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Abstract. Nonlinear inverse problems in electromagnetics are typically solved by 
dividing the Earth into cells of constant conductivity, linearizing the equations about a 
current model, computing the sensitivities, and then solving an optimization problem to 
obtain an updated estimate of the conductivity. In principle, this procedure can be 
implemented for any size problem, but in practice the computations involved may be 
too large for the available computing hardware. In electromagnetics this is currently 
the situation irrespective of whether the interpreter has access to a workstation or a 
supercomputer. In addition to the demands imposed by the need to compute the 
predicted responses from a specified model (i.e., invoking a forward mapping) there are 
two computational roadblocks encountered when solving an inverse problem: (1) 
calculation of the sensitivity matrix and (2) solution of the resultant large system of 
equations. If either of these operations cannot be carried out in reasonable time then 
an alternate strategy is required. Such strategies include generalized subspace methods, 
conjugate gradient methods, or approximate inverse mapping (AIM) procedures. The 
theoretical foundations and computational details of these strategies are explored in 
this paper with the ultimate goal that the inversionist, after assessing his/her computing 
power and knowing the time required to perform forward modeling, can generate a 
methodology by which to solve the problem. The methodologies are compared 
quantitatively by considering an archetypal inversion problem in electromagnetics, the 
inversion of dc potential data to recover the electrical conductivity. 

1. Introduction 

In a typical inverse problem we are provided with 
N data df bs , some estimate of their uncertainties ej, 
and mappings of the form dj = •j[m] which express 
the relationship between the jth datum dj and a 
model m. With the usual constitutive relationships, 
and assuming a harmonic time dependence e køt, the 
operator • for electromagnetic problems, defined 
on a finite or infinite domain D, is specified by the 
equations 

V x E = -iwlxH + Ms 

V x H = (rr + iwe)E + Js 

(1) 

where E and H are the electric and magnetic field 
strengths due to imposed electric and magnetic 
current densities Js and Ms. The sources on the 
right-hand side may be natural or artificial, and the 
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electromagnetic problem is solved by satisfying (1) 
subject to boundary conditions applied on OD of the 
form 

.(a x u) +/•(a x a x v x u) = s (2) 

where a,/• are constants, S is a surface magnetic or 
electric current, and U can be either E or H. The 
parameters of interest in the inversion can be any 
combination of/x, e, and rr, but in this paper only rr 
is assumed to be variable. The data may be individ- 
ual field values or ratios of fields, such as imped- 
ances or admittances. They constitute constraints 
upon the model, which we denote generically by the 
symbol m, and in the inverse problem we attempt to 
find an m which acceptably reproduces these data. 
The fundamental difficulty is that of nonuniqueness; 
there are generally infinitely many models which 
adequately reproduce the observations. Practical 
inverse problems are therefore formulated by first 
designing a specific objective functional of the 
model and then minimizing this functional subject 
to the data constraints. 

1081 



1082 OLDENBURG: ELECTROMAGNETIC INVERSE PROBLEMS 

The reality of inversion is the following. Any 
inversion methodology involves a sequence of de- 
cisions by the inverter so that a single model can be 
constructed. The main decision points concern the 
data to be inverted and the model objective function 
to be minimized. Processing and acquisition diffi- 
culties make it difficult in general to specify data 
and their error statistics. Yet when an inversion is 

carried out, the data, estimated errors, and desired 
fit criterion are specified at the outset and assumed 
fixed. The next major hurdle faced by the inversion- 
ist is to specify the model objective function to be 
minimized. Is a "blocky" or "smooth" model 
desired? Is there a base model and if so, what is it? 
If a final model is to be close to a base model and yet 
smooth, what is the relative ratio for these quanti- 
ties? What are the additional multiplicative func- 
tions in the norm components needed to get desired 
results (e.g., progressively more lateral smoothing 
with increased depth)? Alteration of any of the 
above factors dictates that the data must be rein- 

verted. Consequently, a particular data set must 
ultimately be inverted not once, but many times, 
and practicality demands that the inversion be effi- 
cient. 

General Gauss-Newton linearized solutions can, 
in principle, be used to solve electromagnetic (EM) 
problems in two and three dimensions. An example 
of this is the inversion of magnetotelluric data in 
two dimensions by deGroot-Hedlin and Constable 
[1990]. The practical issue, however, is the amount 
of computation required as the number of cells and 
data increases. The roadblocks are (1) forward 
modeling; (2) calculation of sensitivities; and (3) 
solution of a large matrix. As the size of the 
problem increases, the computational burdens in 
these areas are exacerbated and eventually the 
inverter tires of waiting for the output, even when 
he/she has access to a large computer. 

This paper presents alternate methodologies for 
solving inverse problems. It is not meant to be a 
review of existing techniques but is a merely a 
perspective which focuses upon methods that we 
have used and developed at the University of Brit- 
ish Columbia Geophysical Inversion Facility over 
the last few years. The paper begins with a general 
background to our approach of the inverse problem 
and illustrates the nonuniqueness inherent in EM 
inverse problems by introducing the dc resistivity 
problem which is a thematic example for this paper. 
Three inverse methods are then presented in order 

of decreasing computational burden. They are a 
subspace approach which reduces the size of the 
matrix system to be inverted, a conjugate gradient 
method which obviates the need to compute and 
subsequently invert the full sensitivity matrix, and 
approximate inverse mapping methods which re- 
quire only one forward modeling per iteration. The 
paper concludes with summary comments. 

2. Basic Equations and Nonuniqueness 
in Inversion Results 

The fundamental difficulty in solving the inverse 
problem is the nonuniqueness of the solution. Prac- 
tical inverse problems are therefore formulated by 
first designing a specific objective functional of the 
model and then minimizing this functional subject 
to the data constraints. Generally, the objective 
function is tailored so that the solution from the 

inverse algorithm is "close" to a prespecified base 
model or reference model and also that the con- 

structed model has "minimum structure" in some 

sense. A particularly useful objective function for a 
three-dimensional model in a Cartesian coordinate 

frame is 

• m (m) = a s fvol ws(m - mo) 2 dv 

-}- Ol x Wx dv 
ol 0 X 

+ ay Wy dv 
ol Oy 

+ a z w z dv 
ol OZ 

(3) 

In (3) the functions Ws, Wx, Wy, and w z are specified 
by the user and the constants as, ax, ay, and a z 
control the importance of closeness of the con- 
structed model to the base model m0 and control the 
roughness of the model in the three directions. The 
reference model can be omitted from the deriva- 

tives terms in (3) if desired. Pragmatic issues gen- 
erally force us to parameterize the model as 

