
Grophys. J .  Int. (1997) 130,413-434 

Recovering magnetic susceptibility from electromagnetic 
data over a one-dimensional earth 

Zhiyi Zhang and Douglas W. Oldenburg 
UBC-Geophysical Inuersion Facility, Department of Earth and Ocean Sciences, University ofBritish Columbia, Vancouver, BC, Canada. V6T 124. 
E-mail: oldenburg@geop.ubc.ca 

Accepted 1997 April 7. Received 1996 December 4; in original form 1996 xpril 18 

SUMMARY 
While the inversion of electromagnetic data to recover electrical conductivity has 
received much attention, the inversion of those data to recover magnetic susceptibility 
has not been fully studied. In this paper we invert frequency-domain electromagnetic 
(EM)  data from a horizontal coplanar system to recover a 1-D distribution of magnetic 
susceptibility under the assumption that the electrical conductivity is known. The 
inversion is carried out by dividing the earth into layers of constant susceptibility and 
minimizing an objective function of the susceptibility subject to fitting the data. An 
adjoint Green’s function solution is used in the calculation of sensitivities, and it is 
apparent that the sensitivity problem is driven by three sources. One of the sources is 
the scaled electric field in the layer of interest, and the other two, related to effective 
magnetic charges, are located at the upper and lower boundaries of the layer. These 
charges give rise to a frequency-independent term in the sensitivities. Because different 
frequencies penetrate to different depths in the earth, the EM data contain inherent 
information about the depth distribution of susceptibility. This contrasts with static 
field measurements, which can be reproduced by a surface layer of magnetization. We 
illustrate the effectiveness of the inversion algorithm on synthetic and field data and 
show also the importance of knowing the background conductivity. In practical 
circumstances, where there is no u priori information about conductivity distribution, 
a simultaneous inversion of EM data to recover both electrical conductivity and 
susceptibility will be required. 

Key words: electromagnetic data, electromagnetic survey, horizontal loop, inversion, 
magnetic susceptibility. 

INTRODUCTION 

Electromagnetic data are sensitive to conductivity 0, magnetic 
permeability p and electrical permittivity E .  The decay of the 
EM fields in the Earth depends upon these parameters and 
the frequency of the source. It follows that a multifrequency 
sounding contains information about all of these properties as 
a function of depth and, in principle, it is possible to invert 
simultaneously any set of data for 0, p and E. The first step in 
this process of simultaneous inversion is to be able to invert 
for any one of the parameters when the others are specified. 
Electrical conductivity characteristically varies by orders of 
magnitude and there have been numerous papers devoted to 
recovering 0 when p and E have been specified. Relative 
electrical permittivity varies from about 1 to 80 (Keller 1990), 
and this parameter has received much attention for surveys 
carried out at high frequency. Although relative magnetic 
permeability may vary from 1 to 20 for various rocks and 

minerals, in practice it varies from 1 to less than 2.0. The effect 
of such small variations can often be ignored and EM data 
are commonly inverted after employing the assumption that 
p = po, the relative permeability of free space. Nevertheless, 
there are instances where permeability changes alter the data 
in a significant way. A well-known example of this is the 
negative in-phase data measured with a typical frequency- 
domain airborne electromagnetic (AEM) system. Those negative 
data cannot be the response of a purely conductive model. 
Magnetic permeability greater than po, or equivalently positive 
magnetic susceptibility, must exist. 

Magnetic susceptibility is an important physical parameter 
in geophysical surveys, but the usual way to obtain information 
about the distribution of susceptibility is through the inversion 
of static magnetic data obtained from usual magnetic surveys. 
Unfortunately these data can be reproduced by a layer of 
susceptible material at the Earth’s surface. This illustrates 
not only the extreme non-uniqueness inherent in the inter- 
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pretation of magnetic data but also that there is no inherent 
information about the susceptibility distribution with depth. 
Algorithms which obtain depth distributions do so by imposing 
parametrization on the model domain ( Bhattacharyya 1980 
&yen & Pous 1991; Wang & Hansen 1990), by applying 
constraints to the 'solution (Last & Kubik 1983; Guillen & 
Menichetti 1984) or by introducing a depth weighting function 
to counteract the natural decay of the kernel functions. An 
emmple of this last approach is given in Li & Oldenburg 
11996). 

Rigorous inversion of EM data to estimate the distribution 
of magnetic susceptibility over an arbitrary 1-D, 2-D or 3-D 
earth has not yet been fully investigated. Work has been carried 
out to estimate the physical and geometric parameters of some 
simple models. Ward (1959) described a method of determining 
the ratio of magnetic susceptibility of a conducting magnetic 
sphere to the susceptibility of the background rock. He used 
a uniform field for frequencies which span a large range but 
encompass the critical frequency at which the frequency- 
independent magnetic field cancels the in-phase component 
due to induced current. Fraser (1973) proposed a way to 
estimate the amount of magnetite contained in a vertical dyke 
under the assumption that the body is non-conductive. Fraser 
(1981) also developed a magnetite mapping technique for the 
horizontal coplanar coils of a closely coupled multi-coil air- 
borne EM system. That technique yields contours of apparent 
weight per cent magnetite under the assumption that the 
conductivity of the Earth is represented by a homogeneous 
half-space. 

