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Inversion of induced polarization data

Douglas W. Oldenburg* and Yaoguo Li*

ABSTRACT

We develop three methods to invert induced polar­
ization (IP) data. The foundation for our algorithms is
an assumption that the ultimate effect of chargeability
is to alter the effective conductivity when current is
applied. This assumption, which was first put forth by
Siegel and has been routinely adopted in the literature,
permits the IP responses to be numerically modeled by
carrying out two forward modelings using a DC resis­
tivity algorithm. The intimate connection between DC
and IP data means that inversion of IP data is a
two-step process. First, the DC potentials are inverted
to recover a background conductivity. The distribu­
tion of chargeability can then be found by using any
one of the three following techniques: (I) linearizing
the IP data equation and solving a linear inverse
problem, (2) manipulating the conductivities obtained
after performing two DC resistivity inversions, and (3)

INTRODUCTION

Induced Polarization (IP) data are routinely collected in
mineral exploration surveys and they are also finding their
niche in environmental surveys (Barker, 1990). Excellent
reviews on the IP method and case histories can be found in
Sumner (1976), Bertin and Loeb (1976), Fink et al. (1990),
and Ward (1990). The difficulty with interpreting IP data is
the lack of flexible, efficient, and robust inversion algo­
rithms. This is reflected in the remark in Hohmann (1990)
regarding the availability of forward algorithms and the lack
of general inversion techniques for the IP method. Conse­
quently, much of today's interpretation is still carried out by
working with pseudosections. Yet only in very simplistic
circumstances will the images on the pseudosections emu­
late geologic structure, and consequently, inferences made
about the substructure directly from the data are often

solving'a nonlinear inverse problem. Our procedure for
performing the inversion is to divide the earth into
rectangularprisms and to assume that the conductivity (J"

and chargeabilityTJ are constant in each cell. To emulate
complicatedearth structure we allow many cells, usually
far more than there are data. The inverse problem, which
has many solutions, is then solved as a problem in
optimization theory. A model objective function is de­
signed, and a "model" (either the distribution of (J" or TJ)
is sought that minimizesthe objective function subject to
adequately fitting the data. Generalized subspace meth­
odologies are used to solve both inverse problems, and
positivity constraints are included. The IP inversion
procedures we design are generic and can be applied to
I-D, 2-D,or 3-Dearth modelsand with any configuration
of current and potential electrodes. We illustrate our
methods by inverting synthetic DC/IP data taken over a
2-D earth structure and by inverting dipole-dipole data
taken in Quebec.

incorrect. As an illustration, we present a fairly simple
example of DC/IP data taken over a 2-D earth structure. The
true conductivity and chargeability models and the pseu­
dosection plots obtained by carrying out a pole-pole DC/IP
survey are shown in Figure 1. Except for the region near the
surface, there is little compelling evidence in the IP pseu­
dosection to indicate a chargeable body at depth.

Methods for inverting IP data do exist but literature on this
subject is sparse. In defining IP data, most authors adopt a
presentation given in Siegel (1959) that the ultimate effect of
a chargeable body is to alter its effective conductivity. As
such, the IP and DC resistivity problems are intimately
linked, and the inversion of IP data is a two-step process. In
the first stage, the DC potentials are inverted to recover the
background conductivity (J" b : The second step accepts (J" b as
the true conductivity of the medium and attempts to find a
chargeability that satisfies the data. This is usually done by
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linearizing the equations about ITb to produce a system of
equations that can be solved for the chargeability distribu­
tion.

Early algorithms for inverting DC and IP data generally
parameterized the earth model into a relatively small number
of blocks and kept the same parameterization for inverting
the DC and IP data (Pelton et al., 1978; Sasaki, 1982; Rijo,
1984). Overdetermined systems of equations were solved
and algorithm convergence was judged on the basis of data
misfit alone. There are practical difficulties that arise with
this approach. The electrical conductivity structure of the
earth is complicated and rarely does a representation by a
few blocks adequately represent the true distribution of this
physical property. Also, anomalous regions of high or low
conductivity do not necessarily correspond to regions of
high chargeability. If only a few blocks are used, keeping the
same parameterization may preclude the possibility of find­
ing a meaningful solution. In addition, the restriction of using
only a few model cells does not allow insight about the
nonuniqueness that is inherent in the inverse problem. The
difficulties with respect to parameterization can be overcome
by discretizing the earth into a large number of cells. The
inverse problem is then solved as an optimization problem
where an objective function of the model is minimized
subject to adequately fitting the data. An archetypal example
applied to a geophysical inverse problem was presented by
Constable et al. (1987). LaBrecque (1991) has applied this
methodology to carry out a 2-D inversion of IP data in a

cross-borehole tomography experiment, and Beard and
Hohmann (1992) have provided an approximate inversion of
IP data that is valid when resistivity contrasts are small.

In this paper, we use Siegel's (1959) formulation and
develop three methods by which to invert IP data. In the first
method, we assume that the chargeability is small and
linearize the equations. The technique is similar to that
presented in LaBrecque (1991), but we use a more general
model objective function, we incorporate a subspace meth­
odology to bypass the large computations normally required
to invert the full matrix system, and we work with charge­
abilities directly in the inverse problem rather than with their
logarithms. The second method makes use of formal map­
pings connecting DC/IP voltages with a conductive and
chargeable earth. Two DC resistivity inversions of different
data are carried out, and the chargeability is obtained by
manipulating the recovered conductivities. The third method
makes no assumptions about the size of TJ and solves a
nonlinear inverse problem to recover the chargeabilities.
The resultant algorithm is essentially the same as that used
to invert the DC resistivity data. All of our techniques are
applicable to any dimension of earth structure and to any
configuration of electrodes. Our paper begins by defining the
forward mapping for the IP data. Next, we introduce the 2-D
synthetic example and invert pole-pole DC potentials to
recover the background conductivity. This is presented in
some detail because the subspace method used to invert the
DC data also plays the dominant role in inverting IP data.
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FIG. 1. A synthetic 2-D conductivity model is shown in (a). Surface electrodes are spaced at 10 m over the interval x = (-100,
100) m. Current is input at each electrode site in turn, and potentials are observed at the remaining 20 sites. The pole-pole
potentials <P<T are converted to apparent conductivity ITa = I1(211'r<P<T)' where r denotes the distance between current and
potential electrodes and are plotted in (b). The apparent conductivity value is plotted midway between the current and potential
electrodes at a (pseudo) depth of z = 0.86r. The grey scales indicate conductivity in mS/m. The synthetic chargeability model
is given in (c) and the apparent chargeability, plotted in the pseudosection format is shown in (d). The grey scale indicates
chargeability in percent.
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Three methods for inverting IP data are explained and
illustrated with the synthetic example. We address the issues
of positivity, of how well the background conductivity needs
to be known, and practical considerations pertaining to the
data to be inverted. We also examine the merits of using TJ or
In TJ as the variable in the inversion and show how minimiz­
ing different objective functions can be useful in hypothesis
testing and in exploring nonuniqueness. A field data set of
dipole-dipole data is inverted, and the paper concludes with
a discussion about the relative merits of the inversion
algorithms.

