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Most people, if you describe a train of events to them, will tell you what the result
would be. They can put those events together in their minds, and argue from them that
something will come to pass. There are few people, however, who, if you told them a
result, would be able to evolve from their own inner consciousness what the steps were
whach led up to that result. This power is what I mean when [ talk of reasoning backwards.

Sherlock Holmes to Dr. Watson in: A Study in Scarlet,

Sir Arthur Conan Doyle, 1887.
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Abstract

This thesis deals with the numerical solutions of linear and nonlinear inverse problems.
The goal of this thesis is to review and develop new techniques for solving such problems.
In so doing, the computational tools for solving inverse problems are comprehensively
studied.

The thesis can be divided into two parts. In the first part, linear inverse theory
1s dealt with. Methods to estimate noise and efficiently invert large and full matrixes
are reviewed and developed. Emphasis is given to Generalized Cross Validation (GCV)
for noise estimation, and to Krylov space methods for efficient methods to invert large
systems. This part is summarized by applying and comparing the methods developed on
linear inverse problems which arise in gravity and tomography.

In the second part of this thesis, extensive use of the linear algebra and the noise
estimation methods which were developed in the first part of the thesis is made. A review
of the current methods to carry out nonlinear inverse problems is given. A test example
1s constructed to demonstrate that these methods may fail. Next, a new algorithm for
solving nonlinear inverse problems is developed. The algorithm is based on the ability
to differentiate between correlated errors which comes from the linearization, and non-
correlated noise which comes from the measurement. Based on these two types of noise,
a regularization procedure which has two parts is developed. The first part is made of
global regularization, to deal with the measurement noise, and the second part is made
from a local regularization, to deal with the nonlinearity. The thesis demonstrates that
GCV can be used in order to determine the measurement noise, and the Dumped Gauss-

Newton method can be used in order to deal with the local nonlinear terms. Another
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aspect of nonlinear inverse theory which is developed in this work concerns approximate
sensitivities. A new formulation is suggested for the approximate sensitivities and bounds
are calculated using this formulation. This part is summarized by applying the techniques

to the nonlinear gravity problem and to the magnetotelluric problem.

v



Abstract

List of Tables

Table of Contents

List of Figures

Acknowledgement

1 Introduction

1.1 IlI-Posed Inverse Problems . . . . . . . . . . . . . . . . .. ... . ....

1.2 Motivation - Problems which are Solved . . . . . . . . . . . .. ... ..

1.21
1.2.2
1.2.3

The Gravity Inverse Problem . . . . . ... ... ... .. ....
The Tomography Inverse Problem . . . . . . . ... .. ... ...

One-Dimensional Magnetotellurics Problem . . .. ... ... ..

1.3 Overview of this Thesis . . . . . . . . . . . . . .

2 Formulation and Pre-Processing of the Problem

2.1 Formulation of Linear Problem . . . . . . . . . . . . . .. .. .. ....

2.2 Characteristics of Inverse Problems . . . . . . . . . . . .. .. ... ...

2.3 Reduction to Standard Form . . . . . . . . . . .. ... ... ..

23.1
2.3.2
2.3.3
2.34

W is Square and Well-Posed . . . . . . . .. ... ... ... ...
W is Over-Determined . . . . . . . . . . . . . . .. ... .. ...
W is Under-Determined . . . . . . . . . . . . . .. .. ... ...

Practical Implementation . . . . . . . . ... .. ... ... ...

iii

xiii

xvii

10
11



3 Tichonov Regularization 25

3.1 Analysis of Tichonov Regularization . . . . . . . .. ... ... ... ... 25
3.2 Discrepancy Principle . . . . . . ... o 27
3.3 Generalized Cross Validation . . . . . . .. .. ... ... ... ...... 29
34 The L-Curve. . . . . . . . . . e 31
3.4.1 Description of the L-Curve . . . . . . . ... .. ... ... .... 31
3.4.2 The Probabilistic Approach . . . . .. ... ... ... .. ..., 32
3.4.3 Connection Between the Probabilistic Approach and the L-Curve 33

3.5 Practicalities and Limitations of Tichonov Regularization . . . . . . . .. 35
3.5.1 Advantage of Invertible Objective Function . . . . . . . .. .. .. 35
3.5.2  Solving the Equations . . . .. ... ... .. ... .. ... .. 36

