outset and kept fixed for the entire 
inversion, or it may be updated after each iteration in the 
2-D inverse problem. For now, we include the possibility 
that the base-model can be updated and we write the 1-D 



objective function to be minimized at each station yj  as 

" 

The index I has been explicitly included to distinguish 
between iterations in the 1-D inversion and iterations in the 
2-D inversion which will be denoted by n. In equation (51) 
ep' is the predicted datum from a 1-D forward modelling 
and Ek is the standard deviation of the corresponding 
measured field datum. However the 'observed' datum eihs is 
meant to be interpreted in a generic sense. Depending upon 
whether an AIM-MS or AIM-DS solution is sought, the 
'observed' data will be the measured field observations, the 
accurate 2-D forward modelled data, or the measured data 
corrected by the estimated mapping error. The parameters /3 
and y control the trade-off between data misfit, vertical 
model variation, and horizontal model variation. The 
weighting w, is used to control the amount of lateral 
variation as a function of depth and cell thickness. The 
approximate inverse mapping for the 2-D problem is defined 
by solving the above 1-D inverse problem at each station 
and combining the resultant conductivities into a 2-D model. 

The introduction of a base-model from which model 
variation is measured is sometimes undesirable. This is 
particularly true in those circumstances where little is known 
about the structure under investigation and hence the 
base-model is merely guessed at. Since different base- 
models will yield different final solutions, a poor guess may 
predetermine a poor answer from the inversion algorithm. * 
Under such circumstances we prefer to minimize an 
objective function which includes variation in both spatial 
directions and does not include a base-model. The drawback 
to this approach is that a larger matrix system of equations 
needs to be solved. Fortunately the matrix is sparse and 
hence LP methods can still be used. 

Our formulation is based upon the use of an AIM-DS 
algorithm in which a 2-D linear approximate forward 
mapping is introduced. Since F is a linear operator it can be 
used to generate an approximate inverse mapping, ?I. A 
regularization term based on a 2-D objective function of the 
model will produce the desired result. The difficulty is in the 
specification of F. One possibility is suggested by the 
development of the 1-D AIM-DS equations (40-43). Let us 
consider the inversion algorithm for a particular model 
offset y = yo. We begin by linearizing, in the z direction, the 
exact forward mapping, F, about a model m(") which in this 
case represents a(y ,  2). This yields 

F(m; w)Iy=,,, = F[m("); w](,=,,, + I gld[m(n); Y O ?  z, 

x [m(yo, Z )  - m(")(yo, z)] dz + * a * ,  (52) 

where g,, is the 1-D kernel function associated with the 
conductivity a(y, z )  at model offset yo. Defining the 

* In an attempt to overcome some of these problems, an extensive 
investigation into the use of base-models with 1-D inversions 
interpolated for the 2-D MT inverse problem has been made by 
Smith (1988). 
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approximate forward mapping by keeping only the first two 
terms yields 

g(m;  W)I,=,,,= F[m("); w]ly=, /gld[m(");YO. z, w1 

[m(yo7 z )  - m(")(yo, z)I dz, (53) 
which can be rewritten as 

F ( m ;  w)lr=,.,,= A'"'(yo, w )  

+ Ig,d[m'"';y", 2, w]m(n) (y ( ) ,  z, dz.  (54) 

Substitution of equation (54) into equation (28) yields 

/g,,[rn(");y,, z, w]m("+ ' ) (z )  dz = eohs(yo, w )  

- e(")(y,, w )  + gld[m(");  yo, z, w]m(") (z )  dz. 

The 2-D MT inverse problem is now solved 

I 
equation (55) as 
nz nz  

2 = e$* - e j i )  + C ~,,p?), 
i i 

j = 1 ,  . . . ,  n,, k =1, . . . ,  2nf, 

(55)  

by writing 

(56) 

where Ajik is the integral of the kth 1-D kernel function g1d 
at model offset yj over the ith depth partition. We minimize 
an objective function 

n, n.-1 

(57) 

where cjk is the standard deviation of the datum t$". The 
problem of minimizing (57) subject to the constraints in (56) 
is solved using linear programming (LP) techniques. 