and the boundary conditions are a<l>cr/an = 0 at the earth's
surface and <l>cr ~ 0 as Ir - rsI~ 00, where r s denotes the
location of the current electrode.

If the ground is chargeable, then the potential <1>'1]' re­
corded after the constant current is applied, will differ from
<l>cr' According to Siegel's formulation, the effect of the
chargeability of the ground is modeled by using the DC
resistivity forward mapping ?:F de but with the conductivity
replaced by 0" = 0"(1 - TJ). Thus

(3)

FORWARD MODEL or

or

The IP datum, which we refer to as apparent chargeability, is
defined by

(6)

(5)

Equation (6) shows that the apparent chargeability can be
computed by carrying out two DC resistivity forward mod­
elings with conductivities 0" and 0"(1 - TJ).

Equation (6) defines the forward mapping for the IP data.
The data can be inverted by: (1) linearizing this equation and
solving a linear inverse problem, (2) introducing a formal DC
inverse operator ?:F;;'} and obtaining TJ by manipulating the
conductivity models obtained after applying ?:F icl to <1>'1] and
to <l>cr' or (3) solving a nonlinear inverse problem that
involves linearization but iterates until data predicted from
equation (6) are in agreement with the observations. Irre­
spective of the method, the inversion of the IP data requires
that the potentials <l>cr be inverted to recover the background
conductivity. We address this issue first.

Complete understanding of the microscopic phenomenon
that result in the macroscopic IP response has not been
achieved. Here we adopt a macroscopic representation of
the physical property governing the IP response that was put
forth in Siegel (1959). Basically, he introduces a macroscopic
physical parameter called chargeability to represent all of the
microscopic phenomena. As such, our earth model is de­
scribed by the two quantities: conductivity O"(x, y, z) and
chargeability TJ(x, Y, z). Both are positive, but while
conductivity varies over many orders of magnitude, charge­
ability is confined to the region [0, 1). We note that Siegel's
model refers only to the volumetrically distributed polariza­
tion and does not apply to highly conductive targets in which
surface polarization dominates the IP effect. Fortunately,
this is not an important limitation for the majority of practi­
cal situations.

A typical IP experiment involves inputting a current I to
the ground and measuring the potential away from the
source. In a time-domain system, the current has a duty
cycle that alternates the direction of the current and has
off-times between the current pulses at which the IP voltages
are measured. A typical time-domain signature is shown in
Figure 2. In that figure, <l>cr is the potential that is measured
in the absence of charge ability effects. This is the "instan­
taneous" potential measured when the current is turned on.
In mathematical terms

(1)
INVERSION OF DC POTENTIALS

FIG. 2. Definition of the three potentials associated with the
IP survey.

where the forward mapping operator ?:F de is defined by the
equations Equation (1) is a nonlinear relationship between the ob­

served potentials <l>cr and the conductivity 0". The goal of the
inverse problem is to find the function 0" which gave rise to
those observations. There have been many attacks on this
problem. For the example problem in this paper where the
structure is presumed to be 2-D, we use the subspace
inversion method given in Oldenburg et al. (1993). This
methodology will be used for inverting both DC data and IP
data, and we therefore outline essential details of the ap­
proach.

Let the data be denoted generically by the symbol d and
the model by m. To carry out forward modeling to generate
theoretical responses, and also to attack the inverse prob­
lem, we divide our model domain into M rectangular cells
and assume that the conductivity is constant within each
cell. Our inverse problem is solved by finding the vector
m = {m I , m 2, ••• , m M} which adequately reproduces the
observations do = (dOl' d o2,"" dON)'

(2)

Time

T
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(7)

(9)
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The solution of equation (11) requires that y T Oy~Wm +
I1JT.vV be inverted and the numerical efficiency of the
inversion is therefore realized since this is a q x q matrix. At
each iteration in the inversion, we desire a model perturba­
tion that minimizes Iji m and alters Iji d so that it achieves a
specific target value Iji~. To prevent the buildup of unnec­
essary roughness, the target misfit begins at an initial value
(usually a fraction of the misfit generated by the starting
model) and decreases with successive iterations towards a
final value selected by the interpreter. Convergence is
reached when the data misfit reaches this final target and no
further reduction in the model norm is obtained with succes­
sive iterations.

In the IP survey carried out to produce Figure 1, surface
electrodes are located every 10m in the interval x = (- 100,
100 m). Each of the 21 electrode positions can be activated
as a current site and when it is, electric potentials are
recorded at the remaining electrodes. The observed data set
consists of 420 potential values, each of which has been
contaminated by Gaussian noise having a standard deviation
equal to 5 percent of the true potential. The data are
generated using a finite-difference code (McGillivray, 1992),
and the mesh, used both for forward modeling and for the
inversion, consists of 1296 elements.

Because of the nonuniqueness of the inverse solution,
the character of the final model is heavily influenced by the
model objective function. Our choice for Iji m is guided by the
fact that we often wish to find a model that has minimum
structure in the vertical and horizontal directions and at the
same time is close to a base model mo. This model, because
it is "simple" in some respect, may well be representative of
the major earth structure; however, other earth models
might be closer to reality. Also, even if a geologically
reasonable model has been found, it is insightful to generate
different models that fit the data. This can provide under­
standing about whether features observed in the constructed
model are required by the observations or if they are merely
the result of minimizing a particular model objective func-
tion. An objective function that has the flexibility to accom­
plish these goals is

q

(lm = L: aivi == ya.
i= I

1330

The inverse problem is posed as a standard optimization:

minimize !jJm(m, mo) = IIWm(m - mo)!!2

subject to ljid(d, do) = IIWd(d - do)ll2 = Iji'd.

