
Geophysical Journal International
Geophys. J. Int. (2014) 196, 1492–1507 doi: 10.1093/gji/ggt465
Advance Access publication 2013 December 5

G
JI

M
ar

in
e

ge
os

ci
en

ce
s

an
d

ap
pl

ie
d

ge
op

hy
si
cs

3-D inversion of airborne electromagnetic data parallelized
and accelerated by local mesh and adaptive soundings

Dikun Yang, Douglas W. Oldenburg and Eldad Haber
Geophysical Inversion Facility, Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver,
British Columbia, Canada. E-mail: yangdikun@gmail.com

Accepted 2013 November 12. Received 2013 October 2; in original form 2013 May 3

S U M M A R Y
Airborne electromagnetic (AEM) methods are highly efficient tools for assessing the Earth’s
conductivity structures in a large area at low cost. However, the configuration of AEM measure-
ments, which typically have widely distributed transmitter-receiver pairs, makes the rigorous
modelling and interpretation extremely time-consuming in 3-D. Excessive overcomputing can
occur when working on a large mesh covering the entire survey area and inverting all soundings
in the data set. We propose two improvements. The first is to use a locally optimized mesh
for each AEM sounding for the forward modelling and calculation of sensitivity. This dedi-
cated local mesh is small with fine cells near the sounding location and coarse cells far away
in accordance with EM diffusion and the geometric decay of the signals. Once the forward
problem is solved on the local meshes, the sensitivity for the inversion on the global mesh is
available through quick interpolation. Using local meshes for AEM forward modelling avoids
unnecessary computing on fine cells on a global mesh that are far away from the sounding
location. Since local meshes are highly independent, the forward modelling can be efficiently
parallelized over an array of processors. The second improvement is random and dynamic
down-sampling of the soundings. Each inversion iteration only uses a random subset of the
soundings, and the subset is reselected for every iteration. The number of soundings in the ran-
dom subset, determined by an adaptive algorithm, is tied to the degree of model regularization.
This minimizes the overcomputing caused by working with redundant soundings. Our meth-
ods are compared against conventional methods and tested with a synthetic example. We also
invert a field data set that was previously considered to be too large to be practically inverted
in 3-D. These examples show that our methodology can dramatically reduce the processing
time of 3-D inversion to a practical level without losing resolution. Any existing modelling
technique can be included into our framework of mesh decoupling and adaptive sampling to
accelerate large-scale 3-D EM inversions.

Key words: Numerical solutions; Inverse theory; Electrical properties; Electromagnetic
theory.

1 I N T RO D U C T I O N

A typical airborne electromagnetic (AEM) system consists of a
transmitter, a loop of wire carrying a time varying current, and
a receiver that measures the magnetic field. The transmitter and
the receiver are attached to the aircraft and move together with
a constant separation. Many soundings (data from a particular
transmitter–receiver pair) are taken as the aircraft moves along a
flight line. The configuration of distributed sources and receivers
makes AEM highly efficient in assessing the Earth’s conductivity
over large areas. Millions of line kilometres of data are collected
every year for applications in mining, geotechnical, hydrological
and environmental problems. However, the benefits of fast acqui-

sition over large areas raises serious challenges for 3-D modelling
and inversion. Because of the large area of survey, the governing
Maxwell’s equations must be discretized on a very large mesh and
the solution of the resultant matrix system is computationally chal-
lenging. Moreover this large computational problem needs to be
solved for each new transmitter location. Thus hundreds of thou-
sands of Maxwell’s solutions need to be computed to solve one
complete forward problem. The inverse problem requires many of
these complete forward modellings to find a solution. Primarily due
to the unaffordable computational cost, AEM data have been rou-
tinely interpreted by the methods that assume a simplified model,
for example, apparent conductivity (Fraser 1978; Palacky & West
1991; Palacky 1993), time constant (Palacky & West 1973; Macnae
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1998), conductivity depth transform/imaging (Wolfgram & Karlik
1995; Eaton 1998; Macnae 1998; Fullagar & Reid 2001; Macnae
et al. 2010), 1-D layered Earth inversion (Farquharson & Oldenburg
1993; Lane et al. 2000; Wolfgram et al. 2003; Sattel 2005; Brodie
& Sambridge 2006; Vallee & Smith 2009; Fullagar et al. 2010) and
plate modelling (Keating & Crossley 1990; Raiche 2004). While
these methods provide critical first-order information about the
conductivity, they can fail to yield reasonable models when their
basic assumptions are violated. For instance, in a previous paper
Yang & Oldenburg (2012a) we showed an example where a 1-D
inversion of airborne time-domain EM data generated a model that
contradicted known geology. This motivates the goal of being able
to routinely invert all airborne data in 3-D.

Rigorous EM modelling has physical complexities in time and
space domains. The time complexity requires accurate modelling
of Maxwell’s equations on timescales ranging from microseconds
to hundreds of seconds depending on the system. The space com-
plexity comes from the large number of cells needed to discretize
the Maxwell system in 3-D space with distributed sources. Over the
last decade, much effort has been made to accelerate 3-D inversion
by reducing the time complexity and/or space complexity. On the
time complexity side, Zaslavsky et al. (2011, 2013) have shown that
optimal Laplace frequencies can be chosen using rational Krylov
subspace model reduction. On the space complexity side, Cox et al.
(2010) and Wilson et al. (2010) used an integral equation method
and a moving footprint to parallelize the computation of the spar-
sified sensitivity matrix for speed-up. In our work we use a finite
volume method (Bossavit 1998; Haber & Ascher 2001) and direct
time stepping to discretize Maxwell’s equations. This paper is a pro-
gression of advances using that methodology. The first paper (Haber
et al. 2007) develops the computational strategy for inverting time
domain data from a single (or very few) transmitters. Addressing the
challenge of multiple sources, Oldenburg et al. (2013) used a direct
solver that allowed relatively large problems (hundred transmitters
and a half-million cells) to be solved on a cluster in a timescale from
a few days to weeks. Unfortunately, although the Maxwell matrix
can be factored with algorithms, such as MUMPS (Amestoy et al.
2006), the amount of memory and time needed eventually becomes
prohibitive due to its poor scalability. To handle these larger prob-
lems, Yang & Oldenburg (2012b) used both an adaptive mesh and a
tiling method that decomposes the whole survey into many tiles and
merged the inversion results. These advances brought down the pro-
cessing time of 3-D AEM inversion by several orders of magnitude,
but the algorithms were still very time-consuming when there was a
large number of tiles. Outside of the airborne EM community, some
inspiring works have been done in marine controlled-source EM
(CSEM), in which the data are acquired by a towed system similar
to airborne EM. Commer & Newman (2006a,b) first decoupled the
mesh of forward simulation from the mesh for inversion so that the
simulation mesh, used for lower frequencies or later times, could
be much coarser. Then when inverting large-scale marine CSEM
data, the frequency-dependent simulation meshes were further op-
timized based on the geometry of the transmitter and the receiver
so the simulation meshes were smaller than the inversion mesh; the
large number of sources (and data) were tackled by massive paral-
lelization involving 32 768 processors (Commer & Newman 2008;
Commer et al. 2008).