Having defined the inversion algorithms we now apply 
them to the inversion of 2-D MT data. A major goal in the 
presentation of these examples is to illustrate that 2-D 
conductivity structures can be generated using the AIM 
inversion even when only 1-D information is employed in 
the approximate inverse mapping. As such, we want to work 
with an algorithm which is most definitive in answering this 
question. This leads us to concentrate upon the AIM-DS 
formulation which minimizes of a global objective function 
of the conductivity. Examples of AIM inversions which 
make use of a base-model will be delayed until we treat the 
final example involving the recovery of two prisms buried in 
a two-layered earth. 

To illustrate the AIM-DS approach in which a global 
objective function is minimized we begin with a simple 2-D 
model consisting of a 10 8 m conducting prism in a resistive 
100 52 m background overlying a 10 8 m conductive 
basement (Fig. 8a). The model is cellularized into a 20 X 10 
conductivity array as shown in Fig. 8(b). The forward 
modelled responses have been computed for the apparent 
resistivity and phase for the TE, TM polarizations and for 
the rotationally invariant determinant average response 
(Berdichevsky & Dmitriev 1976) which we denote by DET. 
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Figure 8. The single prism model consisting of a 10 Q m prismatic 
body buried in a 100 Q m background overlying a 10 Q m basement 
is shown in (a). The cellularization of the single prism model 
consisting of n, X n, = 10 X 20 cells is given in (b). The cell marked 
by * is the cell which has its resistivity decreased by 5 per cent to 
produce the sensitivity plot shown in Fig. (11). 

These are shown in Fig. 9(a-c) for TE, TM, DET apparent 
resistivities and Fig. lO(a-c) for the phases. All computa- 
tions use apparent resistivity and phase data from nine 
frequencies from 1.0 to 0.00033Hz. For the purposes of 
inversion, the true data have an assigned standard deviation 
of 5 per cent for the apparent resistivities and 2" for the 
phases. 

Before proceeding to the inversion of the data we 
motivate the assumption made above that the sensitivity 
function J ( a ; y ,  y', z, o) is diagonally dominant with 
respect to y,  y ' .  To do this we show, in Fig. 11 the 
difference between the DET response for the model of Fig. 
8(a) and the same model with the cell marked by '*' 
decreased in resistivity by 5 per cent. It can immediately be 
seen that the dominant change in response occurs above the 
perturbed cell. 

Applying the AIM inversion as defined in equations 
(56,57) to the TE  mode data Figs 9(a) and lO(a), starting 
from a 100 B m half-space, yields a series of models m("). In 

Fig. 12(a, b) we show m(n) for n = 5, 10. Even at iteration 
n = 5 the general structure of the true model is clearly 
visible: the conductive prism is resolved and the background 
and the basement are delineated. The primary discrepancy 
between the true model and the predicted model is that the 
predicted background resistivity is lower than the true 
background resistivity under the conductive prism. Com- 
parison of Figs 12(a) and (b) show that the models m(') and 
m(lO) have very similar structure. This illustrates the typical 
behaviour of this AIM-DS inversion: the major features of 
the model are produced in the first few iterations and 
subsequent iterations produce smaller refinements. This is to 
be expected if the approximate inverse mapping F-' 
embodies the primary physics of the problem. In Fig. 12(c) 
(solid curve) we show the normalized x2  misfit, for the TE 
mode apparent resistivities, at each iteration. Specifically, at 
iteration n = 5, x$ = 0.21, and, at iteration n = 10 the misfit 
x', = 0.09. Although this inversion used only the TE mode 
data it is of interest to display the TM mode misfit, i.e. the 
misfit between the true TM response and the TM response 
computed from models generated by this TE mode 
inversion. This is shown in Fig. 12(c) (dashed). The TM 
mode apparent resisivities show a much worse misfit than 
the TE mode apparent resistivities; this might be expected 
since they were not included in this inversion. Finally, it 
shouId be noted that this algorithm is extremely robust with 
respect to the starting model. For example, starting with a 
half-space model of lo4 52 m or 1 P m gives the same series 
of models for n 3 5. 

Next we apply the AIM inversion to the TM mode data 
(Figs 9b, lob), starting from a 100Qm half-space. This 
yields a series of models m'") of which we show mfn) for 
n = 5, 10 in Fig. 13(a, b). The general structure of the true 
model is clearly observed in the predicted model mc5). As 
the iterations proceed the amount of structure decreases 
(compare rn('O) with m 9 .  This observation, together with 
the fact that the x2  misfit for models m(') and m(lO) are 
essentially the same, gives an important insight to this AIM 
inversion. This AIM-DS inversion, in the first few iterations, 
finds a model that greatly reduces the data misfit and in 
subsequent iterations the model is refined in accordance 
with the model norm in the objective function. In Fig. 13(c) 
(solid curve) we show the normalized x2  misfit for the TM 
mode apparent resistivities at each iteration. This is the 
analogous plot to Fig. 12(c). The TE mode misfit is shown in 
Fig. 13(c) (dashed). It is interesting that the TE mode data 
are fit somewhat better than the TM mode data even though 
only the latter were used in the inversion. 