M 

rn = E milPi (4) 
i=1 
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where •i are basis functions defined on D and m i 
are constants. In this paper the basis functions are 
chosen to be rectangular prisms of unit amplitude, 
and hence m i is the value of the model in the ith cell. 
Because our intent is to find a model which mini- 

mizes a specific objective function, the inversion 
results should not depend upon the model parame- 
terization. In an attempt to accomplish this we 
introduce a fine discretization of the model, and 
hence the number of cells is large. especially in 
three-dimensional models. Using (4) and numerical 
approximations to derivatives allows the objective 
function in (3) to be written as 

½km(m) = (m- mo)•{a•WsrW• + a•W•rW• + ayWyrWy 

+ azWz•Wz}(m - m0) (5) 

where m, m0 • R m and Ws, Wx, Wy, and W z are 
M x M matrices. Equation (5) can be written 
generically as 

•bm(m) (m mo) v r (m mo) IlWm(m mo)ll 2 = _ W,nW,n - _ _ 

(6) 

We will use this form for most derivations even 

though W m may not be explicitly computed. There 
is no loss of generality in doing this because our 
final computations require only Wm•Wm and this is 
easily evaluated from (5). 

With the same model parameterization, the for- 
ward mapping is written as d = •[m] where d E 
R N. The inverse problem is now formulated as the 
optimization problem: Minimize 

(• m = IlWm (m - m0)II 2 

subject to 

qfia = IWa(d - døbs)ll 2 = qfi• (7) 

where •ba denotes a misfit criterion, W a is an N x N 
data-weighting matrix, and •b• is the target misfit 
value. If the noise contaminating thejth observation 
is an uncorrelated Gaussian random variable having 
zero mean and standard deviation ej, then an ap- 
propriate form for Wa is Wa = diag {1/el,''', 
1/eN}. With this assumption, •ba is a random vari- 
able distributed as chi-square with N degrees of 
freedom. The expected value of •ba is therefore 
approximately equal to N and, accordingly, the 

model sought from the inversion algorithm should 
reproduce the observations to about this value. 

The optimization in (7) is solved by finding an m 
and a Lagrange multiplier/x such that the objective 
function 

tk(m) = •bm(m) + tx-•(tka(d) - tk}) (8) 

is minimized. (For notational convenience we use 
/x -• but will refer to/x as the Lagrange multiplier.) 
The problem is nonlinear, so iteration is required. 
Let m © be the model at the nth iteration, and let 
d © denote the predicted data. We search for a 
perturbation /Sm which reduces (8). Performing a 
first-order Taylor expansion of the data about m © 
yields 

d(m (n) -3- 8m) = d (n) q.. jSm (9) 

where the N x M sensitivity matrix J has elements 

Odi 
J•j = • (10) 

Om• 

The perturbed objective function is 

qb(m © +/Sm) = IlWm(m © +/Sm- mo)112 

+/•-l{llWa(d(n) + J/Sm- døbS)[12 - qfi•) (11) 

Differentiating with respect to the parameters 
and setting the resultant equations to zero yields 

B/Sm = b (12) 

where 

B =/_•WmTWm -3- JrW•WaJ 

T b = -IXWmWm(m © -- m0) - JrW$Wa(d(n) - d øbs) 

Differentiating with respect to the Lagrange multi- 
plier requires that 

IlWa(d © + J•m- døbS)112 -- qb• (13) 

The value of/x may be found by simultaneously 
solving (12) and (13); this assumes that the linear- 
ized estimate of the misfit is an adequate approxi- 
mation to the true misfit. Alternatively, /x may be 
found by requiring 

IlWa(d- døbS)ll2--IlWa[•(m © +/Sm)- døbS)ll = • 

(14) 
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Either approach requires a line search. This is an 
important aspect of the inversion, but discussion is 
postponed until later. The iterative process is con- 
tinued until convergence is reached. That is, a 
model is found which produces a misfit equal to the 
target value and the model objective function un- 
dergoes no further decrease with successive itera- 
tions. This does not guarantee that a global mini- 
mum has been found. 

Many inverse practitioners still consider the pri- 
mary goal of the inverse problem to be that of 
finding a model which fits the data. The ill-posed- 
ness of the inverse problem is recognized, and some 
form of regularization is incorporated. Often, how- 
ever, too little attention is paid to the explicit form 
of the regularization. The inherent nonuniqueness is 
generally so large that the first step in solving any 
inverse problem should be to design the model 
objective function. The objective function should 
be such that it produces a model with characteris- 
tics that are in accordance with the general Earth 
structure, is consistent with a priori information 
about the model, and is interpretable. The objective 
function in (3) has the flexibility to accomplish this. 
To emphasize this philosophy, we consider the 
inversion of an EM data set with different model 

objective functions. 
In this paper a formalism and specific equations 

are presented to invert general types of EM data. 
However, to illustrate each of the techniques we 
revert to a time invariant problem, that of inverting 
dc resistivity data. One reason for this choice is that 
the dc fields are similar to fields obtained in low- 

frequency electromagnetic surveys, and insight 
about the inversion algorithms obtained by invert- 
ing dc resistivity data can be applied to frequency 
domain problems. Another reason is that dc inver- 
sion is made tractable because of efficient forward 

modeling in two and three dimensions [e.g., Lee, 
1975; Hohmann, 1975; Dey and Morrison, 1979a, b]. 
This has spawned a variety of inverse solutions for 
the dc resistivity problem. In addition to work 
presented here, the interested reader is referred to 
Pelton et al. [1978], Tripp et al. [1984], Smith and 
Vozoff [1984], Sasaki [1989], and Ramirez et al. 
[1993] for examples of two-dimensional inversions 
and to Park and Van [1991] for a three-dimensional 
inversion. 

The governing equation for dc resistivity is ob- 
tained by letting w = 0 in (1). Setting M• = 0 yields 
V x E = 0 from which it follows that E = -Vfl 

where 12 is the electric scalar potential. Taking the 
divergence of the H field equation yields 

v. (vvn) = v. Js (15) 

We may use (15) directly or, if a current of strength 
I is input at rs then V.J s = -I/5(r - rs) and (15) 
becomes 

V. (•VI2) = -IO(r - rs) (16) 

The boundary conditions for the potential are 
Oil/On -- 0 at the Earth's surface and 11 -• 0 as 

In a dc survey an electric current is input to the 
ground, and the electric potential is measured away 
from the source. In the field, four electrodes are 
used. Two are connected to the current generator to 
provide a closed circuit for the current and two 
electrodes are needed for measuring a potential 
difference. However, because of superposition we 
can consider a pole-pole experiment in which one of 
the current electrodes and one of the potential 
electrodes are move to "infinity." This geometry 
can be well approximated in field acquisition and 
can be modeled theoretically by (16). These are the 
data which will be inverted in this paper. 