In this paper, we concentrate upon airborne EM data and recog-
nize the essential need to reduce the space complexity. We improve
our algorithm through two approaches. First, in our previous work
we used a single mesh that was large enough and finely discretized
everywhere to serve all the soundings. However, such a mesh is not

economical for forward modelling of any specific sounding since a
diffusive EM problem at very fine scale is solved in the whole do-
main. To circumvent this, we allow each sounding to have its own
mesh. In a parallel computing environment, forward simulations on
local meshes can be solved concurrently, making the decomposi-
tion of the large problem into many local mesh problems a very
promising way of speeding-up the computations. The second ad-
vance deals with reducing the computation by limiting the number
of soundings. In our formulation, early iterations of inversion are
dominated by the model regularization, so only a few soundings are
required to estimate the large-scale structure; when the data misfit
becomes more important at later iterations, more soundings can be
added to delineate finer scale structure. This sets the basic idea of
our strategy of adaptive soundings. The procedures developed here
are equally applicable to frequency and time domain systems. In
this paper, we will illustrate them with time-domain data. It is also
important to note our approaches are fully inclusive frameworks that
should work seamlessly with any existing EM modelling technique.

The paper is structured as follows. We first briefly review the
forward modelling and inversion methodology in Oldenburg et al.
(2013) and illustrate where the improvements can be achieved. We
then focus upon the implementation of local meshes and show how
the sensitivity-vector product, an essential step in inversion, is im-
plemented in parallel. We discuss the performance of parallelization
in the local mesh method. We next introduce our methodology for
adaptive sounding selection. The final algorithm is demonstrated
on a synthetic example that was challenging to work with using our
previous codes. Finally, our method is applied to a field data set
from Mt Milligan, which is a porphyry deposit in British Columbia,
Canada. The entire data set of 7.3 km2 containing 14 362 soundings
is inverted at 50 m resolution on 24 processors within 4.3 hr.

2 F O RWA R D M O D E L L I N G A N D
I N V E R S I O N A L G O R I T H M S

2.1 Forward modelling: finite volume method

In the following, we briefly summarize the essential computational
framework for solving our time-domain EM problem (Haber et al.
2007; Oldenburg et al. 2013). Maxwell’s equations with the quasi-
static approximation are

∇ × E + μ
∂H

∂t
= 0, (1a)

∇ × H − σE = Js(t), (1b)

where E is the electric field, H is the magnetic field, μ is the
magnetic permeability assumed to be equal to the vacuum value
μ0 = 4π × 10−7 H m−1, σ is conductivity in S m−1 and Js(t) is
current density from the source. Approximating the time derivative
with finite differences using the backward Euler method, eq. (1)
becomes

∇ × Ei+1 + μ0
Hi+1 − Hi

δt
= 0, (2a)

∇ × Hi+1 − σEi+1 = Ji+1
s , (2b)

where superscript i denotes the field or flux at time i. By eliminating
the electric field we obtain a second-order system for the magnetic
field

∇ × σ−1∇ × Hi+1 + γ Hi+1 = ∇ × σ−1Ji+1
s + γ Hi , (3)
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where γ = μ0/δt. Upon discretization with finite volumes on a
staggered grid, eq. (3) can be written in terms of discrete operators
and expressed as a linear system of equations

A(σ, δt)hi+1 = rhsi+1, (4)

where h represent the three-component H fields in a vector, and
the right-hand side (rhs) depends on the source at time step i + 1
and hi. For the details of the discretization and the composition
of eq. (4), the readers are referred to Oldenburg et al. (2013) and
Appendix A. For a single forward modelling of a few sources, eq. (4)
can be inexpensively solved by iterative solvers such as Krylov
subspace methods. However, when solving the inverse problem,
which involves many A−1 operations, a direct solver is preferable.
The formulation in eq. (3) guarantees a symmetric and positive
definite Maxwell matrix A, so a Cholesky decomposition can be
applied

A = LLT . (5)

Once A is factorized and stored, the operator A−1 is available for
solving any arbitrary right-hand side. Then the field H at a particular
time can be quickly solved by forward and backward substitutions.

Eq. (4) must be solved for every time step. Since the conductivity
model is fixed, a new factorization in eq. (5) is only required if δt
changes. To accommodate the diffusive nature of the field the com-
plete time interval for a sounding is divided into multiple segments,
each with its own δt. A separate factorization is required for each
of these. Therefore, a complete time-domain modelling consists of
several factorizations and solving multiple time steps using a con-
tant δt within each segment. While many factors contribute to the
time and memory costs of 3-D AEM modelling, the number of cells
in mesh and the number of sources (soundings) are the most crucial
elements.

2.2 Inverse problem: Gauss–Newton method

The inverse problem of finding a model m = ln σ that reproduces
the observed data is posed as an optimization problem

minimize
m

φm(m)

subject to φd (m) < ε, (6)

where φm is a model norm that measures the complexity of model,
φd measures how well a model predicts the observed data, and
ε is a small tolerance. The problem in eq. (6) can be solved as
an unconstrained optimization problem by introducing a trade-off
parameter β,

minimize
m,β

φm(m) + βφd (m). (7)

Here we define φd and φm as

φd = 1

2

N∑
i=1

(
Fi (m) − dobs

i

εi

)2

, (8)

φm = 1

2
αs

∫
�

(m − m0)2dv + 1

2

∑
i=x,y,z

αi

∫
�

{
∂(m − m0)

∂i

}2

dv.

(9)

In the data misfit term eq. (8), N is the total number of data, F is the
forward modelling from model to data, dobs is the observed data and
ε is the estimated uncertainty. In the model norm term eq. (9), � is

the modelling domain, m0 is a reference model, and αs, αx, αy, αz

are scalar weighting parameters adjusting the relative importance
of different components in the model norm.

Expressing eqs (8) and (9) in discrete form, we have eq. (7)
written as

φ = 1

2

∥∥Wd

[
F(m) − dobs

]∥∥2

2
+ 1

2
‖Wm (m − m0)‖2

2 , (10)

where Wd is a diagonal weighting matrix containing the information
about the data uncertainty, F(m) and dobs are vectors and Wm is an
assembly of one diagonal matrix and three directional first-order
differential matrices. Differentiating eq. (10) with respect to m and
setting the gradient to zero yield a system

g(m) = F ′(m)T WT
d Wd

[
F(m) − d

] + βWT
mWm(m − m0) = 0,

(11)

where F′(m) is the derivative of forward modelling operator. Eq. (11)
is non-linear and is solved iteratively using a Gauss–Newton ap-
proach. At each iteration we solve[
J(mk)T WT

d Wd J(mk) + βWT
mWm

]
δmk+1 = −g(mk), (12)

where J(mk) is the sensitivity or Jacobian matrix corresponding to
the model mk. The updated model mk + 1 = mk + αδmk + 1 where
α is a step length parameter obtained by a line search. Eq. (12) is
commonly solved iteratively by conjugate gradient (CG) solvers that
only require J and JT times a vector. We note the sensitivity matrix
J can be computed either explicitly or implicitly. In the implicit
method, J can be decomposed as