Finally, applying the AIM inversion to the DET mode 
data Fig. (9c, lOc), starting from a 100 B m half-space, gives 
the models m(5) and m"" shown in Fig. 14(a, b). Again we 
observe that the predicted model at iteration n = 5 shows 
the general features of the true model. At iteration 10 the 
predicted model is an excellent 'minimum structure' 
representation of the true model. This emphasizes that the 
DET mode data is a good data mode for an AIM inversion 
which is based upon a composite of 1-D inversions; this 
supports the conclusions of Ranganayaki (1984) about the 
usefulness of DET data. In Fig. 14(c) (solid curve) we show 
the normalized x2 misfit, for the DET mode apparent 
resistivities, at each iteration. Specifically, at iteration n = 5 
the misfit x',=O.51 and at iteration n = 10 the misfit 
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Figure 9. The apparent resistivity response for the single prism model as function of log,, period and offset. The upper, middle, and lower 
plots show the TE, TM and DET mode responses respectively. 

x$ = 0.26. Also shown in Fig. 14(c) (dashed) are  the TE and 
TM mode misfits. These data fit nearly as well as they were 
in the individual inversion shown in Figs 12 and 13. 

In order to demonstrate the robustness of this algorithm 
we have taken the DET mode data and added Gaussian 
independent noise of standard deviation 5 per cent to  the 
apparent resistivities and 2” to  the phases. We denote this as 
NDET data. Applying the AIM inversion to  the N D E T  data 
starting from a 100 Q m half-space, gives the models shown 
in Fig. 15(a,b) for predicted models m(“)  at n = 5, 10. The 
misfit a t  iteration n = 5 is xL = 1.8 and at  iteration n = 10 is 
&= 1.3. These results indicate that the algorithm is robust 

and produces a good representation of the true model even 
in the presence of noise. 

The preceding inversion results were all produced with 
the weights 

wi = {z ivz i+l  - zj, i = 1, . . . , n, - 1, 
W ” * - l ,  2 =n,. 

There is an interesting theoretical question regarding the 
appropriate choice of weights and parameters for this 
problem; however, our approach on  this point is pragmatic: 
we choose 6, y by trial and error and choose wi so that there 
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Figure 10. The phase response, in degrees, for the single prism model. The upper, middle, and lower plots show the TE, TM and DET mode 
responses respectively. 

is less horizontal variation at greater depths and less 
variation between vertically thick cells than there is between 
thin cells. These choices lead to a preference for model 
variation near the surface. A useful consequence of this 
weighting is that static shift effects are automatically 
corrected in this inversion scheme because small near 
surface conductivity anomalies are favoured relative to large 
deep anomalies. This has proved extemely useful in the 
inversion of field data with this algorithm. 

To summarize our observations from the single prism 
model we note first that comparison of the inversion of TE, 

TM, DET mode data clearly indicate that the DET mode 
data is an excellent choice of data for AIM inversion which 
uses an approximate inverse mapping based on a composite 
of 1-D inversions. Second, we note that the AIM algorithm 
defined by equations (56), (57) shows rapid convergence to 
a model that ‘fits the data’ then slower convergence to a 
model with ‘desired structure’. Third the algorithm is robust 
in the presence of noise. 

The preceding inversions demonstrated how the AIM 
technique could be formulated to invert 2-D magnetotelluric 
data. The single prism test model was useful in illustrating 
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Figure 11. The relative change in apparent resistivity when the cell marked in Fig. (8b) is decreased in resistivity by 5 per cent. The quantity 
[log,, p,(pert) - log,,, p,(base)]/log,, pA(pert)  is plotted where pert refers to the perturbed model and base refers to the initial model. 