4 Subspace Methods 38
4.1 The Truncated Singular Value Decomposition . . . .. .. ... ... .. 39
4.2 Approximations From Krylov Space . . . . . . ... .. .. ... ... 40
4.2.1 Bidiagonalization and the LSQR Method . . . . . . .. ... ... 41
4.2.2 The Conjugate Gradient Least Squares Method . . . . . . . ... 44
4.2.3 The Krylov Space Filter Function . . . . . . ... ... ... ... 45
4.2.4 Properties of Krylov Space Filter Function . . . . . .. ... ... 48
4.2.5 Some other Properties of Krylov Space Solutions . . . .. . ... 53

4.3 Multilevel Algorithms . . . . . . . .. .. L 55
4.3.1 The Multilevel TSVD . . . . . . . . ... o oL 57
4.3.2 The Multilevel Landweber Iteration . . . . . . . . ... ... ... 61
4.3.3 Coarse Level Selection . . . . ... ... ... ... ... ... 63

4.4 Gradient Vectors . . . . . . .. .. 65
4.5 The Discrepancy Principle for Subspace Formulation . . . .. ... ... 67

vi



4.6 Generalized Cross Validation For Subspace Selection . . . . ... . ... 68

4.6.1 Calculating the Cross Validation Function . . . .. .. ... ... 70
4.7 The L-curve and Subspace Formulation . . . . . .. ... ... ... ... 73
Hybrid Methods 74
5.1 Hybrd Krylov Methods . . . . . ... .. .. ... ... ... ... 74
5.2 Tterated Hybrid Krylov Method . . . . . . .. ... ... ... .. .... 78
5.3 Hybrid Methods Based On Gradients . . . . . ... .. ... ... .... 81
5.4 Parameter Selection and Space Size . . . . .. ... ..o oL 84
5.4.1 Discrepancy Principle . . . . . . . ... 85
5.4.2 Implementation of the GCV . . . . .. ... ... ... ... ... 86
Applications 88
6.1 The Gravity Problem . . . . . . . ... .. .. ... . 89
6.1.1 The 1-D Gravity Problem . . . . ... ... .. ... ....... 89
6.1.2 The 2-D Gravity Problem . . . . ... ... .. .. ........ 99
6.1.3 Imaging of Nonlinear Gravity . . . . ... ... ... . .... .. 106
6.1.4 3-D Gravity Problem . . . . . . ... ... 0oL 113
6.2 The Tomography Problem . . . . . .. .. .. ... .. ... .. ..... 118
6.2.1 Borehole Tomography . . . . . ... ... ... .. ........ 118
6.2.2 Medical Tomography - SPECT . . ... ... ... ........ 126
6.3 Summary . . . .. .. 132
Nonlinear Inverse Problems 134
7.1 Formulation of Nonlinear Ill-Posed Problems . . . . . . .. .. .. .. .. 134
7.2 Formulation of the Solution . . . . . ... .. ... .. .. ... 137
7.2.1 Creeping Versus Leaping . . . . . . .. ... .. .. ... ..... 137

vil



7.2.2 Penalty Formulation Versus Lagrangian Formulation . . . .. .. 140

7.3 Methods for Nonlinear Optimization . . . .. ... .. .. ... ... .. 141
7.3.1 Damped Gauss-Newton Method . . . . . . . . ... ... .. ... 142
7.3.2 Trust Regions . . . . . .. .. ... ... ... 145

7.3.3 Comparison Between Damped Gauss-Newton and Trust Region . 151

7.4 Common Nonlinear Strategies For Nonlinear Inverse Problems - Review . 153

7.4.1 The Method of Fixed Regularization Parameter . . . . . . . . .. 153

7.4.2 The Two-Stage Method of Constable Parker and Constable . . . . 155

8 Methods for Nonlinear Inversion 164
8.1 The Cooling Method . . . . . . . ... .. .. . .. ... 164
8.2 Nonlinear Inversion Through Generalized Cross Validation . . . . .. .. 171
8.2.1 Full-Space Nonlinear Inversion . . . . . . .. ... ... ...... 171

8.2.2 Subspace Methods For Nonlinear Inversion . . . . . . . ... ... 175

8.2.3 Hybrid Methods For Nonlinear Inversion . . . . . ... ... ... 178

8.3 Summary . . . .. .. 180

9 Approximate Fréchet Kernels 181
9.1 The Concept of Approximate Sensitivities . . . . . .. .. .. ... ... 181
9.2 The Cord and Shamanskii Updates . . . . .. .. ... ... ... .... 187
9.3 Secant-Type Update . . . . .. .. .. . ... ... 189