In this paper we attack the inverse problem of the 
reconstruction of susceptibility by assuming that E = E~ and 
that (r is variable, but known. We restrict ourselves to the 1-D 
problem. We begin with the expression for the forward- 
modelled data from a horizontal coplanar system over a 1-D 
earth. We next outline the inversion procedure and derive 
expressions for the sensitivities. Synthetic and field data 
are then inverted and we present summary comments in a 
concluding section. 

THE FORWARD MODELLING 

Consider two horizontal coils separated by a distance r as 
shown in Fig. 1. The transmitter is at height h, above the 
earth's surface and carries a harmonic current I e'"'. The 
earth is characterized by a set of horizontal layers whose 
thickness, conductivity and suceptibility of the ith layer are 
given by (hi, ci, t i i ) .  In this paper we work with both magnetic 
permeability and susceptibility, which are related through the 
equation p = po( 1 + t i ) ,  where po is the value of magnetic 
permeability in free space. The expression for the total magnetic 
field measured at the surface was given by Ryu, Morrison & 
Ward (1970). In the Hankel transform domain, and under the 
current coordinate system, the secondary electric field above 
the surface can be expressed as 

where l is the Hankel transformation parameter and w is the 
angular frequency. The input impedance in the first layer, Z1, 
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Figure 1. Geometry of the coplanar coil system. A horizontal loop of 
radius u is located at height ha above the surface of a 1-D earth. The 
source current has angular frequency co and amplitude I .  The receiver 
is situated at a radial distance r from the loop source. 

can be found by the recursive formula (Ryu et al. 1970) 

zi+l + Zi tanh(uihi) 
Zi + Ziil tanh(uihi) ' 

2' = zi 

where the intrinsic impedance Zi is given by 

z.= -2 

and 

imp. 

ui 
( 3 )  

uf = ,I2 - w2&,pi + iwaipi. (4)  

In the half-space at the bottom there is no up-going wave and 
hence the input impedance is equal to the intrinsic impedance. 
That is, 2" = 2,. After inverse Hankel transformation, we 
obtain the secondary magnetic field in the frequency domain: 

The induced secondary voltage measured in a receiver coil is 
the time derivative of the magnetic flux and is expressed in the 
frequency domain as 

r 

where DS is the effective area of the receiver. Field data sets 
take on different forms. The responses can be the secondary 
magnetic fields or voltage, or they can be total magnetic fields 
or voltage; these latter responses require the inclusion of the 
primary field. When secondary fields or voltages are used, the 
data are usually normalized by the primary field and provided 
in ppm. Responses in a field survey are acquired at a number 
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of different frequencies and at each frequency both in-phase 
and quadrature phase (or real and imaginary) data can be 
obtained. The phase determination is made with respect to the 
primary magnetic field. 

Due to magnetic polarization, the magnetic field retains a 
non-zero value when the frequency tends to zero. Let 

be the normalized intrinsic impedance, and 

be the normalized input impedance. The vertical magnetic field 
at zero frequency can then be expressed as 

lim HAr, w, Zobs) 
W - 0  

If p i  = po, where i = 1, 2, ._. , M ,  then 2' = po and hence H,(w) 
will tend to zero when w -+ 0. Conversely, if any one of the 
layers has non-zero susceptibility then the magnetic field will 
be non-zero. For a half-space with a conductivity g and a 
magnetic permeability p illuminated by a dipole of moment m, 
and with both source and receiver sitting at the same height 
ho, the solution is reduced to 

The derivation of the above result is given in Appendix A. 
Thus the induced static magnetic field due to a dipole located 
at ho above the surface is equal to that of an image dipole of 
strength m(pl  - po)/(  pl - p o )  buried at a depth h, beneath the 
surface. This magnetic field is the same as that produced by 
effective magnetic charges on the surface of the half-space, 
where the susceptibility is discontinuous. 

THE INVERSE ALGORITHM 

In the non-linear inverse problem, we are provided with 
observations dpbs, i = 1, N ,  and an associated error estimate gi 

for each datum. We are supplied with a forward algorithm so 
that the ith datum can be written as di=Fi(ti),  with the 
understanding that the conductivity and permittivity are 
included in the forward mapping. The inverse problem is non- 
unique. We proceed in the usual manner by introducing a 
model objective function and then finding that model 
which minimizes the objective function subject to fitting the 
data. Because the magnetic susceptibilities of most minerals 
and rocks are positive, imposed positivity is requried in the 
inversion. An obvious way to achieve this would be the use of 
ln(ti) instead of ti as our model. Another means would be the 
introduction of a non-linear mapping m = f(ti). 

To be general, m is used as the model parameter in the 
following derivation. m could be ti, ln(K) or f ( ~ ) .  Our model 
objective function, 

penalizes vertical roughness and differences between the 
recovered model and a reference model, m0. In eq. (11) G( is a 
parameter that controls the relative importance of the two 
terms, and w, and wf are weighting functions which can be 
prescribed by the user. When the earth is divided into layers 
of constant susceptibility, eq. ( 1  1 )  can be discretized and written 
as 

dm = /IW,(m - mo) II', (12) 
where m = (ml, m,, . .. mM)T is a model parameter vector and 
W, is an M x M weighting matrix. 