several important points about the inversion algorithm and 
about 2-D magnetotellurics in general; however, it was 
limited to a relatively small scale having only 200 parameters 
and 180 data. We remove this final limitation and now apply 
the AIM inversion to a larger scale problem having 900 data 
and 1500 model parameters. We use the same inversion 
scheme as in the single prism model; however, in this 
example the model we choose has n,, = 50 horizontal cells 
and n, = 30 vertical cells. The model consists of a 1000 Q m 
resistive prism and a 10 Q m conductive prism in a 100 Q m 
background all overlying a 10 Q m conductive basement (Fig 
16a). This model was chosen mainly because of its similarity 
with models already used by other authors (Smith & Booker 
1988b; deGroot-Hedlin & Constable 1989). It is hoped that 
a comparison of the same model inverted by different 
techniques will provide information about the strengths and 
weaknesses of different methods. The cellularization of the 
model (Fig. 16b) is similar to that used in the single prism 
model: logarithmically increasing cell thickness with depth; 
constant cell width in the region of interest; a 'hidden' 
border of cells of exponentially increasing dimension to 
provide appropriate boundary conditions. When referring to 
data associated with this model we consider nine frequencies 
in the range 1.0, to 0.00033 Hz. 

The single prism test model indicated that the DET mode 
data was a good choice of data for inversion using an 
approximate inverse mapping based on a composite of 1-D 
inversion. Consequently we invert only the determinant 
average mode data for the two prism model. The data to be 
inverted, cobs, are shown in Fig. 17(a,b) for the apparent 
resistivity and phase. For this model we invert two sets of 
data; the exact DET data, and data with Gaussian 
independent noise added, NDET data. The noise is the 
same as the previous examples: the standard deviations are 
5 per cent on the apparent resistivities; 2" on the phases. 

We begin by applying the AIM-MS and AIM-DS 
inversion procedures when the approximate inverse 
mapping incorporates a base-model. To estimate a 

base-model we carried out a 1-D AIM-DS inversion at each 
site (using the algorithm that generated the results in Fig. 7) 
and averaged the results to find a single conductivity depth 
function. This 1-D conductivity was designated as the 
base-model for each station. For this example, the resultant 
base-rnodel was nearly identical to the 1-D conductivity 
represented by the surface layer and underlying half-space. 
This similarity resulted because the effects of the conductive 
and resistive prisms tended to cancel in the upper layer, and 
because the LP minimum variation model recovered a layer 
over a half-space when data away from the prisms were 
inverted. 

The accurate DET data were inverted with the AIM-MS 
algorithm described by equation (15) where F-' is the 
composite of 1-D inversions obtained by minimizing 
equation (51). The model obtained after six iterations is 
shown in Fig. 18(a). The normalized x 2  misfit, again 
assuming an error of 5 per cent on the apparent resistivities 
and 2" on the phases, is plotted in Fig. 18(c). By iteration 6 
& = 0.15 for the apparent resistivities and x', = 0.096 for 
the phases. Overall, the correspondence between Figs 18(a) 
and 16(a) is quite good. Both prisms are well imaged, and 
the background conductivities in the upper layer and in the 
bottom half-space are well approximated. There are artifacts 
however. The conductive prism is smeared out in both the 
lateral and vertical directions and the resistive prism has 
moved somewhat toward the surface and exhibits a drop-out 
beneath. 

The application of the AIM-DS algorithm which uses 
equation (27), specifies F-l to be the composite of 1-D 
inversions obtained by minimizing equation (51), and uses 
the same base-model as described above, is shown in Fig. 
18(b). The result is somewhat better than that observed in 
Fig. 18(a). The prisms are exceedingly well represented. 
The normalized x2 misfit error for successive iterations is 
shown in Fig. 18(d). The convergence is monotonic and by 
iteration 6, & = 0.098 for the apparent resistivities and 
x', = 0.031 for the phases. 
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Figure 12. The TE mode inversion for the single prism model. The upper plot shows the predicted model at iteration 5 and the middle plot 
shows the predicted model at iteration 10. The lower plot shows the normalized xz misfit as a function of iteration. The dashed line indicates 
the fit to the TM mode data even though they are not included in the inversion. 

To summarize, in these inversions where the base-model 
is essentially the background conductivity, the AIM 
technique has worked well when the approximate inverse 
mapping is relegated to be composed of 1-D inversions. 
Another attractive feature of the two AIM inversions 
portrayed in Fig. 18 is the computational efficiency. 
Application of an approximate inverse mapping (which 
consisted of 50 1-D inversions) required only about 500 s on 
a SUN 4/370 workstation. A complete iteration in the 
inversion, including accurate forward modelling, required 
about 1000 s on average. 