To illustrate nonuniqueness we consider the two- 
dimensional conductivity structure shown in Plate 
la. It consists of a surface layer with variable 
conductivity, a wedge of low-conductivity material 
at the bottom left, and a centrally located conduc- 
tive prism. The model, consisting of 1296 cells, has 
been slightly smoothed to make it less artificial. The 
geophysical survey is carried out by placing surface 
electrodes every 10 m in the interval x = (-100 m, 
100 m). Each of the 21 electrode positions can be 
activated as a current site, and when it is, electric 
potentials are recorded at the remaining electrodes. 
The forward modeling is carried out using a finite 
difference algorithm [McGillivray, 1992]. Each of 
the 420 data is contaminated with Gaussian noise 

having a standard deviation of 5% of the datum 
value. 

The goal of the inverse problem is to recover 
estimates of 1296 parameters from the inaccurate 
data. Four conductivity solutions, obtained after 
altering the coefficients as, ax, and a z in the generic 
objective function in (3), are presented in Plate 1. 
Each model reproduces the data to the expected 
value of 420. The differences in the models arise 

because the respective objective functions penalize 
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closeness to a background, vertical roughness, hor- 
izontal roughness, and roughness in both direc- 
tions. All four models indicate a surface layer which 
is more conductive on the left than on the right. 
They also indicate a conductive region at depth. 
This provides some confidence that lateral surface 
variation and a zone of high conductivity at depth 
might be features of all models which reproduce the 
data. The model in Plate lb most closely resembles 
the true model in Plate l a. That is because the true 

model has small vertical and horizontal structure, 
and an objective function which penalizes rough- 
ness in both dimensions therefore produces a model 
with correct characteristics. It should be noted, 
however, that the Earth does not always act in this 
manner, and in some circumstances it may be that 
one of the other models in Plate 1 is a more realistic 

representation of Earth structure. 
Experience has shown that the nonuniqueness 

exhibited in Plate 1 likely exists in EM problems in 
general. The degree of nonuniqueness is enlarged 
by measuring model length with different norms. 
Comparison of the effect of minimizing the l l and l 2 
norms when inverting magnetotelluric data to re- 
cover one- and two-dimensional conductivity mod- 
els can be found, respectively, in the works by 
Whittall and Oldenburg [1992] and Oldenburg and 
Ellis [ 1993]. 

Having recognized the nonuniqueness inherent in 
electromagnetic inverse problems, we proceed to 
solve an EM inverse problem in which a specific 
objective function is minimized. The technique is 
essentially a Gauss-Newton method, but a subspace 
algorithm is used to reduce the computations re- 
quired to invert the large matrix. 

3. Subspace Algorithm 
For certain problems, exact or approximate sen- 

sitivities can be efficiently calculated, and the prin- 
cipal roadblock is the solution of the large linear 
system of equations exemplified by (12). The matrix 
system can be solved by conjugate gradient 
[Hestenes, 1980], biconjugate gradient [Press et al., 
1992], or LSQR [Paige and Saunders, 1982] and 
other iterative algorithms. Our approach is to use 
the generalized subspace method of Oldenburg et 
al. [1993]. That algorithm, and its further explora- 
tion in solving linear inverse problems [Oldenburg 
and Li, 1994], have been successfully used to invert 
a number of different data sets. In fact, the results 

shown in Plate 1 were carried out with the subspace 
approach, and only a 25 x 25 matrix was inverted 
even though estimates of 1296 parameters were 
obtained. 

Let re(n) be the model at the nth iteration and let 
{vi} (i = 1, q) be arbitrary vectors which form a 
q-dimensional subspace of R •. We seek a model 
perturbation of the form /•m = 5'. aiv i = Va. 
Substituting into (11) yields 

•b(a)- IIWm(m © + va -m0)li 2 

+/•-l([[Wd(d(n) + JVa -døbS)[12 - •b}) (17) 

Setting X7• •b(a) - 0 yields 

Ba = b (18) 

where 

T B = Vr(JrW•WaJ + •WmWm)V 

_ T T (m(n) b = •V WmW m - m0) - vTjTW•Wd(d © -- d øbs) 

The matrix B is q x q, positive definite, and 
symmetric and is easily inverted provided that q is 
relatively small. We note that this is the same 
matrix as in (12) except it has been contracted with 
the matrix V. 

The principal advantage of a subspace approach 
is that only a q x q matrix needs to be inverted. An 
immediate disadvantage is that in restricting the 
activated portion of model space, it may be that 
vectors which are important in finding the global 
minimum of the desired objective function are not 
available and an inferior solution is obtained. The 

success or failure of a subspace approach therefore 
hinges upon the selection of the spanning vectors 
for the activated subspace. The philosophy for 
selecting vectors is based upon the following ideas. 
The two objective functions of importance to the 
inversion are •b m and •bd. Steepest descent vectors 
associated with each of these quantities are there- 
fore fundamental to the inversion. 

The misfit objective function •bd = (d - d0) r 
WJW•(d - do) may be partitioned as 

k 4•a = • 4•a (19) 

where the kth subset is 6a • = (d k - d0•) r'•7kr'•7k **d 

(d • - d0•). The gradient X7m•ba • can be calculated. 
Our norm on model space is controlled by the 
symmetric positive definite matrix WmrWm . A 
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Plate 1. (a) The true two-dimensional conductivity structure. (b-e) Recovered model from 
inversion of 420 pole-pole dc resistivity data contaminated with 5% Gaussian noise fit to the 
expected misfit. The difference between the models results because of choices for a,, a•, and a z 
which are, respectively, the weightings for "closeness" to the half-space reference model, variation 
in the x direction, and variation in the z direction. The values of (a,, a•, a z) for the inversions in 
Plate lb-le are respectively (0.0002, 1., 1.), (0.0002, 0., 0.), (0., 1., 0.), and (0., 0., 1.0). 

steepest descent (really ascent, but we are inter- 
ested only in directions and therefore ignore the 
minus sign) direction can be obtained by multiply- 
ing the gradient by (WmrWm) -• [Gill et al., 1981, p. 
102]. We therefore choose vectors 

V k = (WmTWtn)-lVtn• (20) 

as elements in our subspace. The partitioning of •b,t 
can be effected in a variety of ways, and the reader 
is referred to the papers cited above for further 
discussion and examples. 