In equation (7), mo is a base model and Wm is a general
weighting matrix that is designed so that a model with
specific characteristics is produced. The minimization of the
model objective function !jJ m yields a model that is close to
mo with the metric defined by Wm and so the characteristics
of the recovered model are directly controlled by these two
quantities. The choice of Iji m is crucial to the solution of the
inverse problem, but we defer the details until later. Wd is a
datum weighting matrix. We shall assume that the noise
contaminating the jth observation is an uncorrelated
Gaussian random variable having zero mean and standard
deviation Ej' As such, an appropriate form for the N x N
matrix is w, = diag I l/s , , "', liEN}' Wirh this choice.w,
is the random variable distributed as chi-squared with N
degrees of freedom. Its expected value is approximately
equal to N and accordingly, Iji~, the target misfit for the
inversion, should be about this value. The appropriate
objective function to be minimized is

Iji(m) = ljim(m, mo) + 11(ljid(d, do) -lji'd)' (8)

where 11 is a Lagrange multiplier.
The inverse problem is nonlinear and is generally attacked

by linearizing equation (8) about the current model m(n),
differentiating with respect to parameters mj and solving the
resultant M x M system of equations for a perturbation om.
This can be computationally intensive when M becomes
large and hence the use of the subspace methods. In the
subspace method, the "model" perturbation is restricted to
be a linear combination of search vectors {Vi} i = I, q. Thus

The linearized objective function, obtained by substituting
min) + ya into equation (8), is

(13)

(12)

+ JJ{axwxC(m a~ mo)f

+ azwz(a(m ~ m
o»)2} dx dz:

In equation (12), the functions w" wx ' W z are specified by
the user, and the constants a" ax, a z control the impor­
tance of closeness of the constructed model to the base
model mo and control the roughness of the model in the
horizontal and vertical directions. The discrete form of
equation (12) is

Ijim=(m-mo)T{asW;Ws +axW;Wx + azW;Wz}(m-mo)

11{ljid + 'Y~Ya + ~ aTyTW~Wdya -lji'd}'

(10)

where 'Ym = VmIji m and 'Yd = Vm!jJ d are gradient vectors,
and Vm is the operator (alam), ... , alamM)T. In equation
(10), ljim is understood to be !jJm(m(n) , mO)'!jJd is !jJd(d(n) ,
do), and the sensitivity matrix J has elements Jij =
ad,.(m(n»/amj' Differentiating equation (10) with respect to
a and setting the resultant equations equal to zero yields

The solution of this system requires that a line search be
carried out to find the value of the Lagrange multiplier 11 so
that a specific target value Iji~ is achieved. This involves an
initial guess for 11, solving equation (11) by SVD for the
vector a, computing the perturbation om, carrying out a
forward modeling to evaluate the true responses and misfit,
and adjusting 11. The estimation of an acceptable value of 11
typically requires three or four forward modelings.
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Substituting into equation (6) yields

Thus the ith datum is

M a<j>
<j>T] = <!>(a - TJa) = <j>(a) - L - TJjaj + H.O.T.

j = I aaj

This can be written approximately as

We shall develop three procedures for inverting IP data.
Method I assumes that the chargeability TJ -e: 1.0.
Equation (6) is linearized about the conductivity a b recov­
ered from the inversion of the DC potentials, and a linear
inverse problem is solved to recover TJ. In Method II we
rearrange the mapping defined by equation (6) and compute
TJ by manipulating the conductivities obtained by performing
two DC resistivity inversions. In Method III we present a
general approach that does not require that chargeability be
small and solves the IP problem as a nonlinear inverse
problem.

INVERSION OF IP DATA

and this defines the matrix Wm in equation (7). For the
inversion of the synthetic data, we have set w s' W x' W z
equal to unity, and Sv in equation (13) Ws is a diagonal
matrix with elements AxAz, where Ax is the length of the
cell and Az is its thickness; Wx has elements ±YAz/ox,
where ox is the distance between the centers of horizontally
adjacent cells; and Wz has elements ± YAx/oz, where OZ is
the distance between the centers of vertically adjacent cells.
In defining the objective function, we can choose m to be a
or In a. Because earth conductivities typically vary over
many orders of magnitude, we choose m = In a. This choice
also ensures that the recovered conductivity will remain
positive. In addition, we specify as = .0002, ax = 1.0,
a z = 1.0 and the reference model mo corresponding to a
background conductivity of ao = 5.0 mS/m.

Our search vectors for the subspace inversion are ob­
tained by partitioning IjJ d into data sets associated with
individual current electrodes. Steepest descent vectors as­
sociated with these 21 data objective functions are combined
with the steepest descent vector for the model gradient and
a constant vector to form a basis for the subspace. The
inversion begins with a halfspace of conductivity 5.0 mS/m.
At every iteration we ask for a 50 percent decrease in the
misfit objective function until a final misfit IjJd = N is
achieved, where N is the number of data. A line search using
forward modeling ensures that this is achieved, or in cases
where it is not achievable, the line search is used to find that
value of f.l which provides the greatest decrease in the misfit.
Once the target misfit has been obtained, the line search
ensures that the misfit remains at the target value, and hence
subsequent iterations alter only IjJ m' The desired misfit
IjJd = 420 is achieved by iteration 13, but a few more
iterations are carried out until no further decrease in the
model objective function is obtained. The model obtained at
iteration 20 is shown in Figure 3c. It compares favorably
with the true model in Figure 3a. The surface variation is
well defined and so is the conductive anomaly in the center
of the figure. There is no manifestation of the resistive ledge
at the bottom left of the picture, but this might have been
expected since its depth is 67 m and the electrodes span the
region (-100, 100) m.