We now turn our attention to the AIM-DS inversion 
employing the approximate forward mapping of equation 
(54). In contrast to the preceding inversion which was based 
on optimizing the objective function of equation (51), this 
inversion is based on optimizing the objective function of 
equation (57) and does not require a base model. 

First, we apply the inversion algorithm (equations 54, 57) 
to the exact data, starting from a uniform half-space. The 
models, m("), produced by the inversion for iterations 
n = 5,100 are shown in Fig. 19(a, b). The inversion was 
performed with the weights wi as defined in equation (58). 
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Figure W. The TM mode inversion for the single prism model. The upper plot shows the predicted model at iteration 5 ,  the middle plot shows 
the predicted model at iteration 10. In the lower plot the normalized x2 misfit as a function of iteration is indicated by the solid line. The 
dashed line indicates the fit to the TE mode data even though they are not included in the inversion. 

After five iterations the predicted model clearly shows the 
structure of the true model. The conductive and resistive 
prisms are resolved and the basement is clearly delineated. 
The normalized misfit at this iteration is & = 0.12 for the 
apparent resistivity, and 2% = 0.04 for the phases. Clearly 
this is a very good fit to the data. Fig. 19(c) shows the 
normalized misfit as a function of iteration. After further 
iterations, the inversion produces models with less structure. 
For example, the model produced at iteration n = 100 more 
clearly shows the two prisms and the conducting basement, 
and has very little extraneous structure. The normalized 
misfit for the apparent resistivity is &= 0.012 and for the 

phase &=0.0008. The final inversion result., Fig. 19(b), 
'fits the data' and shows an excellent resemblance to the true 
model Fig. 16(a). The background and basement resistivities 
are uniform and well estimated; however, there are some 
discrepancies in the shape and resistivities of the two prisms. 
First, the predicted conductive prism has slightly less depth 
extent and slightly higher conductivity t'han the true 
conductive prism. This is due to insufficient frequency 
domain sampling and the tendency of the norm equation 
(57) to minimize structure. Second, for similar reasons, the 
predicted resistive prism has about twice the depth and 
lateral extent of the true resistive prism and about 1/4 the 
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Figure 14. The DET mode inversion for the single prism model for data without noise. The upper plot shows the predicted model at iteration 
5 ,  the middle plot shows the predicted model at iteration 10. The lower plot shows the normalized x2 misfit as a function of iteration. The solid 
line refers to the DET data; the dashed lines monitor how well individual TE and TM data were fit. The A's and 0 ' s  correspond to the TE and 
TM modes respectively. 

conductivity. It is also well known that a resistive inclusion 
is hard to image in the TE mode and consequently, when 
combined with the TM mode data to produce the DET 
mode data, is somewhat blurred. 

Second, we apply the inversion algorithm (equations 
54,57) to the NDET data, i.e. the data with noise added. 
The results of inverting the NDET data are shown in Fig. 
20. The models, m(") are shown for iterations n = 11, 37. 
After 11 iterations with wi as defined by equation (58), we 
obtain the model shown Fig. 20(a). It generates a 

normalized misfit of & = 1.2 for the apparent resistivities, 
and of xk=  1.0 for the phases. Already the general 
structure of the true model Fig. 16(a) is clearly evident in 
Fig. 20(a). After 37 iterations a model is obtained with less 
structure and better resolution of the two prisms. The effect 
of the noise on the inversion has been to generate small 
perturbations in the background resistivity near the surface, 
while leaving the large-scale structure practically unchanged. 
The model m(37) has a misfit xL = 1.2 for the apparent 
resistivities and &= 1.0 for phases. In Fig. 20(c) we show 
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Figure 15. The NDET mode inversion for the single prism model for data with noise. The upper plot shows the predicted model at iteration 5 ,  
the middle plot shows the predicted model at iteration 10. The lower plot shows the normalized x2 misfit of the apparent resistivities as a 
function of iteration. 

the normalized x2  misfit for the apparent resistivity and 
phase as a function of iteration. This inversion result shows 
that even in the presence of noise the characteristic 
behaviour of this AIM algorithm is the same; the first few 
iterations use the primary physics of the approximate 
inverse mapping F-' to produce a model which 
approximately fits the data, then subsequent iterations 
produce a model with less structure. 