The next set of vectors to be included in the 

subspace should be sensitive to •bm. The steepest 
descent vector v = (WmTWm)-l•7m•m is always 
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useful, but more flexibility to construct a minimum 
norm model is achieved by subdividing the model 
objective function. Let •bm • (k = 1, 4) denote the kth 
term in the model objective function in (3). Steepest 
descent vectors 

¾k = (WmTWm)-lVm• }k m k = 1, 4 (21) 

10 5 

104 

I 

0 5 10 15 2,0 

are routinely used in our algorithm. In addition, we 
use the constant vector. The sum of the vectors in 

(21) is equal to the steepest descent vector for 
VmC•m , and potentially useful vectors can also be 
obtained by partitioning this. For two-dimensional 
problems the cells along individual rows or individ- 
ual columns can be grouped, and the projection of 
(WmTWm)-lVmc•m onto those rows or columns pro- 
vides good search directions, especially if the Earth 
model has strong lateral or vertical continuity. The 
analogous situation in three dimensions is to use 
horizontal or vertical planes of cells. 

There is no definitive way to prescribe an opti- 
mum strategy for subdividing V mC•m or for specify- 
ing additional vectors. The process can be dynamic 
in that it changes with iteration. For instance, cells 
associated with rows could be used at one iteration, 
and cells associated with columns used on the next. 

The process can also be interactive. Viewing the 
model can prompt the hypothesis that a certain 
portion of the model has too much roughness or has 
other undesirable characteristics. This area can be 

subdivided into smaller groups of cells to provide 
additional flexibility in the inversion. The attractive 
aspect of the dynamic use of additional search 
vectors is that in the subspace inversion only a 
model perturbation is sought. At worst, a poor 
choice of additional vectors produces little benefit. 

For each problem there may be additional vec- 
tors, inspired by insight about the character of the 
model, which are useful. In the most basic strategy, 
however, and that which is employed in the exam- 
ples in this paper, we use the vectors given by (20) 
and (21) and the constant vector. 

The inversions in Plate 1 were carried out with 

the following methodology. There were 21 vectors 
associated with data groupings (one vector for each 
current electrode), three vectors associated with 
the individual components of the model objective 
function, and the constant vector. In defining the 
model objective function (5), W• is a diagonal 
matrix with elements (AxAz) •/2 where A x is the 
length of the cell and Az is its thickness, Wx has 

4o • 

•. 20 

10 

0 5 10 15 20 

ITERATION NUMBER 

Figure 1. (top) The data misfit as a function of iteration. 
The desired misfit of 420 is achieved at iteration 13. 

(bottom) The model objective function curve. Conver- 
gence of the algorithm is achieved when •b• = 420 (the 
target value of misfit), and no substantial reduction in the 
value of •>m is achieved with successive iterations. 

elements _+(Az/dx) •/2 where dx is the distance 
between the centers of horizontally adjacent cells, 
and W z has elements +(Ax/dz) 1/2 where dz is the 
distance between the centers of vertically adjacent 
cells. Wy and ay are omitted since this is a two- 
dimensional problem. For the inversions in Plate 
lb, a s = 0.0002, ax = 1.0, and a z = 1.0. The 
starting and reference models are half-spaces of 5 
mS/m. At each iteration a model perturbation was 
sought which reduced the misfit by a factor of 2 
until the final target misfit was reached. The La- 
grange multiplier was found with the aid of a line 
search using a forward modeling algorithm to eval- 
uate (14). The convergence curves for the inversion 
in Plate lb are shown in Figure 1. These are typical 
for the subspace algorithm. 

For this problem the major computation was in 
generating the sensitivity matrix and forward mod- 
eling to compute observed responses and to carry 
out the line search. The cost of the matrix inversion 

was minimal, since only a 25 x 25 matrix was 
inverted. 

In addition to the selection of the search vectors 

there are other practical issues to be addressed in 
the subspace methodology. These include guarding 
against poor conditioning of the matrix V, selection 
of the Lagrange multiplier at each iteration, and 
guarding against a poor perturbation. 

The subspace formulation demands the inversion 
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Figure 2. Curves used to estimate the Lagrange multi- 
plier at each iteration, showing typical plots of (a) the 
linearized misfit L (•bd), (b) the nonlinear misfit (•bd) which 
is evaluated using forward modeling, and (c) the value of 
the model norm (•bm). The variables •b} n) and •b(m n) are the 
data misfit and the value of the model objective function 
at the end of the nth iteration, and •b} ar is the desired 
misfit for the current iteration. 

of the matrix Vr(JrWJWd J + /.i,WmTWm)V. This 
matrix is singular if the column vectors of V are 
linearly dependent. Poor conditioning is avoided by 
orthonormalizing the descent vectors prior to using 
them in the subspace equations. 

The solution of the matrix system in (18) is 
attacked in the following manner. At each iteration 
the trade-off between the Lagrange multiplier, the 
model objective function, and the misfit is typified 
by the curves in Figure 2. Figure 2a characterizes 
the linearized estimate of misfit and is obtained by 

specifying a value for/x, solving (18), and comput- 
ing 

•b•- I Wd(d © + JVa -døbS)l 2 (22) 

This is easily computed, since it requires only 
repetitive solution of a q x q system of equations 
with trial values of/x. Let the target misfit for each 
iteration be denoted by tb} ar = /31 tb} n). If the target 
can be reached with a small change in the model, 
then the estimation of /x using Figure 2a may 
provide an acceptable step. This is often valid at 
early and late iterations in the inversion. When the 
model perturbation is large, however, the linearized 
misfit is not acceptably close to the true misfit 
defined by (14). Under such circumstances, 
should be estimated from Figure 2b. This requires 
more computation, since generating each point on 
this curve requires that a forward modeling be 
carried out. If tb} ar lies above the minimum of the 
misfit curve, then/xtar is the estimated value of the 
Lagrange multiplier, while if tb} ar lies below, then 
/x• is selected. The curve in Figure 2c is used to 
limit the increase in the model objective function at 
any iteration. This is of practical importance. Misfit 
can often be reduced quickly but at the expense of 
producing a model with undesirable structure. Once 
the target misfit has been reached, numerous itera- 
tions may be required to remove those features and 
bring t•m to its minimum value. A strategy which 
limits the rate of increase of t•m may take more 
iterations to reach the target misfit but ultimately 
requires fewer iterations for convergence. Let/.t mød 
be that value of/x such that the model objective 
function is equal to/32 tb(m n). Irrespective of whether 
tbd (/x) or tba(/x) is used, the chosen value of/x is 
given by/x = max {/xtar,/.tmod}. If/xtar does not exist 
for the nonlinear misfit, then/xtar is replaced by 

For simplicity, in the subspace solution carried 
out here we evaluated the misfit according to (14) 
for all iterations. We set /31 to 0.5, and /32 = 2.0 
once a misfit within a factor of 10 of the final target 
misfit was achieved. Typically, four forward mod- 
elings per iteration were needed in our line search to 
estimate/a, TM or/a, B . 