J = QB−1G, (13)

where G is a sparse known matrix, B−1 collectively represents all
A−1 at different times and Q is a sparse projection matrix that inter-
polates the computed fields on the staggered mesh to the observa-
tion locations. The derivation of eq. (13) is detailed in Appendix B.
Since the Maxwell matrices A are factorized and the operation B−1

is available, Jv or JT v can be rapidly computed through forward
and backward substitution. The implicit method has long been pre-
ferred because the operation of Jv or JT v is readily available after
the forward solutions are obtained and one does not need to work
with dense matrix J. However, implicit sensitivity requires a sub-
stantial amount of memory for the storage of A−1 and the fields in
time-domain problem. An explicit J can be formed using eq. (13)
and solving for JT ri for the i th datum where ri is the zero vector
with a unit value in the i th entry. Once J is computed and stored,
Jv or JT v does not requires A−1 and the factorized matrices and the
fields can be erased from the memory. Table 1 compares the implicit
and explicit methods in terms of memory and time. Neither one is
always advantageous since the computational costs depend upon the
number of data and the number of CG iterations, but general state-
ments can be made: (1) use an implicit method if there are many
data (time channels), if there are not too many CG iterations and
if memory is not a concern and (2) use an explicit method if there
are not too many time channels, if many CG iterations are expected
and if memory is an issue. We choose the explicit method for this
particular problem. The explicit method also make the calculation
of the pre-conditioner easier when solving eq. (12).

The minimizer of eq. (7) obtained by solving eq. (12) may not
satisfy the constraint in eq. (6) if β is too large and the data are
under-fit. We use a cooling strategy to find the largest β that offers
acceptable φd. That is, the inversion starts with a large β implying
the simplicity of the model is more important than the reduction
of data misfit and the data are only roughly fit; then β is gradually
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3-D inversion of airborne EM data 1495

Table 1. Comparison between implicit and explicit methods of computing sensitivity. Nd is the number of
data (time channels in airborne TEM). Niter is the number of CG iterations when solving eq. (12).

Method Memory Time (computing J) Time (solving eq. 12)

Implicit A−1 and fields (more) None (faster) 2Niter operations of A−1 (slower)
Explicit J matrix (less) Nd operations of A−T (slower) Simple matrix-vector product (faster)

decreased until the model contains enough structure to reproduce
the observed data. The cooling strategy is a process of transferring
information from the data to the model and plays an important
role in our adaptive soundings method that cuts off unnecessary
modellings described later in this paper.

3 L O C A L M E S H M E T H O D

The advantage of using a direct solver, as illustrated in Oldenburg
et al. (2013), is that the forward problem with many transmitters
and the sensitivity times a vector can efficiently be solved once
the matrix decomposition has been carried out. However, the time
to perform this factorization and the storage needed to store the
factored matrix, increases with the size of the problem. Moreover,
since the factored matrix is stored on many computers, the amount
of intercomputer communication time increases. Eventually, the
progress of the matrix inversion stagnates and the benefits of de-
composition are severely marginalized. We demonstrate the demand
of memory and time by a sequence of one-sounding ATEM forward
modellings using meshes with variable number of cells (Fig. 1).
The poor scalability makes the forward solution computationally
expensive when solving realistically sized problems.

As seen in eq. (12), however, this slow-down could be avoided if
the forward modelling, and equivalently sensitivity evaluation, can
be carried out faster. To achieve this, and to make better use of a
parallel computing architecture, we design a local mesh which has

Figure 1. Computational costs are poorly scaled as the number of cell
in mesh increases. Forward modelling experiments are measured by (a)
memory required by storing one factorized matrix; (b) time required to
carry out one Maxwell matrix factorization and (c) time required to solve
for the fields at one time step.

finer cells near the sounding location and only covers the sensitivity
volume of a single sounding. Because these meshes are small, they
are easily factorized and hence forward modelling is readily carried
out. Sensitivities are also computed on the local mesh and inter-
polated onto the global mesh for the purpose of inversion. Since
the modelling of soundings are independent, and there are typically
hundreds or thousands of soundings in a survey, great time-saving
for inversion could be obtained by using massive parallelization,
and computation time will scale with the size of survey and the
number of processors.

3.1 Design of local mesh

Two basic rules of mesh design are that the cells must be small
enough to evaluate the fields for the earliest time channels and
that the mesh extends sufficiently in volume so that fields have
adequately decayed for the latest time channels. Cell sizes must
also be small enough to handle topography and highly variable
conductivity. The use of an individual local mesh for each sounding
is motivated by the fact that the induced EM fields are diffusive.
Fig. 2 shows the magnitude of the total magnetic field |H| on a
cross section at four different times after the turn-off of transmitter
current. Two characteristics of the EM field that are important to
local mesh design are observed: (1) the field has short-wavelength
variation close to the sounding location and is smooth away from the
source and (2) most of the energy concentrates in a region around
the source and the strength of the field decays exponentially away
from the source.

The first characteristic implies that a local mesh can have small
cells near the sounding location and larger cells that gradually ex-
pand outwards and downwards away from the source without de-
grading the modelling accuracy. This prevents overcomputing of
smooth fields and smooth sensitivities on fine cells that are far way
from the transmitter. A similar mesh coarsening scheme was pre-
viously implemented in single-well simulation (Davydycheva et al.
2003). The second characteristic means that a local mesh can be
safely truncated at a certain distance, beyond which the fields decay
to a level of strength that is too small to be important. This avoids
computation on remote cells that have no effect on the data and
sensitivity. Fig. 3 illustrates the concept using a 2-D mesh. In the
conventional approach, the global mesh is designed to be accurate
for all transmitters (see Fig. 3c). The local meshes, of which there
are five in this case, are optimized for each sounding (Fig. 3b).
Modelling on the global mesh requires factorization of the Maxwell
matrix, which is expensive in time and storage, and subsequent
solution of the fields over the global mesh for every transmitter.
Modelling on the local meshes requires factorization on five small
meshes, which is a relatively inexpensive operation, and solution of
a smaller matrix system for every source. For large problems, mod-
elling on the mesh in Fig. 3(b) is more efficient, both in terms of
CPU time and memory demand, than that on the mesh in Fig. 3(a).
The efficiency of using local mesh is exacerbated if many soundings
are modelled over a large area. While conventional methods model
each sounding on a large global mesh (Fig. 3c), which could be
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Figure 2. Amplitude of the total magnetic field excited by a magnetic dipole source at X = 0 over a uniform half-space model.

Figure 3. Modelling using global mesh and local meshes. Modelling on
local mesh that is specifically designed for EM diffusion at each sounding
is more efficient and massively parallelizable.

slow or even impractical due to lack of computing resources, the
local mesh approach can decompose the problem into many local
meshes and solve them concurrently using massive parallel com-
puting techniques (Fig. 3d). In this way, the size of survey is not
a prohibitive concern for forward modelling and the computation
cost scales linearly with the number of soundings and with the area
of airborne survey.