Method I: Linearization of the data equations
2 .56 3 .4 5 4 .6 5 6 . 25 8 .41 11.3 15 .2 20. 5 27 .8

Let the earth model be partitioned into M cells and let TJi
and a i denote the chargeability and electrical conductivity of
the ith cell. Linearizing the potential <j>T] about the conduc­
tivity model a yields

FIG. 3. The true and apparent conductivities are plotted
respectively in (a) and (b). Inversion of the DC potentials
yields the recovered model in (c). The grey scales indicate
conductivity in mS/m.
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l1J = IIW1)(TJ - TJo)ll2 + f.L(IIWd(.[TJ - TJ~bS)112 -$'d),

(19)

where $'d is a target misfit. In the following inversions, W1)
is identical to the model weight matrix used for inverting the
DC resistivity data, and the reference chargeability model TJo
has been set to zero. The inversion is carried out with the

is ijth element of the sensitivity matrix. In practice, the true
conductivity (J' is not known, and hence the background
conductivity (J' b recovered in the DC resistivity inversion is
used to compute the sensitivities in equation (18).

In the inversion of the DC potentials, we ensured positiv­
ity of the conductivity by working with m = In (J' in the
model objective function. That was a natural choice since
conductivity varies over many orders of magnitude, and it is
relative change in conductivity that is often geologically
meaningful rather than absolute change. Minimizing an
objective function that penalizes variation of the logarithm of
conductivity can therefore yield a geologically interpretable
cross-section. Intrinsic chargeability, although positive, is
confined to the region [0, 1). We are usually interested in the
absolute deviation of chargeability from zero, and this range
is rather small. Generally, we are not interested in the
variation of chargeability in the range between zero and
some small number (e.g., 0.01), and working with logarithms
can put undue emphasis on these small values, especially if
there is a smallest model component in the objective func­
tion, that is, if $m has a component with as 'i' O. The basic
question is really whether the final model is more easily
interpretable as a logarithmic quantity or as a linear quantity.
Our belief is that linear chargeability is likely to be more
meaningful and hence $ m should be evaluated with m = TJ.
We adopt this throughout most of the paper; however, there
is a degree of subjectivity in our choice, and we therefore
present an example using m = In TJ.

If m = TJ, then invoking positivity requires that an extra
mapping be introduced since variables in the subspace
solution are intrinsically positive or negative. The inclusion
of this mapping is simply made in the subspace algorithm and
details are relegated to the Appendix.

As a test example, we consider the synthetic chargeability
model shown in Figure le. It consists of a chargeable layer of
TJ = 0.05 at the surface and a chargeable block of TJ = 0.15 at
depth. The position of the chargeable block has been offset
laterally from the position of the conductive block shown in
Figure la. Offsetting the chargeable block from the conduc­
tive block is physically realistic and it will also be used to
emphasize the ability of our inversion to work in such
situations.

The 420 IP data collected in the survey are contaminated
with Gaussian noise having a standard deviation equal to
.002. This corresponds to about 5 percent of the average
value of the apparent chargeabilities. After setting m = TJ
and writing Wm as W1)' the inverse problem is solved by
minimizing the objective function

(18)
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same 23 subspace vectors used in the DC inversion. The
resultant chargeability model, which has a desired misfit of
420 and was obtained after 18 iterations, is shown in
Figure 4c. There has been good recovery of both the
chargeable surface layer and the subsurface block.

The inversion of IP data is a multistep process and
consequently there are numerous reasons why our inversion
result is not identical to the true model. In particular, the
discrepancies between Figures 4c and 4a can be caused by:
(1) the availability of limited inaccurate data, (2) the choice
of model objective function, (3) choice of subspace vectors
or other aspects of the subspace inversion algorithm, (4)
incorrect sensitivities Jij resulting from the fact that the
estimated conductivity differs from the true conductivity, (5)
incorrect sensitivities resulting from numerical calculation,
and (6) errors caused by the neglect of second-order terms in
the linearized expansion that led to equation (17). It is
possible to gain some insight as to which of these factors
might be the most important. To do so, we perform three
more inversions. The purpose of the first inversion is to
evaluate the differences between the true and recovered
model that are attributable to specifics of the inversion
algorithm. This includes the effect of limited inaccurate data,
the form of the objective function to be minimized, and all
aspects of the subspace inversion. The test is performed by
generating a new set of data TJa = .[TJt where J is the
sensitivity used in the inversion that produced the result in
Figure 4c and TJt is the true chargeability. The same realiza­
tion of error has been added to the data and the inversion has
been carried out with the same parameters. The model is
shown in Figure 4d. There are differences between
Figures 4c and 4d, but they are slight. The amplitude of the
buried anomalous chargeable body in Figure 4c is slightly
higher than in Figure 4d and there is slightly more roughness
in the surface zone. This may have been caused by the slight
roughness of the recovered conductivity in Figure 3c. The
similarity in the inversions indicates that the primary differ­
ence between the true and recovered models in Figures 4a
and 4c is a result of the model objective function and the
limited inaccurate data. The algorithm is designed to pro­
duce a chargeability that has minimal structure in the hori­
zontal and vertical directions subject to fitting erroneous
data. As a result, the buried chargeable body does not
achieve amplitudes as high as those of the true body and its
boundaries are smoothed.

The next two inversions provide some indication about the
effect of inaccurate estimation of the background conductiv­
ity used to generate J. We first compute J from the true
conductivity in Figure la. The inversion result is given in
Figure 4e. The result is similar to that in Figure 4c even
though the sensitivities have been developed from two
different conductivities. It would seem that for purposes of
inverting IP data, the conductivity obtained from inverting
the DC data is an adequate approximation to the true
conductivity. Last, we develop the sensitivities for a con­
stant conductivity half-space. The sensitivities are indepen­
dent of the value of the half-space, and the results from the
inversion are shown in Figure 4f. There are significant
differences between the models in Figures 4c and 4f. Nev­
ertheless, the approximate location of the buried chargeable
body is quite evident, particularly in the region that has

a In <\li[IT]
J .. =-

tj a In ITj

1332

where
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lower conductivity, and there is no question that this image
is more easily interpretable than the pseudosection in
Figure 4b. This is encouraging in that it suggests that a
relatively crude approximation may serve as an adequate
background conductivity for the IP inversion. This is an area
of future research.