10 Applications of Nonlinear Inverse Problems 193
10.1 The Gravity Interface Problem . . . . . . . . .. ... ... ... .... 194
10.2 The Magnetotelluric Problem . . . . . ... ... ... ... ... ... 207
10.2.1 Equations and Synthetic Example . . . . . . .. .. ... ... .. 207

10.2.2 Field Example and Conclusions . . . . .. ... .. .. ... ... 214

viil



10.3 Summary . . . . ...

11 Summary and Future Work

References

X

221



6.1

6.2

6.3

6.4

6.5

6.6

6.7

List of Tables

Predicted square root of the misfit using the different methods versus the
true square root of the misfit ||e||. The noise is Gaussian ¢; = N;(0, ab;)
Predicted square root of the misfit using the different method versus the
true square root of the misfit ||e||. The noise in the first column is made
from a combination of a; N7 + asNy. N; is Gaussian with 0 mean and
standard deviation which is proportional to the datum. N, is Gaussian
with 0 mean and standard deviation which is proportional to the norm of
thedata. . . . . . .
Predicted square root of the misfit using the different methods versus the
true square root of the misfit ||¢||. The errors are correlated. . . . . . . .
Predicted square root of the misfit using the different method versus the
true correlated noise ||¢||. and the non-correlated noise ||€||pe. . . . . . . .
Comparison between Subspace Methods for the solution of the 2-D gravity
problem. Noise level is 20%, real square root of the misfit is 978.45.
Comparison between Subspace Methods for the solution of the 2-D gravity
problem. Noise level is 10%, real square root of the misfit is 515.57.
Comparison between Subspace Methods for the solution of the 2-D gravity

problem. Noise level is 5%, real square root of the misfit is 273.4.

93

102

102

103



6.8

6.9

6.10

6.11

6.12

6.13

6.14
6.15

6.16

6.17

Comparison between Hybrid Methods for the solution of the 2-D gravity
problem. Noise level is 5%. H-LSQR - hybrid LSQR, I-KRY - iterated
Krylov, I-GRAD - iterated gradients. True square root of the misfit was
273.4. . e 104
Comparison between Hybrid Methods for the solution of the 2-D gravity
problem. Noise level is 10%. H-LSQR - hybrid LSQR, I-KRY - iterated
Krylov, I-GRAD - iterated gradients. True square root of the misfit was
B15.5. . 104
Comparison between Hybrid Methods for the solution of the 2-D gravity
problem. Noise level is 20%. H-LSQR - hybrid LSQR, I-KRY - iterated
Krylov, I-GRAD - iterated gradients. True square root of the misfit was
083.3 . . e 105
Comparison between all methods for 1% noise. True square root of the
misfit 18 0.25. . . . .. 110
Comparison between all methods for 5% noise. True square root of the
misfit 18 1.23. . . . .. L 110
Comparison between all methods for 10% noise. True square root of the
misfit 18 2.50. . . ... 111
Performance of the CGLS4+GCV algorithm for the inversion of 3-D gravity 116
Comparison between all methods for 5% noise. True square root of the
misfit 18 164.2. . . . . .o 121
Comparison between all methods for 10% noise. True square root of the
misfit 18 324.2. . . . L 122
Comparison between all methods for 20% noise. True square root of the

misfit 1s 642.1. . . .o, 122

x1



6.18

7.1

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

Comparison between methods for SPECT inversion. Note that subspace

methods underestimate the noise level. . . . . . . . . . . . .. ... ...
Path of minimization . . . . . . . . . . .. ...

Experiment one: Comparison between different methods for 5% noise.
True misfit is 6.72F — 2, real model norm 36.87. . . . . ... ... ...
Experiment one: Comparison between different methods for 10% noise.
True misfit is 1.53F — 1, real model norm 36.87. . . . . ... ... ...
Experiment two: Comparison between different methods for 5% noise.
Reference model is far from the real model. True misfit is 3.7E — 1, true
model norm 113.5. . . . . . .. L. L
Experiment three: Comparison between different methods for 3% noise.
Starting model is far from the real model. True misfit 1s 5.5E — 2, true
model norm 36.87. . . . . ... L
Inversion of MT data for the 5% noise case. True misfit is 3.2E — 1, true
model norm is 1.58. . . . . ...
Inversion of MT data for the 0.5% noise case. The true misfit was 0.04
and the true model norm s 1.58. . . . . . ... ..o
Inversion of MT data with approximate sensitivities. The starting model
is close to the final model. The true misfit 1s 0.27. . . . . .. .. .. ..