4. Calculation of Sensitivities for 

Frequency Domain EM Problems 
An essential element in almost all formulations of 

the inverse problem is the ability to compute the 
numerical sensitivities. General procedures exist 
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for doing this (e.g., see McGillivray and Oldenburg 
[1990] for a review of commonly used methods and 
an introduction to relevant literature). For inverse 
problems having more unknowns than data, it is 
advantageous to use an adjoint equation or Green's 
function approach. Formal derivations exist [e.g., 
Lanczos, 1961; Morse and Feshbach, 1953; Roach, 
1982], and their application to electromagnetic in- 
duction problems has been presented by Weidelt 
[1975], Park [1987], Madden and MacMe [1989], 
Madden [1990], Oldenburg [1990], and Ellis and 
Oldenburg [1994a], as well as others. The usual 
procedure for implementation requires the develop- 
ment of an adjoint operator which is formulated 
through the use of the bilinear identity. That iden- 
tity also establishes the reciprocity condition for 
EM data which is needed so that the sensitivity 
computations can be carried out efficiently. A sim- 
plified derivation which leads to the same equations 
as the adjoint formulation is presented by 
McGillivray et al. [1994]. The work here is based 
upon that derivation. 

Our goal is to compute the sensitivity Jik = 
Odi/Orr k where d i is the ith datum and rr• is the 
conductivity of the kth cell. The datum d i may take 
many forms; it could be an admittance, an imped- 
ance, a component of E or I-I, an amplitude, or a 
phase. Irrespective of the choice of di, the basic 
building block for computing Jik is the ability to 
compute 0E/0rr• and 0I-I/0o-•. If the inversion pa- 
rameters are m• = In rr• instead of cry, then appro- 
priate sensitivities are generated by 0E/0 In rr• = 
rr• 0E/0rr•. 

Substituting a(r) = Y. craCk(r) into (1) and differ- 
entiating with respect to rr• produces the sensitivity 
equations, 

where the electric and magnetic sources J s and Ms 
have yet to be defined. The boundary value problem 
can be solved once the conditions appropriate to Js 
and Ms are specified on OD. These have the form 

•(fi x O) + •(fi x fix X7 x O)= 0 (26) 

We note that these boundary conditions may differ 
from those used to solve the primal problem in (1). 
For instance, the primal problem might be a mag- 
netotelluric problem whose source is a sheet of 
current at height, but the source for the auxiliary 
problem is likely a current or magnetic dipole inside 
OD. With the exception of the changes in the 
specifics of the boundary conditions and practical 
details regarding meshing of the domain, the solu- 
tion of the forward and auxiliary problems can 
likely be obtained by using the same computing 
algorithm. 

Combining (23) and (25) and manipulating yields 
the result 

ß + Js' dv = E' Eel(r) dv Oak (27) 

This shows that the sensitivity for E or H can be 
obtained by appropriately specifying the sources for 
the auxiliary fields and by integrating the dot prod- 
uct of the primal and auxiliary electric fields over 
the region on which ½•(r) is nonzero. For example, 
to obtain the sensitivities for H z at an observation 
location r0, let M• = /5(r - r0)• and J• = 0. Then 
(27) becomes 

OHz(rø)- •t> g ECk(r) dv. (28) 0o- k 

OE OH 

V x • = -ioola 
0o' k 0o' k 

(23) 
OH OE 

V x • = (rr + iooe) • + ½•(r)E 
Oo' k Oo' k 

and homogenous boundary conductions of the form 

a fix . +/3 fixfixVx ß =0. (24) 

Next consider an auxiliary Maxwell problem, 

V x E = -ioolaH + Ms 
(25) 

V x It = (rr + ia•e)E + Js 

The primal problem is solved for the electric field E, 
and the auxiliary problem, with a unit vertical 
magnetic dipole source placed at r0, is solved for 
the auxiliary electric field E. The quantity E. E is 
integrated to generate OHz/Orr •. 

The sensitivity equation for the dc resistivity 
problem is directly derivable from (27). Setting 
Ms = 0 and using standard vector identities we have 

- ß dv=- V. js -•V.j• dv (29) Js 0o-• • 0o-• 
Applying Gauss's theorem to the first term and 
using the fact that J s .n = 0 on the top boundary 
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and 12 = 0 on the other boundaries allows the 

sensitivity to be written as 

oil Off k 
• V. Js dv = E. ECz:(r) dv (30) 

Setting V.J s = -Iu•r - r0) where Iu is a unit 
amplitude current, so that the auxiliary equation 
becomes 

V. ((rVll) = -IuS(r - r0), (31) 

and writing the electric fields in terms of their 
respective potentials, yields the final equations 

0ii(r0) 

0o- k 
- Vii' VilCk(r) dv (32) 

Calculation of sensitivities via (27) for general 
EM problems may require numerous forward mod- 
elings, but computational efficiencies are achieved 
if sources and receivers occupy the same position 
or if the final fields from one forward modeling are 
used as starting fields for a next solution. We also 
note that (27) lends itself to the estimation of 
approximate sensitivities obtained by inserting an 
electric field that approximates that due to the 
auxiliary field. The paper by Habashy et al. [1993] 
and the work derived therefrom have much poten- 
tial in this regard. 