As a last investigation, we carry out the inversion with
m = In TJ. It is not possible to incorporate a reference model
of TJo = 0 and so the objective function is modifiedby setting
as = O. Otherwise IjIm is identical to that used in the
previous chargeability inversions. The In TJ model is shown
in Figure 5a. The chargeable body is clearly observed but its
depth is somewhat greater than the true depth and that
shown in Figure 4c. The chargeable region on the surface is
also visible. Plotting the results in Figure 5a on a linear scale
produces Figure 5b. The chargeable body has been con­
tracted to a circular feature whose central value is about
40 percent greater than the true chargeability. Nevertheless,
the essential features of the true chargeability model are
clearly visible. To be precise with comparisons, we have
rerun the inversion in Figure 4c with an objective function in

which Us = O. The result is given in Figure 5c, and it differs
imperceptably from the result in Figure 4c which used
as = .0002. Comparison of Figures 4a, 5a, and 5c shows
that the center of the chargeable body in Figure 5c coincides
more closely with that of the true model, but its value is
about 40 percent less than the true chargeability. The con­
tours in Figure 5c exhibit some elongation in the horizontal
direction, indicating that the body might be wider than it is
thick. At a first level of interpretation, however, all three
models in Figure 5 provide consistent information about
earth chargeability, and certainly anyone is preferable to
making an interpretation from the pseudosection. We shall
continue to use m = TJ and make our inversions and
interpretations directly with linear chargeability.

Method II: An exact formalism

Our second method for inverting IP data follows directly
from the definitions in equations (I) and (3) and the formal
introduction of an inverse mapping operator ?F icl . Applying
this operator to equations (I) and (3) respectively yields
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FIG. 4. Inversion results using Method I. The true and apparent chargeability models are shown in (a) and (b). An inversion that
uses sensitivities obtained from the inverted conductivity in Figure 3(c) produces the chargeability model in (c). Discrepancies
between (a) and (c) that are related to aspects of the subspace algorithm are inferred from (d). That panel shows the results of
inverting synthetic data obtained by multiplying the sensitivity matrix J by the true chargeability model in (a) and inverting the
resultant data. The chargeability models in (e) and (f) are the inversion results by respectively using the sensitivity matrix
developed from the true conductivity model and the sensitivity matrix from a half-space.

Downloaded 01 Feb 2012 to 137.82.25.106. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



1334 Oldenburg and Li

shown in Figures 6a and 6b. The differences between them

0 .0'" 0 .141 a .2M e.see 0 .131 1.'77 3 .32 I .U 11.7 are subtle and not readily visible to the eye . The difference
between the conductivity models is shown in Figure 6c, and

.. the chargeability recovered by applying equation (22) is
given in Figure 6d. It is a rather good representation of the

2• • true chargeability.

!
...

Method In: Nonlinear inversion
N ...

8• .
The third method for inverting IP data is the most preci se

a 18 .8 in that it solves a nonlinear inverse problem. With this
"I. approach, there is no necessity for the chargeability to be

- 111 . - ' I , -21 . 21. 61 . 11' . 17.'
small. The inverse problem is stated asx (m).. 1&.4

2• •
minimize IjJm (TJ , TJo ) = IIWT] (TJ - TJ o)11 2

13 .2 (23)

!
... 11 .0

subject to IjJd(d, do) = IIWd(d - do)112 = 1jJ'd ,

N ... where the data d are now the apparent chargeabilities, and
8 . 8

81 .
the equation for producing the predicted data from any

b 8 . 8 chargeability model TJ is given by equation (6) rather than
'U. ... equation (18) as it was with Method I.

·1'., -b' . ...2• . 2' . 61 . ", , The inversion proceeds by linearizing the data equationsx (m )
2 .2.. about the current model TJ (n) and computing the sensitivities

2• • J ;j = odj /oTJj ' As in all of our methods, it is understood that

... the background conductivity model has been recovered by a

! previous inversion of the DC resistivit y data. Writing the
N 61. data equations as

8• .
<l> ~ - <l> ~c

d;= (24)'". <l>~-,... -61 . ...21 . 21. ... 11• .
X (m)

and differentiating with respect to the parameter TJj yields

(26)

(25)

0 .800 ..ao ."'0 3 .10 4 .&0 ' .40 ' .30 7 .20 1 .10

FIG. 5. Inversion results from Method I using m = In TJ as the
variable in the objective function . The recovered logarithmic
chargeability is shown in (a) and it has been replotted in
linear form in (b). For comparison, the inversion carried out
using m = TJ and setting U s = 0 is shown in (c). Thus (a) and
(c) are a direct comparison of the results of using the same
objective function form but applying it to m = In 1] and to
m = TJ, respectively.

(20)

ad ; <l> ~ o<l> ~

oTJj = (<l>~) 2 0TJj .

We therefore need only evaluate o <l> ~/ o TJj ' Writing a =

abO - TJ) as the conductivity that produces the potential
<l>T]' then

o<l>~ o<l>~
o1]j = -abj oa j == -abj Gij

is simply a scaled value of the sensitivity for a DC resistivity
problem. The final sensitivity is

od j <l> ~
J ij = OTJj = -abj ( <l> ~)2 G ij . (27)

To solve the inverse problem, we appeal to the subspace
methodology and carry out an identical procedure used to
invert the potentials <l> rr (see section: Inversion of DC
Potentials). In fact , because of the relationship between the
IP sensitivities and the sensitivities for the DC problem given
by equation (27), the algorithm to invert DC data requires
only minor changes so that IP data can be inverted. When
inverting the IP data we use 23 search vectors: 21 steepest
descent vectors associated with data groupings from each
current electrode, the steepest descent vector associated
with the model objective function, and a constant vector. We
use the same model objective function that produced the
results in Figure 4. The positivity constraint in the subspace
formulation has been implemented by the transformation in

(21)

(22)

and

?Ji ic'( <l> rr) - ?Ji dc
l(<l> 1])

TJ = ?Ji dcl(<l>rr)

Thus the chargeability model is produced by manipulating
the conductivities obtained by inverting two sets of potential
data taken in a DC/IP survey. To implement equation (22),
we have inverted accurate <l>" and <l>1] data and have used the
same model objective function that was used to recover the
model in Figure 3c. It is important to minimize the same IjJm;
otherwise the nonuniqueness inherent in the inversion can
allow radically different conductivities to be obtained and
hence produce a poor estimate of TJ. The two inversions are

rr(] - TJ) = ?Ji dc
l (<l> 1] ) '

from which it follows that
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the Appendix. The result of inverting the test data set,
achieved after 23 iterations, is shown in Figure 7b. There has
been a good recovery of the chargeability model. A compar­
ison between Figures 4c and 7b quantifies the difference
between solving a linearized problem and solving the com­
plete nonlinear inverse problem for this example. The differ­
ences are small but this might be expected since the maxi­
mum chargeability in the model is only 0.15.