We chose a data misfit objective function 

where DObs and D are the observed and predicted data, 
respectively, and E~ is the standard deviation of the ith datum. 
Our goal is to find a model m that minimizes eq. ( 1 2 )  subject 
to the constraint that b d  in eq. ( 1 3 )  is equal to a target misfit 
4:. If the errors are Gaussian and independent then #d is a 
chi-squared variable and its expected value is approximately 
equal to N for N > 5. Correspondingly, we often set 4: il N .  
The optimization problem of minimizing eq. (12) subject to 
dd = 4: requires minimizing 

d ( m )  = d m  + (r-'($d -dd*), (14) 
where (r-' is a Lagrange multiplier. 

The optimization problem is non-linear and can be solved 
by linearizing and iterating to a solution. Let m'") be the model 
at the nth iteration and let 6m be a perturbation. The effect of 
the perturbation on the ith datum is given through a Taylor's 
expansion: 

where Jij = 8di/drnj is the sensitivity which indicates how di is 
affected by changing the model parameter for the jth layer. In 
order to keep excessive structure from entering the solution 
we reduce the misfit gradually. We choose the target misfit 
at the ( n  + 1)th iteration as q5:("+')=yq$') where y <  1. Our 
problem becomes: minimize 

q5 = / /  W,[6m + m'"' - mo] 112 

(r - ' { 11 Wd { D O b s  - F[m'"' + 6m]}  / I 2  - d:"") . (16) 

Writing F[m("+')] = F[m'")] + J6m and setting the gradient 
Vam4 = 0 we obtain 

6m= [(rWLw,+JTWiWdJ]-l 

X {J'w,'WdsD,+(rw~w,[mo-m'"']}, (17)  
where 6D, is 

6D, = D O b s  - F[m'")] .  ( 1 8 )  
The selection of (r is obtained in the manner outlined by 
Constable, Parker & Constable (1987) .  Let (r("-l) denote the 
accepted value of (r from the ( n  - 1)th iteration. Trial values 
of (r opening a few orders of magnitude around (r("-') are used 
to evaluate eq. ( 1 7 ) .  Forward modelling is performed on the 
updated trial models, and the misfit curve dd((r) is generated. 
We then find the (r which generates the desired target misfit, 
or if that is not achievable, select that (r which produces the 
minimum misfit. The inversion procedure continues until the 
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desired misfit is achieved and further iterations produce no 
significant reduction in the model objective function. 

Positivity of the solution can be guaranteed in a number of 
ways. The simplest is to choose m = In(ti) as the model. Since 
6 In(K) = 8 ~ / t i ,  the sensitivities are easily obtained for this 
parameter. The difficulty with this mapping is that near-zero 
values carry too much weight in the model objective function, 
and large values of susceptibility are overestimated due to the 
nature of the logarithm function. To overcome these difficulties 
we define m = f ( ~ )  as a three-piece mapping in which m = ti 
for K greater than K~ and m=mb for t i <  tib. An exponential 
function is used to represent susceptibility values between tib 

and K ~ .  Fig. 2 shows the mapping. The forward and inverse 
mappings, m = f ( t i )  and K = f - ’ ( m ) ,  are given by 

ti < tih 

ti > t i 1  

and 

where mb is 

With this mapping the recovered susceptibility has a minimum 
value of K~ but this is chosen small enough so that its effect 
on the data is insignificant compared to the errors on the 
observations. 

CALCULATION OF SENSITIVITIES 

The calculation of sensitivities Jij = 8di/Smj is an important 
part of the algorithm. Here we use the adjoint Green’s function 
method. There are a number of choices for the data and for 

the definition of m, but all of the sensitivities can be obtained 
once SE/2,p is known. For instance. if the secondary fields are 
measured, the sensitivities for H ,  are 

S H A c  0, %bs) =--j 
( 22) 

Because p = p0( 1 + K )  the sensitivity for any m = f ( t i )  can be 
easily generated. 

1 aE(l., w, zobs)  
- Jn( I r j i 2  d l  . 

dm, LwPi 0 am, 

ADJOINT GREEN’S FUNCTION SOLUTION 

The sensitivities can be computed using a modified adjoint 
Green’s function solution. The basic equations for this problem 
are (Ryu 1970) 

(33) 

FH,(r, 0, z) SH,(r, 0, z )  
- 

Fz 8r = ( h e ,  + a)Eo(r, 0, z )  + I,, 
where I, is the source and r, Q and z are variables in the 
cylindrical coordinate system. Due to the symmetry of the 
problem, electric and magnetic fields are no longer functions 
of 0. For simplicity, we use E to denote E g .  The permeability 
p is a function of depth, and for our layered earth it is 
represented as 

(34) 

where M is the number of layers and +hi(z) is the box car 
function, which is unity on the support of the ith layer and zero 
elsewhere. Substituting (24) into (23) and taking derivatives 
with respect to pi in each layer yields the partial differential 
equation for the sensitivity problem. In the Hankel transform 
domain, it is given by 

1 2,E(i ,w,z)  +-  [ s ( z - z i ) - 6 ( z - z ; + , ) ]  
pi 2,- 

where the operator 2’ is 

Detailed derivations of the above equation are given in 
Appendices B and C .  A Green’s function is introduced into 
the problem. Multiplying both sides of eq. (25)  by the Green’s 
function and integrating by parts we obtain 