In the next section we are interested in computing 
a large-scale sensitivity or the change in the objec- 
tive function with respect to a model parameter. 
Consider the computation of 

0o- k 0 • (di-d?bS) 2 i•l (di-•?bsl Odi O(rk ej = 2 - . i=1 .= E / 

(33) 

The linearity of Maxwell's equations with respect to 
applied sources means that the computation of 
0•bd/0rr k is easily accomplished by generating the 
electric fields due to a superposition of sources of 
strength 2(d i Jobs,, 2 -- a i )/e i located at the receiver 
locations. This necessitates only a single forward 
modeling. For the dc problem the desired electric 
field comes from solving the auxiliary problem 

V' (•Vll) = 2 - ß 8(r- ri). (34) 

5. Conjugate Gradient Solution 

In large-scale inverse problems it may not be 
possible to compute and store the sensitivity ma- 
trix. The next choice of solution method is to use 

conjugate gradients [Hestenes, 1980] to minimize a 
nonquadratic objective functional. The steps are 
essentially the following. First, write the objective 
function (8) as •m) = •bd(m) + p, qbm(m ). The 
quantity/.c is now regarded as a trade-off parameter 
as it alters the relative weighting between the model 
and data misfit objective functions. Its value is 
supplied by the user. To minimize •m), an iterative 
method is used where the gradient of the objective 
function 

•7mqb(m) = •7mqbd(m ) + /ZVmqbm(m ) (35) 

is formed at each iteration. In generating (35) the 
partial gradient Xz•ba is efficiently found using the 
method described in section 3. A forward modeling 
with sources at receiver locations and with source 

strengths proportional to data misfit is carried out to 
compute the auxiliary electric field. The individual 
terms 0•ba/0rrk are then obtained by integrating the 
product of the primary and auxiliary fields over the 
kth cell. The gradient of the model objective func- 
tion, 2WmTWm(m -- m0), is found directly. The next 
step is to generate the steepest descent vector •, = 
(WmTWm)-lVmd)(m). Rather than finding an opti- 
mum model perturbation along the vector •, as in a 
steepest descent algorithm, a univariate search 
along that portion of •, which is conjugate to all of 
the previous directions is performed. Variants of 
the conjugate gradient (CG) algorithm exist 
[Hestenes, 1980; Press et al., 1992], but the algo- 
rithm of Polyak and Ribiere [ 1969] is recommended. 

1. Choose m (1) and set r (D = -•m(D), p(D = 
r(1). 

2. Choose a = a z• to minimize •a) = •m © + 

m(Z• + 1) _. m(Z0 + a Z•p(Z0 r(Z• + 1) _. _ •/(m(Z• + 1)) (36a) 

3. When k/M is an integer set p(Z•+l) = r(Z•+l); 
otherwise set 

p(Z• + 1) _ r(Z• + 1) -t- bZ•p ©, b z• = r(• + 1)12 - r(z0 ' r(z• + 1) 
Ir(•) 2 

(36b) 

4. Terminate at the jth step if Ir(J+z) I is suffi- 
ciently small. 
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In theory, the algorithm is reset every M itera- 
tions, where M is the number of parameters in the 
model. However, in practice the algorithm usually 
converges before the Mth iteration. 

For electromagnetic problems the most CPU in- 
tensive part of a conjugate gradient algorithm is 
forward modeling which is necessary to compute 
the data for a given model, the value of the objec- 
tive function, and as implied in (33), the gradient of 
the objective function. Further, a univariate mini- 
mization must be performed at each iteration of the 
conjugate gradient algorithm to determine the con- 
stant a. 

The efficacy of the CG is illustrated by reproduc- 
ing the results from a three-dimensional inversion of 
pole-pole dc resistivity data given by Ellis and 
Oldenburg [1994b]. The reader is referred to their 
paper for details of the algorithm and for further 
examples. The forward modeling was performed 
with a finite difference approximation to the physi- 
cal equations, and the data and model were respec- 
tively defined as In V and In tr. The model objective 
function was a discretized form of the Sobolov- 

Laplacian operator, 

tb(m) = f ((1 - e)V2m- em) 2 dv 0 < e -< I (37) 

The test of the conjugate gradient inversion algo- 
rithm is carried out on a conductivity model con- 
sisting of five prisms and shown in Figure 3. It 
consists of three surface prisms (S1, S2, S3) of 
resistivities 200, 100, and 2000 12 rn and two buried 
prisms (B 1, B2) of resistivities of 2000 and 100 12 m, 
all in a 1000 12 m background half-space. The surface 
prisms are designed to simulate near-surface con- 
ductivity variations, and the buffed prisms are the 
survey targets. The model was discretized into 

n x x ny x n z = 17,496 cells where (n x, ny, n z) = 
(27, 27, 24). 

Data were collected on a uniform square array of 
21 x 21 electrodes placed on a 50-m grid on the 
surface. The electrode array was centered on the 
model space shown in Figure 3. Each electrode was 
taken as a current electrode, and potentials were 
recorded from all electrodes in the electrode array 
within a radius of 500 m. This yielded a total of 
87,688 potential data. Unbiased Gaussian noise of 
1% was added to the potentials before inversion. 

The starting model for the inversion was chosen 
to be a uniform half-space of 1000 12 m. The 

x-gxi$ 

Figure 3. A perspective view of the five-prism model, 
which consists of three surface prisms S1, S2, and S3 
(resistivities 200, 100, and 2000 tl m, respectively) and 
two buried prisms B 1 and B2 (with resistivities 2000 and 
100 tl m). The surface prisms extend from surface to a 
depth of 40 m, the buried prism B 1 extends from depth 50 
to 250 m and the buried prism B2 extends from 95 to 275 
m. The resistivity of the half-space is 1000 tl m. 

inversion was run for 39 iterations to produce an 
rms misfit of 1%. This took a total of 97 applications 
of the forward modeling algorithm (including objec- 
tive function gradient modeling). The value e = 0.97 
was used in defining the model objective function in 
(37). The results of the inversion are shown in Plate 
2, where three slices through the true model and the 
inversion result are displayed. All five blocks are 
well resolved, although definition of the resistive 
blocks is slightly poorer than for the conductive 
blocks. This is expected since the resistive blocks 
are only twice as resistive as the background 
whereas the contrasts between the conductive bod- 

ies and the host are 5 and 10. The convergence 
characteristics of the algorithm are provided in 
Figure 4, where the total objective function is 
plotted as a function of iteration. Since the appro- 
priate value of tt which corresponds to a particular 
data misfit and model roughness is not known at the 
beginning of the inversion, some estimate must be 
made. In practice, an initial value of tt is chosen, 
and several iterations performed. If the conver- 
gence plot begins to plateau at an excessive misfit, 
then a smaller value of tt is selected. For this 
example, three values /• = 10 -• , 10 -2, and 10 -3 
were used to reach an rms data misfit of 1.0%. 