NONUNIQUENESS AND HYPOTHESIS TESTING IN IP
INVERSIONS

Minimization of a particular objective function provides a
single model from which to make geologic inferences. With­
out further investigation it cannot be determined which
features of the constructed model are demanded by the
observations and which are the result of the objective
function that has been minimized. Some insight can be
achieved by altering the objective function and carrying out
other inversions. We present two examples that illustrate the
potential usefulness of the flexible model objective function
given in equation (12).

In some geologic environments it might be expected that
the earth has greater continuity in the lateral direction
compared to the vertical direction. To see the effect of this
on the current example we carry out the inversion with
ax = 1.0 and a z = 0.1. The result is shown in Figure 8a.
Comparison with Figure 4c shows that the surface structure
is smoothed in the horizontal direction and that the buried
anomaly has been elongated. The transition from the bottom
of the buried anomaly to the background is more rapid and
the depth extent of the anomaly is reduced. The chargeabil-

ity low between the surface layer and the buried prism is
better defined. Redoing the inversion with a z = 0.01, as
shown in Figure 8b, further enhances these effects. It is
noted that the horizontal extent and thickness of the surface
chargeable layer, and the central position of the buried
anomaly, remain unchanged from those recovered in the
previous inversions. These results suggest that in this exam­
ple, the locations of the recovered anomalies are primarily
controlled by the data and not altered by different objective
functions. This is further illustrated by the next example.

In the synthetic example, the chargeable prism has been
offset from the conductive prism. The inverted chargeabili­
ties reflected this shift. For some geologic settings, however,
it might be expected that locations of high conductivity and
chargeability coincide. To see if this hypothesis is compati­
ble with the data example analyzed here, we have rerun the
inversion but have introduced a weighting function that
attempts to make the chargeability coincide with the con­
ductive prism. This is done by introducing weighting func­
tions, derived from the recovered conductivity anomaly,
that attempt to force the recovered chargeability anomaly to
coincide with those regions that differ from the background
conductivity. To form the weight functions, we first convert
the conductivity model ab to r IT = IloglO(ablaO)I, where
ao = 0.01 Sim for this example. This quantity is then scaled
to the range of (0.02, 1) and its reciprocal is generated to
form w s : The weighting functions w x and w z for the deriv­
ative terms are generated in a similar manner from the
gradient of rIT so that the low values for wx and wz
correspond to regions of high gradient in the recovered
conductivity model. As an example, the function w s gener-
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ated from the conductivity model in Figure 3c is shown in
Figure 9a. The function has two zones of reduced weights
corresponding to the surface resistive zone and the buried
conductive prism. The latter would attempt to center the
buried chargeability anomaly at x = O. The model obtained
by carrying out the weighted inversion is shown in Figure 9b
and this can be compared with the unweighted inversion
replotted in Figure 9c. The attempt to make the chargeability
high coincide with the conductive high has not been success­
ful. There has been some distortion of the contours toward
the conductor, but the center of chargeability high remains
close to its original and true position of x = -25 m. This
provides greater confidence that the location of the charge­
able high is demanded by the data and is not an artifact of the
objective function that is being minimized.

PRACTICAL CONSIDERATIONS WITH RESPECT TO FIELD
DATA

In developing the IP inversion algorithms we have made
the assumption that the IP response is the apparent charge­
ability obtained from an idealized time domain experiment.
Using Figure 2, the apparent chargeability is defined as the
ratio of the secondary potential <I> s to the total potential
measured <1>1'] that is measured just before the current is cut
off. This is a dimensionless number and usually has a range
(0, 0.5). In reality, <I> sand <1>1'] are not recorded directly with
the field acquisition system. In time-domain systems, <1>1'] is
measured and then either a single sampling of <I> s (t) at some
time beyond the current shutoff, or an integration of <I> s< t)
over a time window, is recorded and used as an IP datum. In

a frequency-domain system, sinusoidal current waveforms
are input to the ground at a low-frequency We and at a high
frequency W h » and a percent frequency effect (PFE) is used
for the IP response. In a phase IP system, the phase lag
between a transmitted sinusoidal current and a received
voltage can be measured directly. Although each of these
systems measures something related to IP potentials, they
do not measure the same quantity nor do any of them
measure the quantity that is required for our inversions. In
fact, the various data, still generally called "apparent
chargeability," can be dimensionless or have units of ms or
mrad.

To use the algorithms presented here, it is necessary to
convert collected IP data into the form defined by
equation (5). The only exception is when relative chargeabil­
ities are required as output; that is, if the final distribution of
chargeabilities can be in error by a constant factor. In such
cases, Method I, which solves a linear problem, can still be
used. With that algorithm, if IP data have been scaled by a
constant factor F, then the recovered model will also be
scaled by F and the output model has the same units as the
data.

If the output chargeability model is to be calibrated, or if
Methods II or III are used, then the data collected from any
IP experiment must be converted to the response used here.
This can be done. A study of the relationships between these
parameters is given in Van Voorhis et al. (1973) and Nelson
and Drake (1973).

Another practical aspect about data collection is that the
potential <1>" is not generally measured. Yet it is this potential
that should be inverted to recover the background conduc­
tivity. Usually the potential <1>1'] is measured and inverted to
recover the background conductivity, but the inversion of
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FIG. 7. Inversion results from Method III. The true and
recovered chargeabilities are shown in (a) and (b),
respectively.