A local mesh is designed to have a core whose cell sizes are equal
to those of the surface cells in the global mesh. Cell sizes outside the
core region increase by a constant expansion rate downwards and
outwards. A large expansion rate results in a coarser mesh and thus
speeds up the computation at the cost of accuracy, whereas a small
rate produces a finer mesh with better modelling accuracy but re-
quires increased computation time. Generally a sufficient number of
cells per diffusion distance (conductivity-dependent) are needed to
capture the fields of EM diffusion. We have found an expansion rate
of 1.2–1.4 yields reasonable results and balances cost and accuracy
in most cases of mining exploration, although a rate up to 2 has been
found acceptable in a uniform half-space and flat surface model. In
order to determine the size of the modelling domain, we begin with
a small distance of truncation to the outer boundary, carry out the
forward modelling, and then keep expanding the boundary until
the difference between two successive forward modellings falls be-
neath a prescribed limit. This adaptive search procedure is carried
out for every sounding and for every updated model during inver-
sion, so soundings at different locations, and at different iterations
of inversion, have their own customized boundary distances. This
can be important in regions of severe topography or highly vari-
able conductivity. Once a local mesh is designed the (local) forward
modelling matrix A is factorized and L is stored and used for data
simulation and for the future use of computing sensitivity.

The use of local meshes requires that a model defined on the
global mesh must be converted to a model on local meshes. Since
the local meshes are non-conformal with the global inversion mesh
some interpolation is needed. This is done by a material averaging
technique similar to Commer & Newman (2006a). The conductivity
of a cell in a local mesh is a volume-weighted averaging of all the
overlapping global cells. In practice, we design the local mesh to
conform with the global mesh near the sounding location so that
the conversion from global to local is exact for the area where
detailed structure of model matters most. Because of EM diffusion,
the small-scale structures far away from the sounding location are
not important.

3.2 Forward modelling on local mesh

To show that our projection method can provide reasonable accuracy
for forward modelling with greatly reduced computational costs we
use a synthetic model with a complex conductivity structure shown
in Fig. 4(a). The original model is defined on a global mesh finely
discretized to 50 m resolution for a survey area of 4 × 4 km. We
choose the sounding at the centre of the model. The first local mesh
(local mesh 1) has an expansion rate 1.2 and a boundary distance
1500 m. This mesh performs well at early times compared to the
global mesh but has up to one order of magnitude error at late times
due to an insufficient distance to the boundary. The local mesh is
then expanded to a boundary distance of 3000 m (local mesh 2).
With the additional three padding cells in every direction, local
mesh 2 is able to provide forward modelled data within 5 per cent
of the global mesh results at late times (Fig. 5).

It is important to note that although fine structures of the model
away from the sounding location are represented by bulky cells, a
local mesh is still capable of producing a good simulation at a much
reduced cost. Table 2 summarizes the three forward modellings on
the global and local meshes. The global mesh, being large for the
entire survey, is expensive in both time and memory. Because a
large Maxwell matrix needs to be factorized, 12 processors are re-
quired. The local meshes are much smaller and thus more efficient,
even though only one processor is used. Multiplying the cost by
the number of soundings further signifies the benefits of using local
mesh approach in airborne inversion. If the entire survey contained
1080 soundings and one forward modelling contains four factor-
izations and 50 time steps, the global mesh would require at least
54 492 s for one complete forward modelling on 12 processors and
further speed-up by adding more processors is difficult. However
local mesh 2 needs 19.4 s for one sounding (local mesh) and a total
of 20 952 s if all computations were carried out on a single proces-
sor. Distributing these jobs over the 12 processors reduces this to

 at T
he U

niversity of B
ritish C

olom
bia L

ibrary on N
ovem

ber 12, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/
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Figure 4. The synthetic model on the global mesh and a local mesh. The global mesh (a) has fine cells over a 4 × 4 km survey area. An airborne sounding
indicated by a red mark at the centre of the model is simulated. The same sounding is modelling on a local mesh (b) with an expansion rate 1.2 and boundary
distance 3000 m.

Figure 5. Forward modelled data on global mesh and the two successive
local meshes in the test. Local mesh 1 and 2 have the same expansion rate
1.2 but different boundary distances 1500 and 3000 m, respectively.

1746 s. Increasing the number of processors continues to achieve
this linear benefit.

3.3 Sensitivity on local mesh

Having solved the forward problem we next turn attention to the
sensitivity matrix J in eq. (12). The sensitivity also has fine-scale
variations near the sounding location and falls off smoothly and
quickly due to the geometric decay. Therefore, the same local mesh
used in the forward modelling can also be used for the computation
of sensitivity. Once the sensitivity on a local mesh is available,
whether implicitly or explicitly, the local sensitivity can be projected
onto the global mesh through interpolation. The global cells that are

outside of a local mesh are deemed not to contribute to the sounding,
and zeros are assigned to the corresponding entries in the sensitivity
matrix.

The calculation of sensitivity for an airborne sounding is derived
in Appendix B. Using that method, we can compute the local sen-
sitivity in a symbolic form J = QB−1G (or JT = GT B−T QT for its
transpose). In order to compute the global sensitivity, the sensitivity
on a local mesh is first normalized by the cell volumes to obtain a
cell-size independent sensitivity, which is considered a 3-D function
in space

Ĵli = Jli V
−1
li , (14)

where Jli is the un-normalized sensitivity matrix on ith local mesh
and Vli is a diagonal matrix of cell volumes on that local mesh. The
sensitivity matrix of ith sounding for the global mesh is available
through

Jgi = Ĵli Ri Vg = Jli V
−1
li Ri Vg, (15)

where Ri is a interpolation matrix mapping a 3-D function defined
on the cell centres of a mesh to the cell centres of another mesh
and Vg is a diagonal matrix of cell volumes on the global mesh.
Similarly, we have

JT
gi = VgRT

i V−1
li JT

li . (16)

The matrices Vl , Vg and Ri are sparse, so the projection of sensi-
tivity from local to global is very efficient when doing the operation
of sensitivity times a vector.

We use the same synthetic model in the forward modelling ex-
ample (Fig. 4) to show the global sensitivity can be reasonably
reconstructed using a local mesh. At the same sounding , we choose
a row of the sensitivity matrix corresponding to the dBz/dt datum
at time t = 0.001 s and present the sensitivity as a model. The sensi-
tivity is computed directly on the global mesh (Fig. 6a) and on local

Table 2. Forward modelling of a single sounding (source) on the global mesh and local meshes.

Mesh Size One factorization time One time step time Processors Memory for one A−1

Global 108 × 108 × 33 123 s 1 s 12 40.5 GB
Local 1 22 × 22 × 27 1.5 s 0.02 s 1 174 MB
Local 2 28 × 28 × 30 4.1 s 0.06 s 1 395 MB
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1498 D. Yang, D. W. Oldenburg and E. Haber

Figure 6. Sensitivities of dBz/dt datum at t = 0.001 s for the synthetic random model. (a) Directly computed on the global mesh and (b) computed on local
mesh 2 then interpolated to the global mesh.

mesh 2 using eqs (14) and (15) (Fig. 6 b). The local mesh result
matches well with the sensitivity computed on the global mesh.