An analysis of the inversion results for the two prism 
model shows that this AIM-DS inversion, which minimizes a 

2-D objective function, can be used very successfully on 
large-scale problems. We emphasize that only 1-D kernel 
functions have been used thereby eliminating the need for 
the computationally intensive process of computing 2-D 
sensitivities. The two prism model inversion with 1500 
parameters and 900 data leads to an LP solution which has 
to be computed at each iteration and this is computationally 
demanding, taking on average approximately 1 hr of 
SUN4/370 CPU time per iteration. Even though reusing the 
LP basis obtained from the previous iteration decreases 
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a added to generate a final solution; this tends to roughen the 
model and is undesirable. In the AIM-DS formulation a 
model which minimizes a global objective function can be 
found; this is a major advantage. The second negative 
aspect of AIM-MS is that there are computational 
difficulties because the model perturbation is the difference 
between the application of a specific F-’ to the 
observations and to the predicted data, viz. equation (11). 
The definition of ?’ must include any regularization that is 
applied, and any model produced by application of p-’ 
inherits artifacts of that regularization. It is computationally 
difficult to ensure that the regularization is compatible for 
the two applications of ?’ and that an appropriate 
perturbation step is thereby computed. 

There are many questions about existence and uniqueness 
of a solution and convergence that need to be explored. At 
a basic level however, it is clear that existence, uniqueness, 
and convergence to a solution using a approximate inverse 
mapping, e-’, are related to the fixed points of the model 
space and data space operators frobs + A, and eobs + Ae and 
the properties of these operators in the neighbourhood of 
fixed points. Whilst an understanding of these properties is 
ultimately desirable, the complexity of F-’ is usually such 
that an empirical approach to these questions, based on 
physical understanding of the process F, is all that is 
possible for realistic problems. We have shown in this paper 
that such an approach is feasible. 

The formulation of the AIM-DS method and the 
realization that convergence is ultimately tied to properties 
of fixed point algorithms have provided essential insight into 
model construction in non-linear inverse problems. In an 
attempt to extremize a global objective function of the 
conductivity, Oldenburg (1983) linearized the 1-D equations 
and rearranged them so that modified data were a linear 
functional of the model to be determined. He gave no 
justification for why, and under what conditions, that 
reformulation might converge. The derivation of the 
AIM-DS algorithm presented here offers the lacking insight. 
Oldenburg’s approach is properly thought of as being a 
special case of the AIM-DS algorithm where the 
approximate forward mapping is given by the sum of a 
constant and an inner product of the Frechet kernel with the 
model. Convergence of the solution will depend upon the 
fixed point properties of eobs + Ae. Consequently, despite 
the fact that global optimization seems to have worked well 
for the 1-D MT problem when the Frechet kernel is used in 
a forward mapping, the intriguing question remains as to 
whether different approximate forward mappings might be 
even better. 

The general question ‘what is the best approximate 
inverse mapping?’ for any particular problem is un- 
answerable at this time. We have adopted a rather 
philosophical approach and attempted to break the problem 
into ‘primary’ and ‘residual’ physics. Our examples with 
electromagnetic induction have illustrated that this may be a 
good choice and that it provides a solid foundation for the 
development. This may mean that the complete inversion of 
an multidimensional problem can be achived using, as an 
approximate inverse mapping, a full inversion in a lower 
dimension. The results achieved in the 2-D MT inversion 
are rather remarkable in this regard. The approximate 
inverse mappings used only 1-D information. No explicit 
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n, x n, = 30 x 50 cells is given in (b). 

dramatically the CPU time per iteration as the inversion 
progresses, work is still needed to optimize this phase of the 
inversion. 

6 DISCUSSION AND CONCLUSIONS 

The AIM inverse offers considerable promise as a general 
method for solving large-scale inverse problems. The 
positive aspect is that which motivated the research to begin 
with, viz. the development of a computationally efficient 
inversion method which requires neither multidimensional 
linearization of the equations nor subsequent solution of a 
very large system of matrix equations. The technique is still 
in its infancy; however, from the preliminary work done to 
date there are some general conclusions that can be drawn, 
and strengths and weaknesses that can be delineated. 