The boundary term on the left-hand side vanishes because the 
electric field for any finite source tends to zero at infinity and 
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so do its derivatives. Thus, if the Green’s function satisfies the 
equation 

a 2  
-G(A W, Z )  - u?G(i, W ,  Z )  = 6 ( ~  - z0bs),  8 2  

G ( A  0, ~ ) l ~ = ~ ;  = G(1, W, Z ) I ~ = ~ + ,  
G(1, w, z )  -+ 0 when IzI -+ co, 

then the sensitivity for the electric field is 

G(1, w, 2 )  aE(1, w, z )  ’1+1 

(29) 

where E is the primary field in the ith layer and G the 
corresponding Green’s function. The primary field is that 
produced by the transmitter, and the auxiliary field G is due 
to a vertical magnetic dipole with unit strength at the observing 
point Zobs. These fields are given by 

E i ( l ,  w, z) = A i ( l ,  w )  exp[ui(z - z,)] 

8,- I ’  z, 

-~ 

Pi 

+ B i ( A  ~ ) e x p [ - u ~ ( z - z ~ ) I ,  
(30) 

Gi(L, w, 2 )  = w )  exp[ui(z - z i ) ]  
+ b i ( 1 , w ) e x p [ - u i ( - - - z i ) ] ,  

where the coefficients of the upgoing and downgoing waves 
are given by the following formulae: 

zi zi+l - 
A i ( 1 , w ) = B i ( 1 , w ) e x p [ - 2 u i h i ]  i + l  z + Z i ’  

z’ + zi 
Z‘+ zi-l ’ Bi(,l, w )  = Bi-  (1, w )  exp [ - ui- hi- 1] . 

The input impedance and intrinsic impedance can be calculated 
by using eqs (2) and (3). For the convenience of computation, 

be reorganized to (Appendix D) 

= < + I  + iw(iwE, + ai) G(1, w, z)E(A, w, z ) d z .  

(32) 

Appendix E outlines the detailed calculation of eq. (32). The 
sensitivities for the vertical component of the magnetic field 
are thus 

where 

bihi J o ( 1 r ) i 2  d 1 ,  1 AiV, 0, hi)  - 2  
w 

and 

1 s, = - (iws, + ai) G(1, w, z )E(I ,  w, z )  dz 

(34) 

x Jo(/Zr)12 d l  . (35)  

Like the magnetic field, the sensitivities also retain a non-zero 
value when frequency tends to zero. From eqs (7)  and (8), 
the input and intrinsic impedances, after being normalized by 
iw, asymptote to a constant when frequency tends to zero. 
Consequently, the coefficients ai and bi are proportional to coo, 
and Ai and Bi are proportional to w1 when o -+ 0. That in 
turn means that G cc wo and E cc w1 when w -+ 0. Therefore, 
the first term S1 in eq. (33), which represents the influence of 
sources on the two boundaries of each layer, will not tend to 
zero at zero frequency. The second term S,, on the other hand, 
will tend to zero when the frequency tends to zero. The two 
boundary sources in the calculation of sensitivities can be 
viewed as layers of magnetic charges. Those surface magnetic 
charges are due to the sudden change of susceptibility on 
boundaries and they remain as the frequency goes to zero. AS 
frequency increases, eddy currents will become stronger, and 
this adds a frequency-dependent term to the sensitivities. 

A numerical example of the sensitivities for horizontal 
coplanar coils with a coil separation of 10 m and at height 30 m 
above a half-space of S m-’ and a magnetic susceptibility 
of 0.1 SI units is given in Fig. 3. Panels (a) and (b) show how 
the amplitudes of real and imaginary components of the 
sensitivities vary with respect to frequency. At low frequency 
the real component remains at a constant value due to magnetic 
polarization. As frequency increases, the induced currents 
become stronger and the real component of the sensitivities 
become frequency-dependent. At a certain frequency, in this 
case around lo3 Hz, the frequency-dependent term begins to 
dominate. For a given susceptibility structure the transition 
frequency lowers as conductivity increases. The imaginary 
component, on the other hand, is completely frequency- 
dependent. At low frequency, magnetic dipoles change orien- 
tation almost synchronously with the primary field, therefore 
the amplitude of the imaginary component of the sensitivities 
is very small. Below 1000 Hz the amplitude increases linearly 
with frequency. It then increases non-linearly and reaches a 
maximum around 10 000 Hz. 

Both components of the sensitivities also behave differently 
with depth. The real component begins at a constant value 
and decreases with depth, but for the imaginary part there is 
a depth at which the sensitivity is maximized. This charac- 
teristic contributes greatly to the depth resolution obtained in 
the inversion. Fig. 3(c) presents the absolute value of the 
frequency-independent part of the sensitivities as a function of 
depth and coil separation. When the coil separation is much 
smaller than the observation height, as in the case of this 
example, this term generally decreases with depth. The frequency- 
dependent term of the real component of the sensitivities is 
obtained by subtracting the frequency-independent term from 
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Figure 3. The absolute value of sensitivities (in logarithmic scale) over a half-space. The conductivity is 0.01 S m-' and the susceptibility is 0.1 
SI units. The data were calculated for a coil separation of 10 m and survey height of 30 m. (a) Real component of the sensitivities; (b)  imaginary 
component of the sensitivities; (c) frequency-independent term in the real component of the sensitivities; (d) frequency-dependent term in the real 
component of the sensitivities. 

Fig. 3(a). Fig. 3(d) shows the result for a source-receiver 
separation of 10m. It is similar to the imaginary component 
of the sensitivities in that at frequencies higher than 1000 Hz 
it also reaches a maximum at depth. At frequencies lower than 
1000 Hz, the amplitude of the frequency-independent com- 
ponent of the sensitivities is linear with frequency. However, 
the amplitude of the frequency-dependent sensitivity is much 
smaller than the frequency-independent component; thus, 
during an inversion, the frequency-independen t component of 
the in-phase part of the sensitivities may limit depth resolution. 