Solving eq. (12) requires JT
g WT

d Wd Jg times a vector v and
JT

g WT
d Wd times a vector of data misfit F(m) − dobs. Although these

operations are on the global mesh, the computation can be carried
out on local meshes in parallel. We denote the global sensitivity
of the entire survey to be assembly of eq. (15) on many soundings
(local meshes)

Jg =

⎛
⎜⎜⎝

...
Jgi

...

⎞
⎟⎟⎠. (17)

Then

JT
g WT

d Wd Jgv =
∑

i

JT
gi W

T
di Wdi Jgiv, (18)

where the diagonal matrix Wdi is part of Wd corresponding to the
ith sounding, and

JT
g WT

d Wd

[
F(m) − dobs

] =
∑

i

JT
gi W

T
di Wdi

[
Fi (m) − dobs

i

]
, (19)

where Fi (m) − dobs
i is a vector of data misfit for the ith sounding.

The computation of eqs (18) and (19) on the local meshes allows
each local mesh to behave independently in inversion. First, a global
model is broadcast to many local meshes. The forward solutions
are computed and stored on local meshes without need to return
to the host thread. Before solving eq. (12), the right-hand side
containing JT

g WT
d Wd

[
F(m) − d

]
can be calculated, with locally

stored information, using eq. (19). This only requires inter-processor
communication when summing resultant vectors from the local
meshes. During each CG iteration for solving eq. (12), a vector is
broadcast to the local meshes for JT

gi W
T
di Wdi Jgi times the vector,

then many resultant vectors are collected, summed and returned to
the host thread. The calculation of pre-conditioner for eq. (12) can be
carried out in the similar way. The blindness of the host thread to the
forward solutions and sensitivities keeps the most computationally
expensive operation at the level of individual parallel workers and
allows great potential of speed-up using massive parallelization.

3.4 Parallelization

In recognition of the amount of memory and CPU time by mul-
tisource 3-D EM inversion, much work has been done in the past

decades to make use of parallel computing. This includes work sta-
tions, computer clusters and emerging GPUs. Many of the works, for
example, Alumbaugh et al. (1996), Newman & Alumbaugh (1997),
Xie et al. (2000) and Commer & Newman (2004), used domain de-
composition at cell level or subdomain level. These approaches can
scale well with the number of processors at early stages when the
benefit of using many processors outplays the cost of interprocessor
communication. If the number of processors increases further, the
communication time can dominate and eventually make the par-
allelization less economical. In addition to model decomposition,
Commer & Newman (2008) also used data decomposition to dis-
tribute marine transmitters over an array of clustered processors
and nearly perfect scaling was reported. Fortunately, modern com-
puter technology has made the processors powerful enough so that
a small, or even mid-sized EM problem, can be solved on a single
processor (or a core on a multicore processor). Since local meshes
designed for airborne EM are usually small, and each local mesh
is a self-contained EM problem, solving one or more local mesh
problems on each individual processor requires much less interpro-
cessor communications compared to distributing the work via a cell
or subdomain level decomposition. In this section, we examine an
inversion run time model for the local mesh method and discuss its
scalability in massive parallelization. For simplicity, the computing
environment is assumed to be a uniform array of processors, each
of which has its allocated random-access memory.

Communication between workers is the primary concern when
an algorithm is to be parallelized. For the local mesh method, the
communication between processors occurs when the host thread
broadcasts a vector of model parameters and collects computed
results from the workers. Broadcasting a vector v is well known
to have a highly efficient time complexity of O(log n). After the
local JT Jv operation is finished on every processor, the resultant
vectors from the local meshes are summed to compute the global
JT Jv vector. Because the operation of vector summation is easily
parallelizable in a manner of a binary tree, the time required to send
the results back to the host thread is also O(log n). The total time
of each inversion iteration, consisting of the solving time and the
two-way communication time, can be estimated by

T = Ts + Tc = ts · NLM

Np
+ 2 tc log2 Np, (20)

where ts is the time for solving one local mesh problem, NLM is the
number of local meshes to be solved, Np is the number of processors
and tc is the time for the communication of passing a vector between
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3-D inversion of airborne EM data 1499

Figure 7. Massive parallelization of the local mesh method. (a) Solving
time, communication time and total time as functions of the number of
processors. (b) Relative speed-up as a function of the number of processors
with reference to the sequential mode; the dotted line indicates an ideal linear
speed-up if the communication time is zero. These plots assume the number
of local meshes is 10 000 and the time of solving one local mesh problem
is 100; three different communication times, 1, 5 and 10 are considered for
the solving-communication time ratios of 100, 20 and 10, respectively.

two processors. As Np increases, Ts decreases and Tc increases. So it
is useful to know the optimal Np that provides the maximum speed-
up. Considering eq. (20) as a function of Np, the total time for a
given NLM has a minimum at

N ∗
p = ln 2

2

ts · NLM

tc
≈ 0.35Rs/c NLM, (21)

in which Rs/c is defined as the ratio of ts to tc. If N ∗
p > NLM, the

inversion can always gain further speed-up by adding extra proces-

sors (up to NLM processors). This condition, which we refer to as
continual speed-up, occurs if

Rs/c >
2

ln 2
≈ 2.88. (22)

In the local mesh method, the operation of JT Jv usually takes much
longer time than passing a vector through the networks. Therefore,
the condition of continual speed-up is satisfied in most cases.

Assuming NLM = 10 000, ts = 100, Fig. 7(a) shows the decay
of the solving time Ts in eq. (20) and logarithmic growth of
the communication time Tc for three different example scenarios
tc = 1, 5 and 10. The minimizer of the total time function, calcu-
lated by eq. (21) for three tc values, are all greater than NLM, so
continual speed-up is possible by using up to NLM processors and
the minimum time required for NP = NLM is ts + 2tc log2 NLM. If tc

is relatively large, the communication time begins to dominate the
total time more quickly at smaller number of processors. Fig. 7(b)
shows that the linearity of speed-up depends on Rs/c. In reality, tc is
a hardware-dependent parameter and may vary significantly but it
is generally true that for the local mesh method Rs/c is large enough
that the end users are more bound by the constraint of computa-
tional resources than by the algorithm’s ability of taking advantage
of more processors.