FIG. 8. Exploring nonuniqueness in IP inversions by altering
the objective function. The model in (a) was obtained by
setting as = 0.0, ax = 1.0, and a z = 0.1. This has an
increased penalty against variation in the horizontal direc­
tion and hence the chargeability is elongated horizontally.
The effect is increased in (b) where a z = 0.01.
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The inversions presented here have concentrated upon
using pole-pole data. The techniques can, without alteration,
be used to invert IP data from any electrode geometry . The
field example shown next inverts dipole-dipole data from a
gold region in the Abitibi clay belt in Quebec. The geologic
target is a shear-zone-controlled gold mineralization associ­
ated with silicification and sulphides. The geophysical inter­
pretation is complicated by the presence of a conductive
overburden of variable thickness. The overburden may
contain chargeable clays that can dilute or even mask
completely the IP response from the subcrop. It is also likely
that the effect upon the resistivity caused by silicification in
the subcrop will be confused with the variable thickness of
the conductive overburden.

It was felt that the geologic structure might be reasonably
2-D and hence amenable to inversion with our algorithms. A
dipole-dipole survey with 25 m spacings and n = 1 to n = 5
was carried out. Figures lOa and lla show the original
pseudosections of apparent conductivity and apparent
phase. The main feature in the apparent conductivity section
is the change in conductivity as one proceeds from the
resistive region to the south into the conducting overburden
towards the north. Considering that the apparent conductiv­
ity pseudosection is rather smooth, we assume a 5 percent
error in each of the 140 potential data. The 2-D earth
structure is divided into 48 x 27 cells, and so the inverse
problem is to recover the unknown conductivity for each of
the 1296 cells. The reference model (To is chosen to be a
uniform half-space of I mS/m. This is based upon the prior
knowledge about the deep geological structure from Placer
Dome, which indicates resistive country rock. In developing
the objective function [equation (12)], we set the functions
wsand w z to unity throughout the model but choose a
special weighting W x = (Az/8x)2 near the surface. This

FIELD DATA EXAMPLE

We have assumed that data errors are Gaussian and inde­
pendent. This is surely violated in practice. Also, the " er­
rors" ascribed to the data must reflect not only measurement
errors (additive noise, incomplete removal of electromag­
netic coupling, electrode effects, etc .) but also geologic
"noise" caused by 3-D bodies and mathematical cellulariza­
tions which are too coarse to emulate true geologic variabil­
ity even if the earth is 2-D. As a consequence , it is not
possible to assign precise standard deviations for the obser­
vations. Our approach is pragmatic. For the first inversion,
we assign to each datum a standard deviation that is a
percentage of the average apparent chargeability . If a model
can be found that is in acceptable agreement with these
assigned errors, then we adopt this model and carry out
another inversion in which we assign somewhat lower stan­
dard deviations to see if more structure can be extracted
from the data. Alternatively, if the inversion fails to find a
model that adequately reproduces the observations, then we
increase the assigned errors. Contoured maps of misfits
between the observed and predicted data are invaluable in
assessing appropriateness of assigned standard deviations
and in detecting outliers . In summary, the question of error
assignment is problematic and dictates that the inversion will
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FIG. 9. Hypothesis testing in IP inversions. A weighing
function that attempts to move the chargeable zone so that it
coincides with the high conductivity has been incorporated
into the inversion. The weighting function is shown in (a) and
the recovered model is given in (b). That can be compared
with the model in (c) which has no preferential weighting.

<1>1] yields the conductivity (T(1 - 'T]) . If'T] is small, then this
difference may not be important; however, if 11 is large, then
a correction may be demanded . Two possible routes exist.
The first is to estimate the potentials <1>0' by computing
<1>1] - <I> s from the field measurements. Although this
procedure may enhance the error on the data, it does
produce a datum that is ideally unaffected by the polarization
of the subsurface. The second method is an iterative correc­
tion that could be performed one or more times and consists
of steps: (1) perform a DC inversion on <1>1] to yield (T b1]' (2)
use (Tb1] to carry out the IP inversion to recover 'T], (3) form
a new background conductivity (Tb = (Tb1]/(l - 'T]), and (4)
solve the IP inverse problem again. We have not imple­
mented the above correction procedures on our field data
example presented in the next section because the charge­
abilities are quite small. We do however, recognize its
potential importance for some field data.

A matter of practical importance with respect to any of our
inversion methods is the issue of ascribing errors to the data
and deciding upon the degree to which the data are to be fit.
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tends to suppress abrupt horizontal changes that might result
from the elongated cells near the surface. The inverted
conductivity, achieved after 20 iterations, is shown in
Figure lOb. Several features are observed in the model. The
major conductive overburden begins at 1525, extends north­
ward, and attains a thickness of over 40 m. There is also a
conductive layer south of 1525, but its thickness is much
smaller and variable. The model shows two distinct resistive
regions whose resistivities are almost twice that of the
general background. The first is centered at 1525 and the
second at 1300.

The IP pseudosection in Figure lla displays considerable
structure. There is a well-defined anomaly near 1825, and a
larger region from 1300 to 1600 that contains high and
variable chargeabilities. The data provided are apparent
phases in milliradians. The IP inversion requires apparent
chargeabilities (as per Siegel's definition) as data and inverts
for the intrinsic chargeability model. Since to first order
apparent phase is proportional to apparent chargeability, we
have chosen to use apparent phases as data for the inversion.
We use Method I for the inversion and hence the recovered
model will also have units of mrad. The apparent phase data
appear to be more noisy than the apparent resistivities, and
this has made the assignment of an appropriate error more
difficult. We have assigned a constant error equal to
0.13 mrad to each datum. This corresponds to 5 percent of
the middle value of the range of the apparent phase. This
"estimate" of the error is used in the inversion but, as we
shall illustrate, it is likely too small.

The chargeable earth model is discretized into 48 by 27
cells so that 1296 unknown intrinsic chargeabilities are
estimated from 140 data. The model objective function is
identical to that in the DC inversion except the reference
model TJo is taken as zero. The target misfit is 140, but the
subspace inversion code was not able to find a model that
reproduced the data to that degree. The model shown in
Figure l ld has the smallest misfit obtainable by the algo­
rithm. The misfit is X2 = 1330, and this translates into an
average misfit of 0.4 mrad rather than 0.13 mrad. There is
always uncertainty about the data errors and equivalently,
the degree to which the data should be fit. In general, the
features observed in the inversion will decrease in amplitude
as the misfit is allowed to increase. To obtain some confi­
dence about the features observed, we have carried out two
more inversions. The respective misfits were 1400and 1500
(i.e., 0.41, and 0.42 mrad), and the models are shown in
Figures l lc and l lb. The anomalies become shallower and
have reduced amplitude as the misfit is increased, but the
three major IP bodies are evident in all inversions and this
provides confidence that the bodies are not artifacts of
overfitting the data.