EXAMPLES 

For all the synthetic data in this section we assume a coplanar 
system with a coil separation of 10 m in which the transmitter 
has unit area and carries a harmonic electric current of 1 Amp. 
The earth is divided into 44 layers and the thicknesses of the 
layers increase with depth to compensate for the loss of 
resolution. The conductivity structure is assumed known and 
the mapping.parameters tib and K~ are fixed at 
SI units. 

As a first example, we invert data from a ground system 
that is 0.5 m above the surface. The data are calculated at 
10 frequencies; 110, 220, 440, 880, 1760, 3520, 7040, 14 080, 
28 160 and 56 320 Hz and contaminated with 24 per cent 
Gaussian noise. The model parameter used in this inversion is 
related to K through the non-linear mapping given by eq. (19). 
Parameter ct in eq. (1 1 ) is set to 0.02. The starting and reference 
susceptibility models were half-spaces of values 0.0 and SI, 

and 

respectively. The parameter y was chosen as 5. The results are 
shown in Fig. 4. After seven iterations the inversion converged 
to the desired target misfit of 20. Fig. 4(a) shows the true 
conductivity structure and Fig. 4( b) shows the reconstructed 
and true susceptibility models. Figs 4(c) and (d) show the misfit 
curve and model norm as functions of the number of iterations. 
The inversion has recovered a very good representation of the 
true susceptibility structure. 

In a second example, whose results are given in Fig. 5, we 
invert data from a typical airborne survey in which in-phase 
and quadrature phase data at frequencies 900, 7200 and 
56 000 Hz were collected at a flight height of 30 m. The data 
were contaminated with 0.5 per cent Gaussian noise. Starting 
and reference models in this example were 0.02 and low6 SI, 
respectively. The true conductivity model, given in Fig. 5(c), is 
assumed known. We first used the logarithm of susceptibility 
as the model parameter. The reconstructed model, obtained 
after seven iterations, fits the data to the desired level, but 
overshoots the true model. This is primarily the result of using 
In(K) as a model parameter. Using the non-linear mapping 
(eq. 19) to guarantee positivity yields the model in Fig. 5(b). 
This model is a better representation of the true model and 
was obtained in four iterations. In both cases, the inversion 
converged to the desired target misfit of 6. Plots of the data 
misfits for both inversions are provided in Fig. 5(d). In carrying 
out the inversion, parameters CI and y were chosen to be the 
same as those in the previous example. 

The primary contribution to the EM responses is from eddy 
currents induced in the earth, and the magnitude of the data 
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Figure 4. Inversion of ground system data. (a) The conductivity structure used in the inversion. Its value below 80 m is 0.01 S m-'. (h)  Recovered 
(solid line) and true susceptibility models (dashed line). (c) Misfit curve for the inversion. ( d )  Model norm as a function of iteration. 
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Figure 5. Inversion with correct knowledge of conductivity structure. (a) Recovered (solid line) and true susceptibility models (dashed line) from 
the inversion in which ln(K) was used as the model parameter. (b )  The result of the inversion which uses the three-piece non-linear mapping for 
the model parameters. The solid line denotes the recovered model and the dashed line denotes the true model. (c) The true conductivity structure. 
(d)  The convergence curves for inversion with the non-linear mapping (solid line) and inversion with In(K) as  the model parameter (dashed line). 

is dependent upon the electrical conductivity structure. It 
follows that inversions for susceptibility which are performed 
with incorrect knowledge of the electrical conductivity will 
suffer some deterioration. We illustrate this by repeating the 
last inversion but this time using an approximate conductivity 
model. The conductivity model is obtained by using a separate 
inversion algorithm which recovers a 1-D electrical structure 
from horizontal loop EM data by assuming that p and E take 

their values in the air. The algorithm was terminated after the 
second iteration when the misfit was 75.4, well above the 
desired value of 6. The true and the approximate conductivity 
models are shown in Fig. 6(a). Now we use the approximate 
conductivity and invert for K .  The algorithm plateaued to a 
minimum misfit of about #*=28  after nine iterations. The 
recovered susceptibility in Fig. 6( b) shows increased suscepti- 
bility at about the right depth, but it overshoots the true model 
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Figure 6. Effect of incorrect knowledge of the conductivity distribution 
model and dashed line denotes the true model. (b) The resultant suscept! 
curve for the inversion. (d) The model norm as a function of iteration. 

significantly and is not an accurate representation of the true 
model. This discrepancy increases as the conductivity model 
becomes a poorer representation of the true conductivity. 