3.5 Synthetic inversion using local meshes

A synthetic example is designed to test the local mesh method. The
true model consists of two conductive prisms, 0.1 and 0.05 S m−1,
buried in a 0.01 S m−1 uniform half-space (Fig. 8a). A synthetic
airborne TEM data set is created on a 13 × 37 data grid over a
1.2 × 3.6 km area. Seven time channels of dBz/dt data from 10−4

to 10−2s are simulated at 481 sounding locations 100 m apart. The
synthetic data are noise-free, but we require the inversion to fit the
data with 5 per cent assigned standard deviation. The mesh used for
the creation of the synthetic data, and which served as the global
mesh, has 155 820 cells (53 × 98 × 30). A complete forward
modelling consists of four factorizations and 48 time steps, and
modelling all 481 soundings on this mesh takes about 1 hr. We

Figure 8. Synthetic inversion test: depth slice at depth of 150 m of (a) the true conductivity model, (b) the recovered model obtained by carrying out the
inversion directly on the global mesh and (c) the recovered model using local mesh method. Red dots indicate the sounding locations.
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Figure 9. Cumulative time of the synthetic inversion using local mesh
method on 12 and 24 processors.

first invert the synthetic data set directly on the global mesh with a
0.01 S m−1 half-space as the initial and reference models. The
inversion, using 128 GB memory on 24 processors, takes 7 Gauss–
Newton iterations and achieves the target misfit in 156 hr (see
inversion model in Fig. 8 b). For testing the local mesh methodology,
we use the same inversion algorithm and keep the identical inversion
parameters but with local meshes to compute the forward modelling
and sensitivities.

The first test is carried out on 12 processors and each processor
is assigned 40 local meshes. The target misfit is achieved within 15
hr after eight iterations. Fig. 8(c) shows the conductivity model re-
covered using the local mesh method; the two prisms are delineated
with correct geometries and conductivities; this result is similar
to the model recovered by the global mesh inversion (Fig. 8b). In
order to test the scalability of our local mesh method, the second
synthetic inversion is on 24 processors. In this case the workload
on each processor is cut in half to 20 local meshes. The second
inversion produces an identical inversion result, convergence curve,
and data misfit, but the total CPU time is reduced to about 7.5 hr.
Fig. 9 illustrates the cumulative CPU time of the inversion on 12
processors and on 24 processors. For a relatively small number of
processors, the communication overhead is negligible, so a nearly
linear speed-up is observed by increasing the number of processors.
There is certainly great potential of further speed-up in large-scale
parallelization if more processors were available to us.

4 A DA P T I V E S O U N D I N G S

Although the local mesh method greatly reduces the run time of 3-D
inversions, and further acceleration is achievable by adding more
processors, the total number of soundings in an airborne EM survey
typically numbers hundreds of thousands and this can be formidable.
It is well known that airborne EM data are highly redundant, so
some simple techniques are routinely used to reduce the number of
soundings. It is common practice in the industry to invert a subset
of the soundings based on an empirically determined coarser data
grid. However, since airborne EM data are functions of space and
time, we look at the selection of a subset of soundings in the data
set as a problem of down-sampling continuous signals in space. In
fact, a uniformly spaced grid behaves like a low-pass filter, so if
the data grid is not fine enough some artifacts could be created in
the model due to aliasing. For example, if the down-sampling rate
is close to the spatial frequency of the bird’s swing, the inversion
model can be systematically biased.

Instead of using a specific grid or formula for the data reduction,
we choose a down-sampling that is random in space and dynamic
in the number of soundings selected at different stages of inversion.
Our procedure is to number all soundings sequentially from 1 to
N (total number of soundings in the survey). At each iteration of
the inversion, a random sampler with uniform distribution chooses
Ns (number of soundings for current iteration, Ns < N ) integers
from 1 to N. The soundings numbered with the chosen integers
are the elements of a random subset of size Ns. For each iteration
the inversion requests data misfits and a model update based on
different, and independent, realizations of random subsets. An at-
tractive property of random down-sampling is that the irregular grid
is not frequency selective. With irregularly down-sampled sound-
ings, the inversion produces a model consisting of two components,
m = mreg + �m. The model mreg is the model obtained if all the
soundings are used, and the artifact �m is a consequence of the
sampling scheme. Statistically, �m could contain contents at any
spatial frequency because of the random sampler, but its magnitude
is primarily controlled by Ns. It is obviously impossible to separate
mreg and �m from the model recovered at a particular iteration,
but if the random subset changes dynamically every iteration, if
the samplings are completely uncorrelated, and if the achieved data
misfit for any random subset is reduced below a prescribed toler-
ance, then a good estimate for mreg should be obtained. If desired,
final validation of the model can be tested by carrying out a single
forward modelling using all of the soundings.

It can be seen that �m must be controlled so that the recovered
m is not overwhelmed by this noise. In early iterations when β is
large, and large-scale features of the model are sought, a small Ns is
adequate. As β decreases, and more fine-scale structure is sought, a
larger Ns is needed. To find the necessary number of soundings for a
particular β and for each iteration, we develop an adaptive sounding
method. The method is data-driven and requires little analysis of the
data prior to inversion. The adaptive sounding procedure involves
two random subsets of the entire data set: an inversion subset and
a test subset. A model update is calculated using the inversion
subset. If this update can also sufficiently reduce the misfit for
the test subset, then the model is updated and this Ns is deemed
sufficient for the current β. However, if the model update proposed
by the inversion subset does not reduce the misfit for the test subset,
then the Ns soundings in the inversion subset is considered not
to be representative. More soundings are added to proceed with
the current β. With this procedure, the number of local meshes
needed is minimized by not increasing Ns until necessary. Since Ns

matches β closely, if the cooling of β is too fast, one has to deal with
large Ns for many iterations. Therefore, we would rather choose a
relatively slower cooling of β, for example, βk + 1 = 0.6 × βk, to
have more iterations with smaller Ns. Our code uses the Algorithm
1 in Appendix C.

4.1 Synthetic inversion using local mesh
and adaptive soundings

The combination of using local meshes and adaptive soundings can
greatly reduce the CPU time for the inversion. We illustrate this
with the same synthetic data set from the two-prism model in Fig. 8
and invert with the same parameters using 24 processors. The initial
and reference models are still 0.01 S m−1 half-space.

To implement the adaptive soundings, the initial number of
soundings is set to 48. This gradually increases to 384 until the
target misfit is achieved within 2.5 hr after six iterations (Fig. 10).
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Figure 10. Summary of synthetic inversion using both local mesh and
adaptive soundings

The final inversion model (Fig. 11d) is almost identical to the recov-
ered model in the inversion which only uses local mesh method. The
intermediate models created by adaptive soundings are somewhat
different (Fig. 11). The first iteration only has 48 soundings, so the
inversion recovers the global trend of the conductivity plus signifi-
cant artifacts near surface (Fig. 11a). As the number of soundings
increases, the desired targets become clearer (Figs 11b and c). By
using adaptive soundings, about 60 per cent of the CPU time is saved
compared to modelling all 481 soundings for every iteration and the
final model in Fig. 11(d) is visually the same as the inversion model
in Fig. 8 if they are rendered in the same colour scale. Although
random subsets of soundings have been used, the overall coverage of
data, in terms of how often a sounding is used during the inversion,

Figure 12. Counts of selection for every sounding throughout the entire
inversion. Darkness indicates the times a sounding is selected and used. On
average, each sounding is selected for approximately 2.4 iterations.

is adequately balanced in space (Fig. 12). At the end of the proce-
dure there were only 10 soundings that were not used. We also note
that most commercial airborne EM systems have a much denser
spatial sampling rate (5–10 m) than our synthetic survey (100 m).
Therefore, using adaptive soundings to find the necessary number
of soundings for inversion is more economical than inverting every
sounding in the overly redundant data set. We show this in the field
example in the next section.