Close inspection of Figures lOb and l ld shows that the IP
anomalies are offset from the conductivity anomalies. We
emphasize that these results illustrate the need for an algo­
rithm that does not coarsely parameterize the models, but
rather allows many cells and finds a solution by minimizing
an objective function of the model.

2 .00 2 .51 3 . 16 3 .98 5 .01 6 .31 7 .94 10 .0 12 .6

i
N
o
-0
;:l
Cl)
III

0..

25.

35 .

45 .

55 .

65 .

75 .

1175 . 1350 . 1525.
X (m)

1700 . 1875 . 2050 .

0 .

40 .

i 80 .

N 120 .

160 .

200 .

1175 . 1350 . 1525 .
X (m)

1700 . 1875 . 2050 .

o.70 8 I. 00 1. 41 2 . 00 2 . 82 3 . 98 5 . 62 7 . 94 11. 2

FIG. 10. A dipole-dipole apparent conductivity pseudosection is shown in (a). The inverted conductivity is
presented in (b). Gray scales indicate the conductivity in mS/m.

Downloaded 01 Feb 2012 to 137.82.25.106. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Inversion of Induced Polarization Data 1339

DISCUSSION

We have presented three methods by which IP data can be
inverted. The methods have been illustrated in two dimen­
sions by inverting pole-pole and dipole-dipole data , but no
alteration is required to invert any configuration of electrode
data over I-D or 3-D structures . All three methods require a
prior inversion of DC potentials to recover a background
conductivity ITb : The following summarizes our thoughts
about the three methods.

Method 1.- The equations are linearized about the back­
ground conductivity. An advantage of this approach is that

only a linear inverse problem needs to be solved and
positivity is easily incorporated. The inversion is rapid and
can be carried out many times with different model objective
functions or with different estimates of data error and target
misfits. Additionally, the inversion results are insensitive to
scale errors of the data. These are very positive attributes.
There is, however , an explicit need to compute and store the
sensitivity matrix J. Also, nonlinear effects are unaccounted
for, and these can become important when chargeabilities
are large.

Method II.- The appeal of this method is that only one
computing algorithm to invert DC potentials is required . A
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difficulty, however, is a potential lack of robustness arising
because the desired chargeability is a small quantity that is
obtained by subtracting two large quantities. This requires
that the inversion algorithm is stable, that is, ~ del must be
such that small changes in the data result in small changes in
the conductivity model. The DC inversion algorithm used
here is robust in this regard, but we still have had difficulty
using this procedure with error contaminated data. Another
difficulty with this method is that the two data sets cj>cr and cj>T)
are not generally recorded directly. Rather, cj>T) and a number
related to cj>s are acquired in field surveys.

Method III.- This has the advantage that it can handle
large chargeabilities and that essentially the same algorithm
can be used to invert both the DC and the IP data. This is
especially true if positivity is implemented by using In TJ as
the variable in the inversion code. On the other hand, field
observations must be converted to chargeabilities defined by
cj>s/cj>T) , and the inversion results are sensitive to any errors
resulting from that transformation. Also, a complete nonlin­
ear inversion must be carried out to compute the chargeabil­
ity. This is a disadvantage compared to Method I if many
inversions are to be completed with different model objec­
tive functions and/or solved according to different misfit
levels.

We have no absolute preference for methodology to invert
IP data. Both Methods I and III are viable. From a theoret­
ical viewpoint, Method III is likely the best. However, for
most of our inversions, we have used Method I, principally
because it allows us to bypass the step of converting field
data to true responses and because we can easily carry out a
number of inversions at different misfit levels and with
different objective functions. A similar lack of conclusive­
ness exists with the choice of whether TJ or In TJ is used as the
variable in the model objective function. For reasons already
stated in the text, we prefer to use TJ, but images ofln TJ may
be just as geologically interpretable.

The important aspect of our inversion methodology is that
the generic model objective function that is minimized
provides great flexibility to generate different models. With a
properly designed objective function it is possible to incor­
porate additional information about the distribution of con­
ductivity or chargeability and to generate a model that is in
accordance with geologic constraints. Such a model may be
regarded as a best estimate for the true earth structure and
can be used in a final interpretation. However, altering the
objective function and carrying out additional inversions
allows exploration of model space and provides an indication
of which features are demanded by the data. These two
aspects of constructing a most-likely model, and exploring
the range of acceptable models, form the foundation of a
responsible interpretation.
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APPENDIX

INVOKING POSITIVITY IN INVERSE PROBLEMS
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Positivity in subspace solutions is effected in the following
manner. The reader is referred to Oldenburg and Li (1994)
for more details. In an attempt to keep a uniform notation,
let the symbol m denote the model for the inverse problem,
so m, = TJi in what follows. To invoke positivity, let
m, = f(Pi) and Pi = f -l(mi) be mappings connecting the
chargeability with new parameters Pi' Let p(n) denote the
model at the nth iteration. The value of the model objective
function \)J m evaluated at an updated model p (n) + 8p is

\)Jm(p(n) + 8p) = IIWm[f(p(n) + 8p)] - mo11 2•
(A-I)

By performing a Taylor expansion onfat the point p(n) then

The minimization of equation (A-4) subject to \)Jd = \)J'd is
solved using the subspace formulation. The perturbation 8p
is represented as Y.. and the objective function \)J = \)J m +
f1(\)Jd - \)J'd) is solved by minimizing with respect to the
coefficients 0:. This produces equations that are the same as
those in equation (11) with the exception that the matrix y
has been replaced by the matrix Yf.

The mapping used here is a two-segment mapping consist­
ing of an exponential and a linear region

(A-2)

where F is a diagonal matrix with elements {

O'

m = e'' - mb,

(P-Pl + l)e P I -mb,

(A-5)

(A-3)
afi ami

F u = -Ip(n) = -Ip(n).
Bp, api

A similar Taylor expansion applied to the misfit objective
functional yields

where P = P I is the transition point between the two
segments, and m i, is selected to be small enough such that
model values smaller than mb are not significantly different
from zero.
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