As a field example we now invert airborne EM data acquired 
at Mt Milligan, which is a Cu-Au porphyry deposit located in 
central British Columbia, Canada. The in-phase and quadrature 
phase data at frequencies of 900, 7200 and 56 000 Hz were 
taken about every 10 m along the flight line. The coil separation 
is 8.0 m for 900 and 7200 Hz data and 6.3 m for data at 
56000Hz. The DIGHEM system was flown in north-south 
lines 100 m apart. Even though the flight lines are north-south 
we invert data at 13 stations along an east-west line (Y9600). 
This is because DC resistivity data were collected on east-west 
lines and they have been inverted by Oldenburg, Li & Ellis 
(1997). We will use their 2-D conductivity model in our 
susceptibility inversion. The DIGHEM data for the 13 stations 
are given in Fig. 7. The real component of the vertical com- 
ponent of the magnetic field at 900 Hz is negative at most of 
the stations. There are also some negative in-phase data at 
7200 Hz. For airborne electromagnetic surveys, the negative 
in-phase data is a direct result of magnetization. For such 
surveys, the flight height h, is generally much greater than the 
coil separation r ,  and therefore the secondary magnetic field 
recorded at the receiver opposes the primary field. At low 
induction numbers the magnetic field due to magnetic charges 
at boundaries of susceptibility discontinuity can exceed the 
secondary fields generated by eddy currents in the Earth, and 
since they oppose each other, it is possible for the in-phase 
portion of the airborne EM response to be negative. At higher 
induction numbers, however, the effect of eddy currents will 
dominate. 

In performing the inversion the Earth is divided into 22 
layers, which is the same as the number of layers used in the 
inversion of the 2-D DC data. A contoured representation of 
that conductivity model is shown in Fig. S(a). The laterally 
averaged conductivity beneath each station was used as a 1-D 
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ibilty model (solid line) and the true model (dashed line). (c) The misfit 

background conductivity for the susceptibility inversion. The 
model objective function was that given in eq. (14) with the 
parameter x set to 0.02. The model parameter m(ti) for the 
inversion is connected to susceptibility through the non-linear 
mapping given in eq. (19). The mapping parameters q, and ti1 

were set to be and SI, respectively. The starting 
model for inversions at all the stations was a half-space of 
0.02 SI. The reference model was a half-space of 

The noise level in the data is assumed to be 10 per cent of 
the amplitude of the data. This resulted in a minimum standard 
deviation of less than 1 ppm for some data and is likely to 
have been overly optimistic. The cumulative initial chi-squared 
misfit for the 13 stations was 417206. The result of the 
inversion is shown in Fig. 8(b), and the cumulative misfit has 
been reduced to 1795. Three regions of high susceptibility are 
observed in the upper 200 m and the maximum susceptibility 
is 0.1 SI. This result can be compared with Fig. 8(c), which 
shows the magnetite concentration provided by DeLong et a / .  
( 1991), which was visually estimated from borehole samples 
over the same section. Topography information is incorporated 
in Fig. 8(c). The larger magnetic anomaly in the centre is 
supported by four observations. The highest value in this 
anomaly is 8 per cent and the magnetite contents for the three 
other supporting points are 5 per cent. The high susceptibility 
at station 12.9 km in Fig. 8( b) corresponds well, both vertically 
and horizontally, with the borehole information. There is an 
indication in Fig. S(c) of an enhanced magnetite content near 
13.1 km and another more elongated concentration near 
12.9 km. These are not pronounced features, but they do 
correlate with the inversion result in Fig. 8(b). The data from 
a ground magnetic survey at Mt Milligan have been inverted 
to recover a 3-D model of susceptibility (Li & Oldenburg 
1996). The cross-section from the recovered 3-D susceptibility 
model is presented in Fig. 8(d). Three concentrations of 
susceptibility are observed, with the largest amplitude of 0.047 
SI occurring at 12.7 km and at a depth of 200m. This is 

SI. 
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Figure7. DIGHEM data from Mt Milligan, at section Y9600. The 
real component is denoted by the solid line and the imaginary 
component is denoted by the dashed line. The flight height varies 
between 25.2 and 48.8 m. The coil separation is 7.98 m at 900 and 
7200 Hz, and 6.33 m at 56 000 Hz. 

considerably deeper than the susceptibility recovered by 
inverting the airborne EM data. Figs 8(b) and (d) both indicate 
high susceptibility at 12.7 km, but there is a lateral difference 
of about 100m between the locations of the right-most 
anomaly. With the exception of this lateral shift in the right- 
hand anomaly, the greatest discrepancies between the models 
exist in the vertical direction. One possible explanation is that 
the depth of investigation, which is primarily controlled by 
skin depth and geometry, is less than 150m in this case. 
Therefore, the airborne EM data are primarily sensitive to 
structure in the top 150m, and structure with susceptibility 
lower than 0.1 SI and deeper than 200 m will not greatly affect 
the data. This has been confirmed by forward modelling. 

Another possibility for the disagreement between Figs 8( b) 
and (d) is due to non-uniqueness in the inversion. The recovered 
model from the inversion of static magnetic data seems deeper 
and more spread out. Since the depth distribution in the 3-D 
model is a consequence of the depth weighting in the objective 
function, inappropriate design or use of that weighting function 
may affect the inversion. On the other hand, the quality of 
the results of the 1-D susceptibility inversion can be affected 
by 3-D variations in conductivity and susceptibility, which 
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Figure8. Inversion of DIGHEM data from Mt Milligan, section 
Y9600. (a) Recovered conductivity model from the inversion of 2-D 
DC data. (b)  Susceptibility model reconstructed from the 1-D inversion 
of DIGHEM data. (c) Magnetite content in percentage from borehole 
information. (d) Susceptibility model from the 3-D inversion of static 
magnetic data. 