Figure 11. Conductivity models recovered at different iterations of adaptive soundings. (a) Iteration 1 with 48 soundings; (b) iteration 2 with 96 soundings; (c)
iteration 4 with 192 soundings and (d) iteration 6 with 384 soundings. The red dots indicate the sounding locations. The white boxes outline the exact locations
of the two prisms.
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Figure 13. Geology and VTEM survey at Mt Milligan porphyry deposit in
British Columbia, Canada.

5 F I E L D DATA E X A M P L E

The local mesh and adaptive sounding methodology developed in
this paper are intended to alleviate the challenge of interpreting
the entire airborne EM data set in 3-D in real applications. We
demonstrate the efficiency of our new method by inverting an air-
borne EM data set over Mt Milligan, British Columbia, Canada for
mineral exploration. Mt Milligan is a copper and gold porphyry
deposit within the Early Mesozoic Quesnel Terrane, a Late Triassic
to Early Jurassic magmatic arc complex that lies along the western
North American continental margin. Previous geologic and geo-
physical work (Oldenburg et al. 1997; Yang & Oldenburg 2012a)
has revealed that the mineralization is associated with the monzonite
stocks that intruded into the basaltic volcaniclastic rocks (Fig. 13).
The airborne EM data set collected at Mt Milligan is versatile time-
domain electromagnetic (VTEM) data that uses a helicopter-borne
system with coincident transmitter loop and receiver coil. The sur-
vey measures the vertical component of the time derivative of the
magnetic field (dBz/dt) from 99 to 9245 µs and contains 14 flight
lines, 200 m apart and 14 362 soundings covering a total area of
7.3 km2 (Fig. 13). The geophysical target is the conductive alter-
ation that is rich in pyrite and chalcopyrite surrounding the resistive
monzonite. The same data set was processed in 3-D in Yang & Old-
enburg (2012a). They successfully recovered the most prominent
intrusive monzonite stock MBX that was not recoverable by using
1-D inversion. However, due to the size of the problem, in that at-
tempt only a small portion of the data set near the MBX stock was
inverted by directly solving the inverse problem on a global mesh at
50 m resolution. Although a multilevel meshing strategy was devel-
oped to speed up the inversion in Yang & Oldenburg (2012a), the
3-D inversion still took about 18 hr on two cluster nodes with 24 pro-
cessors. Here we implement our local mesh and adaptive sounding
methods on the same computers for a fair comparison of efficiency.

In the local mesh method, the forward modelling is never car-
ried out on the global mesh, so the number of cells in the global
mesh becomes less crucial. We design a global mesh with 443 520
(88 × 84 × 60) cells to hold the entire survey area at 50 m horizontal

Figure 14. Global mesh for Mt Milligan VTEM 3-D inversion. The VTEM
survey locations are indicated by the red lines.

Figure 15. Summary of Mt Milligan VTEM 3-D inversion.

resolution and 20 m vertical resolution for the topography (Fig. 14).
This mesh, along with the large number of soundings, is too large
for the algorithm in Oldenburg et al. (2013) to be practically carried
out. The local mesh inversion starts with a 0.002S m−1 uniform ini-
tial and reference model. Fig. 15 summarizes three key parameters
of the inversion: the cumulative run time, the number of soundings
used at each iteration and the data misfit. For early iterations only
24 soundings were needed to build up the large-scale conductivity
distribution. Smaller-scale features were built up by adding sound-
ings. The number of soundings used in the final iteration is only
192, which implies that the necessary number of sounding for 3-D
VTEM inversion at Mt Milligan is about 200, only 1.4 per cent of the
total number of soundings acquired in the survey. During the entire
inversion procedure, information from 744 soundings (5 per cent
of the total number of soundings) was incorporated into the final
model and thus 744 local meshes were needed. The total time was
4.3 hr and we anticipate more speedup if additional processors were
available. A depth slice of the 3-D inversion model over the whole
survey area at 950 m elevation and a cross section cutting the major
stock MBX are shown in Fig. 16. Like the small-scale inversion
in Yang & Oldenburg (2012a), the resistive MBX stock is clearly
delineated by 3-D inversion.

Lastly, we carry out a complete forward modelling using the
recovered model in Fig. 16 and all 14 362 soundings. The misfit
normalized by the total number of soundings is φd/N = 19 which
compares satisfactorily with φd/N = 15 estimated by 192 random
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Figure 16. Conductivity model of Mt Milligan VTEM 3-D inversion: (a) a
depth slice at elevation = 950 m and (b) a cross-section A– B at 6109500N.
White lines outline the major monzonite stocks and the faults. VTEM flight
lines are indicated by the red lines.

soundings in the last iteration and φd/N = 17 we have achieved in
Yang & Oldenburg (2012a). The time channel grids of the observed
and predicted data at 680 µs in Fig. 17 show the 3-D model recov-
ered by using local mesh and adaptive soundings can reasonably
reproduce the observed data.

6 C O N C LU S I O N S

AEM data are difficult to invert in 3-D because of the large com-
putations required to handle multiple transmitters and large meshes

needed to represent the volume being modelled. We propose two
methods for speeding up the operations. Local meshes are used for
computing the forward responses and sensitivities, and an adap-
tive sounding strategy is used to reduce the number of soundings
employed at each iteration.

A local mesh, which is optimally designed to handle a single
sounding, can yield good accuracy with a modest number of cells.
This is true even when using structured rectangular grids as done
here. As such the modelling matrix and its factorization, for a sin-
gle or a few soundings, can be readily stored on a single processor.
An entire forward modelling or sensitivity calculation is easily dis-
tributed among an array of processors. In the parallel computing
environment the inter-processor communication, which is usually a
serious concern when carrying out large-scale modelling in paral-
lel, is minimized by confining a complete EM modelling problem of
local mesh in one processor. The communication only occurs when
the host thread broadcasts commands to the workers and collects
computed results from the workers. For this type of problem the
benefit of adding more processors generally outplays the increased
communication time.

The second area of progress regards the number of soundings
used at each iteration in the inversion. It is well known that mod-
elling every sounding in an airborne data set is not necessary. We
propose a random and dynamic down-sampling method, which we
call adaptive sounding. It is essentially a random sampler with an
adaptive number of soundings selected for each iteration. Fewer
soundings are selected in early iterations to build up large-scale
structure and more soundings are added later as the regularization
is relaxed and additional structure is needed to fit the data. Fur-
ther development of the adaptive methodology is envisioned but
the current strategy has worked well thus far. The procedure has an
additional optional check in that the user may carry out a complete
forward modelling at the end, using all the soundings, to validate
the constructed model.