In the general formulation of the AIM inversion method 
we began with the concept of an approximate inverse 
mapping. This approximate mapping was used in two 
general iterative methods: AIM-MS where iterative 
corrections were made in model space and AIM-DS where 
iterative corrections were made in data space. Although 
both methods can produce good results we prefer AIM-DS. 
There are at least two negative aspects of AIM-MS that lead 
us to this conclusion. Firstly, there is no direct way to 
incorporate a desired norm of the final model into the 
AIM-MS inversion. Perturbation functions are successively 
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Figure 17. The DET mode apparent resistivity (upper) and phase (lower) response for the two prism model as function of log,,, period and 
offset. 

information about lateral conductivity variation was 
included; nor was there any incorporation of 2-D physical 
effects such as the accumulation of electrical charges and the 
generation of laterally varying currents which are present 
in TM and TE mode induction problems. Yet the algorithms 
converged to excellent 2-D models. With respect to the 
choice of an approximate inverse mapping used in the 
AIM-DS algorithm incorporating a linear approximate 
forward mapping, it would seem that even simple 
modifications to the 1-D inversion, such as incorporating the 
2-D electric fields (which are available at no cost from the 
forward modelling) into the kernel functions (e.g. Smith & 
Booker 198%) would improve the mapping; including an 
approximation to the true 2-D sensitivities should do even 
better. We have deliberately chosen not to investigate such 
refinements here so that the capabilities of the AIM 

inversion could be explored when the simplest approximate 
inverses were used. 

The formulations of the inversion which require a 
base-model have both advantages and disavantages. The 
disadvantage becomes immediately apparent in those 
circumstances where nothing is known a priori about the 
model. In such cases it is difficult to specify the base-model. 
Since the constructed model will be influenced by the 
base-model, a poor estimate will manifest itself in a poor 
inversion result. The advantages of the base-model inclusion 
however, are that the inversion can be carried out very 
quickly, as illustrated by the 2-D inversions presented here. 
Also, there are Circumstances, such as in near-surface 
investigations where borehole information is available, when 
sufficient information may be available to construct a 
base-model. 
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Figure 18. The AIM-MS and AIM-DS base-model inversions for the two prism model. The inversion makes use of a 1-D base-model obtained 
by averaging minimum structure 1-D inversions of the data. The AIM-MS model shown in (a) was obtained after six iterations. The AIM-DS 
model, obtained after six iterations, is shown in (b). The normalized x2 misfit for the apparent resistivities (solid line) and phases (dashed line) 
as a function of iteration for the AIM-MS and AIM-DS inversions are shown in (c) and (d) respectively. 

In our opinion there is a hierarchy of techniques to be 
used in solving any inverse problem. The best involves 
generation of the complete sensitivity matrix, using these 
kernels as an approximate forward mapping in an AIM-DS 
algorithm, and computing a new model by minimizing an 
objective function subject to the data constraints. This 
involves solving a large system of equations. This approach, 
which is the straightforward extension of techniques used to 
solve 1-D inverse problems is conceptually the simplest to 
implement but is computationally demanding. As the 
problem becomes larger it becomes necessary to make 
sacrifices. Depending upon the problem, it may be that 
computation of the sensitivities is too demanding to be 
carried out, or it may be the inversion of the large matrix 

which is the limiting factor. We have illustrated in the 2-D 
MT inversion an example where the computations of the 
complete 2-D sensitivities may be omitted and that an 
objective function minimization leads to an excellent model. 
That is, the model norm appears to be able to drive the 
algorithm to the right kind of model even if very 
approximate sensitivities are supplied. At an even lower 
level of computational requirements, we have inverted 2-D 
MT data by carrying out many individual 1-D inversions 
when a base-model was incorporated into the objective 
function. In this approach neither correct sensitivities nor 
the solution of a large matrix system was required. For the 
2-D MT problem where 1500 parameters were estimated 
from 900 data, we found all of the inverse solutions 
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presented here were completely tractable using a deskside 
workstation. 

Although this paper has dealt with the AIM inversion 
applied to the magnetotelluric problem we emphasize that 
this inversion technique can be applied to any inverse 
problem provided that two crucial components are 
available. The first component is the ability to apply F and 
thereby to compute accurate forward model responses. The 
second necessary component is the existence of an 
approximate inverse mapping, F-l. Thus any inverse 
problem for which F is known and for which a reasonable 
guess can be made for F-' is amenable to the AIM 
inversion technique. 

In summary, the results of the AIM inversion are very 
encouraging and lead us to believe that large-scale 
geophysical inverse problems can be solved without the 

need to carry out a complete linearization and without the 
need to solve a large system of equations. We are therefore 
optimistic that our inversion procedures ultimately will 
prove useful in solving inverse problems which involve 
thousands of data and models with millions of unknowns. 
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