surely exist at Mt Milligan, and by incorrect estimation of the 
background conductivity. Ideally, we would like to incorporate 
the 3-D effects into the errors ascribed to the data, but we do 
not know how large these are. In the inversion in Fig. 8( b) we 
assigned a constant percentage error. Other reasonable errors 
schemes are: (1) constant base level plus a percentage of the 
data; (2) a fixed but different value for each frequency; and 
( 3 )  uniform errors on all data. For a given data set, the inverted 
model depends upon the assigned errors and how well the 
data are misfit. To investigate this variability we carried out 
the inversions with different error schemes and additionally 
imposed a reasonable upper limit of 0.1 SI units on the 
recovered susceptibility. In Fig. 9(a) we show the inversion 
result when the standard deviation for data at 900, 7200 and 
56 000 Hz is 5 ppm plus 10 per cent of the strength of the data. 
For Fig. 9( b) the standard deviations were 1, 4 and 10 ppm 
for data at the three respective frequencies, and in Fig. 9(c) the 
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Figure 9. Recovered susceptibilty models from inversions with 
different error schemes: (a) the recovered model when the standard 
deviations were 5 ppm plus 10 per cent of the strength of the data; 
(b) the standard deviations were 1.4 and 10 ppm for data at 900, 7200 
and 56 000 Hertz; and (c) a constant standard deviation of 10 ppm 
was used for all the data. 

standard deviation for each datum was 10ppm. There are 
differences between the three sections but they all identify 
anomaly highs at 12.6 km and 12.9 km. All susceptibility 
highs are concentrated within the top 150m. This provides 
confidence that the algorithm is producing meaningful results. 

CONCLUSIONS 

The work presented here shows how electromagnetic data 
from a horizontal coplanar loop can be inverted to recover a 
1-D susceptibility structure under the assumption that the 
electrical conductivity is known. Since the strength of induced 
magnetization inside the Earth depends upon the amplitude 
of the existing magnetic field, it follows that EM data at 
different frequencies are sensitive to susceptibilities at different 
depths. This is in contrast to static magnetic field data acquired 
on usual surveys. Our algorithm follows traditional inversion 
methodologies for solving underdetermined non-linear inverse 
problems and minimizes an objective function subject to fitting 
the data. Positivity is incorporated by using ln(k-) or a non- 
linear mapping of susceptibility as model parameters. Synthetic 
inversions indicate that convergence with the non-linear 
mapping usually requires fewer iterations to achieve the same 
misfit and generally produces a better representation of the 
true model. For field data, when using a 1-D inversion 

algorithm in complex environments, one is faced with the 
ubiquitous problem of specifying the observational errors 
and deciding how well the data should be fitted. This remains 
problematic but in our examples we used a variety of error 
assignments and imposed an upper limit on the constructed 
susceptibilities. The resultant images had common features 
and the main feature coincided with a region of high magnetite 
content inferred from visual estimates of borehole logs. 

Reasonably accurate information about background con- 
ductivity is important for the inversion. If the true conductivity 
is known, the inversion can produce a good representation 
of the true magnetic susceptibility. However, when the con- 
ductivity is not accurate, the recovered susceptibility model 
will be distorted. This invites the challenge of carrying out 
simultaneous inversion of conductivity and susceptibility. 

The method outlined in this paper is qualitatively useful. 
When accurate information about conductivity structure is 
available from other geophysical surveys such as DC resistivity 
surveys, our method may provide useful information about 
susceptibility structure. It can also be used in resistive environ- 
ments where the effect of conductivity o n  the data is relatively 
small. For instance, this method is potentially useful for 
mapping titanomagnetites since these often occur in fairly 
resistive rocks. In general, however, simultaneous inversions 
are needed to recover conductivity and susceptibilty, and this 
paper has laid the theoretical foundation for such an inversion. 
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APPENDIX A: ZERO-FREQUENCY 
SOLUTION FOR H ,  OVER A HALF-SPACE 

The asymptotic expression for the vertical component of the 
magnetic field due to a dipole source of moment m, over a 
general 1-D earth at zero frequency is given by 

For a half-space of p = p1 and a = al, the input impedance 
equals the intrinsic impedance: 

When the frequency tends to zero, the normalized input 
impedance is 

Thus expression ( A l )  can be further reduced to 

From Gradshteyn & Ryzhik (1965, p. 712), 1; x m + l  exp(-as)J,(bs)dx 

Letting m = 1, b = r, D = 0, a = 2h0 and zobs = 0 yields 

APPENDIX B: ADJOINT GREEN'S 
FUNCTION SOLUTION FOR THE 
SENSITIVITIES 

From the first two expressions in eq. (23)  we obtain 

dz2 S p i  - iwp- ~ + i o -  - + i w l  $i + iwH,- a 2  S E  , a SH,  a p  i i ~ ,  a~ a* 
s z  api  s z  i)pi a, s z  

and 

d aH, a$. a ~ ,  
- { :[ $( r e ) ] }  = i w p G  

+ iwH,- dr + iw-tji. Sr 

(B2) 

Note that second terms on the right-hand side of both eq. (Bl) 
and eq. (B2) are zero because the permeability in each layer 
remains constant and $i is only a function of z .  Multiplying 
both sides of the third expression in (23) with iwp, we obtain 

Solving eqs ( B l )  and (B2) for iop(S/Sr)(dH,/Spi) and 
iwp(d/Br)(SH,/dpi), and inserting these into eq. (B3) leads to 

dE 
= (-w2piEo + iwai)-. 