6. Approximate Inverse Mapping 
As the size of the problem increases, it is not 

feasible to compute V mrbm as with the CG ap- 
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Plate 2. Three slices through the five-prism conductivity model (fight) and the corresponding slices 
for the inversion result (left). (top) Vertical section through the model at x = 475 m. (middle) 
Horizontal section at z = 20 m. (bottom) Horizontal section at z = 150 m. The color bar shows log10 
o-and applies to all panels. 
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Figure 4. 
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Iteration 

The convergence plot for the conjugate gradi- 
ent inversion which produced the model shown in Plate 2. 
The total objective function is plotted as a function of 
iteration. The solid lines indicate the iterations at which 

the value of the trade-off parameter •2 was altered. The three values are/xl = tO-',/22 = t0 , and •3 = 10-3. 
By iteration 39 the rms misfit to the data was 1% misfit. 

proach, and an inversion methodology which re- 
quires only one forward modeling per iteration is 
required. In such cases we appeal to the approxi- 
mate inverse mapping (AIM) formalism of Olden- 
burg and Ellis [1991]. The essence of the approach 
is presented here, but the reader is referred to the 
cited paper for more thorough explanation and 
examples. 

The AIM formalism is based upon the existence 
of two mappings. Let • be an exact forward map- 
ping which maps an element of model space to an 
element of data space and let •-l be an approxi- 
mate inverse mapping. Application of •-l to the 
data produces a model •-•[d øbs] = rh øbs, but it is 
unlikely that •[rh øbs] acceptably reproduces the 
observations. With iterative improvement, how- 
ever, it may be possible to use •-• to find a model 
which significantly reduces the misfit error. 

Two procedures are possible. In AIM-MS a per- 
turbation in model space is generated at each iter- 
ation, while in AIM-DS an alteration to the data is 
sought such that the application of •-• to the 
altered data yields a model which adequately satis- 
fies the observations. The underlying concept of the 
algorithms can be understood from the schematic 
diagrams in Figure 5. We consider AIM-MS first. 
Let m E •m be any model in a Hilbert space •m. 
Application of • followed by an application of •-• 
yields an element rh E •m' Because the inverse 
mapping is approximate, it is not expected that rh 
will equal m. The discrepancy is quantified by the 
model space mapping error 

Model Space Data Space 

Model Space Data Space 

Figure 5. (top) A diagrammatic representation of the 
AIM-MS inversion. The inversion starts with •-• applied 

obs obs 
to d to produce a first model estimate rh . The 
mapping error Am[m(n)] at the current model, m ©, is 
used to produce the (n + 1)th model. (bottom) A diagram- 
matic representation of the AIM-DS inversion. The inver- 
sion starts with •-• applied to d øbs to produce a first 
model estimate m (0). An exact forward mapping is applied 
to yield predicted data d © The difference between d øbs 
and d © is an estimate of t•e data space mapping error. 
The predicted data are corrected by this difference to 
yield a new datum •(1). The updating of data is continued 
recursively. 

Am[m ] = m - •-l•[m] = (3m -- •-1•)[ m] = m - rh 

(38) 

where 3m is the identity mapping on •m. If m is a 
solution to the inverse problem, that is, if •[m] = 
d øbs, then (38) can be written as m = tfi øbs + 
Am[m]. Since m is not known, the iterative equation 

m(n + 1) = t•obs q_ Am[m(n)] = t•obs q_ m(n)_ tfi(n) (39) 

where tfi (n) = •- 1 [d(n)] = •- 1 (m (n)) is used. 
Equation (39) is appealing because of its compu- 

tational efficiency and also because of the intuition 
it conveys. It shows that the final solution is com- 
posed of two parts. The first is tfiøbs, which is that 
portion of the model recovered by applying •-I to 
the data. The second part of (39) is a remainder 
needed to account for the deficiency of •-l. We 
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note that A m = (O•m -- •-1•) has the form of a 
projection operator. Its application to any element 
of •/(•m quantifies that part of the model which is 
annihilated by the approximate inverse mapping. 
The two terms in (39) are therefore needed to 
generate a model. 

The goal in AIM-DS is to find a "correction" to 
the observed data so that when •-1 is applied to the 
corrected data, the resultant model reproduces the 
observed data when it is operated upon by the exact 
forward mapping. That is, the inverse problem is 
solved by finding a data perturbation such that a 
new datum • = d øbs + s e satisfies •- 1 [• = dobs. 
The advantage of this approach is that the desired 
characteristics of the final model may be built 
directly into •-1 since the model is computed 
directly by a single application of •-1. 

With reference to Figure 5, define a mapping 
error on data space as 

ad[d] = (•d -- •-•)[4 (40) 

where ,•d is the identity map. Applying (40) to if(n) 
yields 

•(n) = d(n) _ Adjel(n)]. (41) 

Setting d © = d øbs yields the iterative equation 

ff(n + 1)__ dabs + Ad[ff(n)] __ dabs + if(n)_ d(n) (42) 

It shows explicitly that the desired perturbation is 
the data space mapping error. 

The AIM approach will now be used to invert 
pole-pole dc resistivity data to recover a three- 
dimensional conductivity structure. The specifica- 
tion of •-1 is that given by Li and Oldenburg [1992] 
in their approximate inversion of dc resistivity data. 
Let the electrical conductivity in a lower half-space 
be a(r) = tr0/x(r) where tr 0 is the conductivity of a 
uniform background and /x(r) is a dimensionless 
function of spatial position r. Under the Born 
approximation the relative potential anomaly de- 
fined by the ratio of the secondary to primary 
potential, aft = Ils/fi e, measured by a pole-pole 
array over a flat surface is given by 

8fi(r0, !)= f In/x(r) © © #(r; !) dz (43) 
where g(r; l) is the kernel function 

1 1 1 
#(r; !) = -- V ß V (44) 

rr r+! Ir-! 

and the two circled crosses denote convolution in 

the x and y directions. The datum is recorded at the 
midpoint of an array specified by the current and 
potential electrodes at rs and robs, respectively. 
The two-dimensional vector I defines the relative 

position of the two electrodes such that rs - robs = 
21. 

Taking the two-dimensional Fourier transform of 
(43) and applying the convolution theorem yields 

•(P, q)= tfi(p, q, Z)•j(p, q, Z) dz (45) 

where (p, q) are the wavenumbers in the x and y 
directions and 

•j(p, q) = Fxy[SD.(ro; I/)] j=l,''',nl 

tfi(p, q, Z)= Fxy[ln /z(r)] (46) 

•qj(p, q, z) = Fxy[g(r; !/)] j = 1, ''' , nl. 