At an overall level, our current inversion algorithm parallels that
outlined in Oldenburg et al. (2013) but the introduction of us-
ing/storing the direct solver on a local rather than a global mesh,
and the use of adaptive sounding, has resulted in greatly improved
performance. In a test using synthetic data from a two-prism model
we reduced the inversion time, compared to the original method,
by more than a factor of 60. That example was small and further
disparity between the old and modified method increases as the size
of the problem and the number of processors increase. In a field

Figure 17. Data grid of time channel at 680µs. (a) Observed dBz/dt data; (b) Predicted dBz/dt data. The white lines indicate 14 362 soundings approximately
3 m apart to each other. The scattered black and red dots show the 744 and 192 soundings used in all iterations and the last iteration of inversion, respectively.
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example, which was too large to be practically solved two years
ago, inversion with our new method took only 4.3 hr on 24 proces-
sors. This is a very substantial speedup and represents major step
toward making routine 3-D inversion of airborne EM data a reality.

The ideas and methods presented in this paper are generic to
other inverse problems that involve either a large number of local-
ized sources or a large but decomposable source. This includes dc
resistivity and other EM surveys. Our approach requires no specific
method of discretization and the global and the local meshes do
not need to be the same type (e.g. a global mesh could be rectan-
gular while the local mesh is tetrahedral). We will explore these
extensions in a follow-up paper.
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Figure A1. Staggered discretization in 3-D. H is on the cell edges and E on the cell faces.

A P P E N D I X A : 3 - D F O RWA R D M O D E L L I N G A L G O R I T H M

Finite volume method integrates the differential Maxwell’s equations over elemental control volumes aligned with the mesh grid. The
modelling domain is discretized by a tensor mesh consisting of many rectangular cells. We use a staggered grid (Yee 1966) with H fields on
the edges, E fields on the faces and the conductivity at the cell centres (Fig. A1).

Upon discretization, eq. (3) can be written in a discrete form[
CT diag (Avem)−1 C + γ i+1 I

]
hi+1 = CT diag (Avem)−1 j i+1

s + γ i+1hi , (A1)

where C is a curl operator mapping a field from edges to faces, CT is also a curl operator but from faces to edges, Av is a harmonic averaging
matrix mapping the conductivity values from cell centres to faces, em is a vector of conductivities for all the cell centres, γ i + 1 = μ0/δt at
time step i + 1, h is a vector of H fields in x, y and z directions. js is a vector of the current density field Js due to the source. In airborne EM,
the sources are closed loops much smaller than the scale of the survey. We first analytically compute the magnetic vector potential A of the
loop source to ensure the source is divergence-free, then obtain the primary current density field

Js = ∇ × μ−1
0 ∇ × A. (A2)

Eq. (A1) is for the H field at a particular time step. Expressing the Maxwell matrix as A(m, δt) and the first term in the right-hand side as
q, we have the system of equations for the entire modelling in time
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A(m, δt1)

−γ (δt2)I A(m, δt2)

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h1

h2

...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

q1(m) + γ (δt1)h0

q2(m)

...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A3)

or in symbolic form

Bh = rhs. (A4)

If the symmetric positive definite matrices A(m, δti ) in eq. (A3) are factorized into L and LT and stored, the operator B−1 is available by
forward time stepping and B−T by backward time stepping. The forward modelled data is

F(m) = QB−1rhs, (A5)

where Q is a sparse space-time interpolation matrix mapping the fields from cell edges to the receiver location and from time steps to the
moments the data are recorded. We also note A only changes if δt changes, so in practice, we usually choose a few different δt′s to match the
different timescales from early to late in airborne TEM survey. In this way, only a few A matrices need to be factorized.

A P P E N D I X B : C A L C U L AT I O N O F S E N S I T I V I T Y

Differentiating both sides of eq. (A4) with respect to m yields

∂h

∂m
= B−1

(
∂rhs

∂m
− ∂B

∂m
h

)
= B−1G. (B1)

Then the sensitivity matrix is

J = Q
∂h

∂m
= QB−1G, (B2)

and its transpose is

JT = GT B−T QT , (B3)
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where Q is again a space-time interpolation matrix. As the operators B−1 and B−T are already available in forward modelling (Appendix A),
we derive other components in G as

∂rhs

∂m
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂q1

∂m

∂q2

∂m

...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−CT diag( j1
s )diag[(Avem)−2]Avdiag(em)

−CT diag( j2
s )diag[(Avem)−2]Avdiag(em)

...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

and

∂B

∂m
h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂m

[
A(m)h1

]
∂

∂m

[
A(m)h2

]
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−CT diag(Ch1)diag[(Avem)−2]Avdiag(em)

−CT diag(Ch2)diag[(Avem)−2]Avdiag(em)

...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B5)

In order to save memory, we explicitly compute and store the sensitivity on the local meshes. Since the number of data is always much less
than the number of model parameters, we compute JT in eq. (B3) column by column. Computation of each column of JT is equivalent to
one complete forward modelling involving backward time stepping (B−T operation). After the sensitivity is stored, the matrices and vectors
associated with B, G and Q can all be deleted from the memory.

A P P E N D I X C : I M P L E M E N TAT I O N O F A DA P T I V E S O U N D I N G S

Adaptive soundings require frequent solves of the inverse problem for the proposal of model update δm and the forward problems to test the
model update. Therefore, in practice, we want the computation of local mesh design, matrix factorizations and forward problems done for
the test subsets to be recycled for the inverse problem in the next iteration. The work flow of our inversion code using adaptive soundings
is presented in Algorithm 1. Each Gauss–Newton iteration involves two distinct subsets of soundings: the inversion subset for solving δm
in eq. (12) and another test subset to evaluate whether the proposed model update is acceptable. If the post-update data misfit is sufficiently
reduced (controlled by a factor μ), the model is updated and the test subset, already having the forward solutions F(m + δm) for the updated
model, can be used as the new inversion subset in the next iteration after additional computations of the sensitivity J(m + δm). If the proposed
δm is declined, the test subset, already having the forward solutions F(m) for the original model, is appended to the existing inversion subset
after additional computations of the sensitivity J(m) for the next Gauss–Newton step with doubled number of soundings Ns.

Algorithm 1. Inversion with adaptive soundings

Initialization:
Operation on inversion subset

Select random Ns soundings
Design local meshes for m
Compute and store forward responses F(m)
Compute and store sensitivity J(m)
Clear matrices B−1, Q and G

repeat
Operation on test subset

Select random Ns soundings
Design local meshes for m
Compute and store forward responses F(m)
misfit(m) = 1

Ns
‖Wd (F(m) − dobs)‖2

Clear matrices B−1 and Q
Operation on inversion subset

δm = −( J T Wd Wd J + βWT
mWm )−1( J T WT

d Wd [F(m) − dobs] + βWT
mWm (m − m0))

Operation on test subset
Re-design local meshes for m + δm
Compute and store forward responses F(m + δm)
misfit(m + δm) = 1

Ns
‖Wd (F(m + δm) − dobs)‖2

if misfit(m + δm) < μ · misfit(m) then
Operation on test subset

Compute and store sensitivity J(m + δm)
Empty inversion subset
inversion subset ← test subset with F(m + δm) and J(m + δm)
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Algorithm 1. (Continued.)

Empty test subset
Reduce β

m ← m + δm
else

Operation on test subset
Compute and store sensitivity J(m)

inversion subset ← inversion subset + test subset with F(m) and J(m)
Empty test subset
Ns = Ns × 2

end if
until misfit(m) < tol
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