api  

The above equation can be reorganized into 

dE 
az2 Spi  ar r Sr Spi 
_ _  " - ' ( - ' [ z ( r z ) ] }  -(-w2pE0+iwa)- 

SH, dH, S$i 
= iwI,hi( s,- - 7) + iwH,-. a,- 

Since there is no artificial source in the ith layer, 

SH,  aH, 
dz Sr 

= (iws, + a)E , 

hence the sensitivity problem can be expressed as 

dZ SE SE 
d,ui Sr  r dr api  

- - - 2 { - 1 [ 2( r g  )] } - (-w2pEo + iwa)- 

fB7) 
W i  

= (iw$i(iwco + o)E + ioH,- . a,- 
Since the box car basis function is actually the difference 
between two Heaviside functions, $i = H(z - z i )  - H(z - z ~ + ~ ) ,  
the derivative of the box car with respect to depth is 

Due to its symmetry, this problem can be converted into the 
Hankel domain (Appendix C): 

d2 SE SE 
u2- = iw$i(iwso + a)E - -_  

az2 api api 
1 SE + - -[6(z - Z i )  - 6(z - z i+ l ) ] ,  (B9) 

where u2 = /I2 - o 2 p e 0  + iwpa. Compared with the partial 
differential equation for the sensitivity of conductivity, this 
sensitivity problem has two extra terms located at the upper 
and lower boundaries of each layer. We solve eq. (B9) by 
introducing a Green's function G. Multiply both sides of 

p i  az 
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eq. (B9)  by G and integrate over the whole domain to obtain 
eq. ( 2 7 ) .  The boundary term on the left-hand side vanishes 
because the electric field for any finite source tends to zero at 
infinity and so do its derivatives. Thus, if the Green’s function 
satisfies eq. ( 2 8 )  then the sensitivity for the electric field is 
given by eq. (19). 

The complete expression of the Henkel transformation for the 
partial derivative equation of (dE/Spi) is 

3’ SE SE - -_  u’- = i ~ t ) ~ ( i w ~ O  + a)E 
az2 aPi aPi 

1 SE aP  8% 
pi dz a= aPi + - - [S(z - zi) - 6(z  - z ~ + ~ ) ]  + iw- ~ 

APPENDIX C: HANKEL 
TRANSFORMATION FOR 

The Hankel transform is defined as 

APPENDIX D :  EQUIVALENCE OF EQS (29)  
A N D  ( 3 2 )  

TO prove that eq. (29) is equivalent to eq. ( 3 2 ) ,  we only need 
to show that 

f(1) = lm F(r)$J,(Ar)dr ( C 1 )  

transform of eq. (B7). We want to take the Hankel 
Concentrating upon the second term, we have ( D 1 )  

For simplicity, we use G and E to denote G(I ,w,  z )  and 
E(1, w, z ) .  The generic solutions for the electric field and the 
Green’s function in the ith layer take the following form: 

Ei = Ai exp [u i (z  - z i ) ]  + Bi exp [ - ui(z - z i ) ]  , 

Gi = ai exp[ui(z - zi)] + bi exp[ -ui(z  - zi)] . 
(D2) 

Integrate by parts to obtain 
Therefore, 

1 =.+1 

2Aibihi = 1“‘ 2Aibi dz = E, 1, 2Ai Bi dz 

Since the Bessel function of first order equals zero at r = 0, 
and the electric field and its derivatives diminish at infinity, 
the boundary terms in the above equation are equal to zero. 
The integrand can be further simplified by expanding and 
reorganizing: 

where E, = iwp,laJ(la) exp(uozobs). Inserting eq. (D3) back 
into the right-hand side of eq. (D l )  results in 

a 2  SJ,(1r) J , ( l r )  
r - [rJ , ( l r ) ]  + ~ - ~ 

drz dr r 

- 8 2  dJ , ( l r )  SJ,(Ar) J , ( l r )  
- r - -J  (Ir)+2----- 

Sr’ Sr Sr  r 

Let I r  = R, such that (d /Sr)  = (S/dR)(dR/Fr) = A(tJ/SR). Carrying 
out this replacement in cooperation with the definition of the 
Bessel’s function, Integrating by parts we obtain 

( C 2 )  can be reduced to 

aE SE(1, z, w) 
-Jl(Ar)l’dr = - 1’ 

aPi  
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APPENDIX E: COMPUTATION OF THE 
DISCRETE SENSITIVITIES 

In the calculation of the sensitivities, we need to evaluate an 
integral f ,  defined by 

G(1, w, z)E(A, o, z ) d z  l" 
2b:"' E 2 ( i ,  w, z )  d z ,  

f ( A ,  w, z )  = 

( E l )  

with E, defined as in Appendix D. If we denote E(1, w, z )  with 
E, then the partial differential equation for the electric field in 
the Hankel-transformed domain is 

- - u ; = o .  ( E l )  
82 E 
az2 

Hence 

1 E i?'E 
f ( 1 ,  o, z )  = gIZ, - -dz 

u: az2 

The general solution of eq. (E2) is a linear combination of 
up-going and down-going waves, as given in eq. (D2) .  Thus, 

Inserting this equation back into eq. (E3) yields 

eq. ( E l )  can be, for the convenience of computation, further 
written as 

+ 2AiBihi, (E7) 

where 

2BiZi+' Biiwpi 
[ E i z ]  = Z'+' + Zi Z'+' + zi exp(-2uihi). (E8) 

z,+1 
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