Fxy denotes the two-dimensional Fourier transform. 
The indexj identifies thejth pole-pole array. If there 
are n I distinct pole-pole arrays then there are n l 
pole-pole maps available for Fourier transforming. 
This produces n I (complex) data at each wavenum- 
ber (p, q). Equation (45) is a Fredholm equation of 
the first kind, and a linear inversion can be used to 
recover r•(p, q, z) using the n I complex data. The 
three-dimensional conductivity model in the spatial 
domain is then obtained by applying an inverse 
two-dimensional Fourier transform to tfi at all 

depths. This process defines •-• as a three-dimen- 
sional inverse operator which is effected in the 
spatial domain by a sequence of one-dimensional 
inversions in the wavenumber domain. Application 
of this approximate inversion to data produces a 
conductivity output that generally displays major 
features of the true conductivity, but details are 
incorrect and usually the model does not adequately 
reproduce the data. An iterative AIM procedure is 
needed to generate a model which reproduces the 
data. 

We consider again the synthetic data generated 
from the five-prism model in Figure 3. The elec- 
trodes form the same 21 x 21 array with a grid 
spacing 8 = 50 m. From this, eight pole-pole data 
maps are formed in both x and y directions with 
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Figure 6. Convergence plots of the AIM-MS inversion 
applied to noisy data from the five-prism model. (a) 
Chi-square data misfit as a function of iteration. The 
dashed line indicates the expected misfit of 8804. This is 
achieved at the fourth iteration, but the algorithm has 
been allowed to continue so that its performance can be 
evaluated. (b) Model norm. (c) Norm of the model 
perturbation. 

array separation equal to n8 (n = 1,..., 8). Five 

maps are also formed in xy and y x diagonal ,direc I tions with separations equal to nX/•8 (n = 1 ... 
5). The 26 data maps contain a total of 8804 poten- 
tial data. Uncorrelated Gaussian noise having stan- 
dard deviation 5% of the total potential is added to 
each datum. 

Both AIM-MS and AIM-DS inversions of this 

data set are given by Li and Oldenburg [1994]. The 
AIM-MS results are reproduced here. The same 
finite difference code used in the CG example was 
used for forward modeling. The mesh contained 
17,496 cells (27 x 27 x 24). The convergence curves 
for the inversion are shown in Figure 6. A steady 
reduction of the misfit is observed in Figure 6a, and 
the expected misfit of 8804 is achieved after four 
iterations. Figures 6b and 6c show the norm of the 
model and the model perturbation for successive 
iterations. The model recovered at the fourth itera- 

tion is shown in Plate 3. Comparison of the inverted 
results with the true cross sections in Plate 2 shows 

that all conductivity anomalies have been recovered 
and the dynamic range is comparable with that in 
the true model. There is good correspondence be- 
tween the results from the CG inversion in Plate 2 

and the AIM results in Plate 3. Differences are 

expected, however; the AIM-MS inversion does 
not minimize a specific model objective function, 
and smoothness is incorporated into the inversion 
by limiting the wavenumbers at which the one- 
dimensional inversions are carded out. Also, the 
data used in the AIM inversion have 5 times the 

error as those in the CG inversion. We emphasize 
that the inversion result in Plate 3 was produced 
with only five forward modelings. 

7. Summary 
The purpose of this paper is to outline various 

strategies for coping with large-scale EM inverse 
problems. If computing power were not an issue, 
then a traditional Gauss-Newton approach would 
be the method of choice. This requires computation 
of the sensitivity matrix, solving a large system of 
equations, and carrying out a line search using 
forward modeling. The subspace method reduces 
the computations by projecting the large system of 
equations onto a much smaller subspace and then 
inverting only a small matrix. Selection of basis 
vectors for the subspace method is crucial, but the 
strategy of using steepest descent vectors associ- 
ated with partitioned model and data misfit objec- 
tive functions has worked well for us. Our experi- 
ence with subspace and Gauss-Newton approaches 
is that approximate sensitivities will often suffice; 
this has the potential for further computational 
reduction in the subspace approach. 

In the conjugate gradient approach one does not 
need to compute and store the full sensitivity ma- 
tfix. Only the gradient of the objective function, 
which requires forward modeling, need be calcu- 
lated. There is no matrix to invert, but a line search, 
involving forward modeling, is needed to compute 
the scaling factor for the perturbation. Because only 
a single vector is used in the perturbation, it is 
important that the gradient vector is computed 
accurately. Also, with the conjugate gradient 
method the value of the Lagrange multiplier must 
be supplied explicitly. This can be accomplished by 
monitoring the convergence process and adjusting 
the Lagrange multiplier when plateauing occurs. 

The AIM procedure involves the least computa- 
tion, requiring no computation of sensitivities or 
solution of a matrix system. It produces an updated 
model by performing only one forward modeling 
per iteration. The trade-off for this computational 
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Plate 3. The conductivity model recovered from the fou•h iteration of an AIM-MS inversion of 
data from the five-prism model. (top) Ve•ical section through the model at x = 460 m. (middle) 
Horizontal section at z = 20 m. (bottom) Horizontal section at z = 150 m. The color bar shows log•0 
• and applies to all panels. This is considered to be the final model since the expected X • misfit is 
achieved. The model sections can be compared with the true sections in Plate 2. 



1098 OLDENBURG: ELECTROMAGNETIC INVERSE PROBLEMS 

efficiency is a potential loss of robustness and 
possible lack of control upon the final model. The 
characteristics of the recovered model are inti- 

mately associated with the details of the approxi- 
mate inverse mapping operator. Our experience 
with the AIM-MS and AIM-DS procedures outlined 
here is that a few applications generally produce 
substantial reduction in data misfit and, depending 
upon the details of the inverse mapping, produce a 
model with desirably smooth features. With succes- 
sive iterations the algorithm may diverge, but the 
minimum misfit model, or one of the models 
achieved as the inversion has proceeded, may be 
interpretable in itself or used as a starting model in 
a more sophisticated inversion. 

Each attempt to reduce the number of computa- 
tions in the inversion has the potential for producing 
an algorithm which has its own difficulties with 
respect to getting trapped in a local minimum, 
requiring additional iterations for convergence, los- 
ing ability to directly control the characteristics of 
the inverted model, or having decreased robust- 
ness. Nevertheless, the task of the inverter is to 
process his/her data so that some inferences about 
model structure can be made. The work presented 
here outlines some strategies such that a user, when 
confronted with inverting EM data, can choose an 
attack which produces optimum results given the 
limitations of computing power and storage. 
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