Inversion of MT field data. Predicted misfit is 3.8 —1. . . . . . . . ..

x11



1.1
1.2

3.1
3.2

4.1
4.2
4.3
4.4
4.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

List of Figures

The 1-D gravity data example . . . . .. .. ... .. ... ... ... 6
The geometry of the SPECT experiment. The data at the bin is pro-

portional to the amount of radioactive material which is inside the black

152 9
Tichonov filter function . . . . . . . . . .. ..o 27
A typical L-curve . . . . . ..o 31
CGLS filter for step like spectrum for 2,4,6,8 and 10 iterations . . . . . . 51
CGLS filter for slowly decay spectrum for 2,4,6,8 and 10 iterations. . . . 52
CGLS filter very slowly decay spectrum for 2,4,6,8 and 10 iterations . . . 53
First and fourth singular vectors on 129, 17 and 5 grid points . . . . . . . 56
Difference between the approximated and the true singular value . . . . . 58
1-D Gravity Kernels . . . . . ... ... oo 91
1-D Gravity Singular Values . . . . . . .. .. ... L Lo 92
1-D Gravity model and data . . . . . . .. .. ..o 92
Weighting function used for the inversion . . . . . . . ... ... ... .. 94

GCV and L-curves for 20% noise case (bottom) and for the 0.1% noise (top). 95

Covariance Matrix for 1-D example . . . . . . ... ... ... ... ... 95
Models which are obtained using different methods in the 1% case. . . . . 97
2-D Gravity singular values . . . . .. ... ... Lo 100
2-D Gravity Model and Data. . . . . . . ... ... .. ... ... 101

xiii



6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22

6.23

6.24

6.25
6.26
6.27
6.28

6.29

2-D gravity weighting function . . . . . . . ..o Lo 101

2-D Gravity Inversion . . . . . . .. ... Lo 105
The model and data for the nonlinear example. . . . . . . .. ... ... 107
2-D Nonlinear Gravity SVD . . . . . . .. ... ... oL 108

A nonlinear gravity kernel for the data point measured at point [50,50] . 109

2-D Nonlinear Gravity Imaging. . . . . . . . ... .. ... ... .... 111
Measurement points in the field dataset. . . . . . . .. .. ..o 113
Estimation of the SVD of the 3-D gravity matrix. . . . .. .. ... ... 115
Three Dimensional model and data. . . . . . . ... ... ... ... ... 115
Result of 3-D Gravity inversion . . . . . . .. ... .. ... ... ... 116
The 3-D Gravity dataset . . . . . . . .. ... ... L 117
3-D Gravity Inversion of the field data . . . . . .. .. .. ... ... .. 117

Borehole Tomography Ray Coverage. Notice that the coverage is not uni-

Synthetic Borehole Tomography Example. The true model is plotted in
figure B and the reconstructed is in figure A. This reconstruction is for the
5% noise case. The units of the models arein m™t. . . .. ... ... .. 120
Synthetic Borehole Tomography Data. The data is plotted as a function

of the z position of the transmitter and the receiver. Notice that the data

has no physical dimensions. . . . . .. . ... ... .. .. .. .. ..., 121
The Singular Values of the tomography system. . . . . . ... ... ... 123
The field data. . . . . . . . ... 124
The result of the field data inversion. . . . . . . .. .. .. ... .. ... 125

SPECT data. The bin number is plotted in the z direction and the plane
angle is plotted in the y direction. The projections collected from 0 — 180°. 127

Filtered back projection reconstruction of the data. . . . . .. ... ... 128

xiv



6.30
6.31
6.32
6.33

6.34

7.1

7.2

7.3
74

8.1
8.2

9.1

10.1
10.2

The special weighting of SPECT image. . . . . . . ... .. .. ... ... 129
Inversion of SPECT using the weighting in Figure 6.30. . . . .. .. .. 130
The SPECT spectrum. . . . . . .. ... ... ... ... ... ..... 131
Inversion of SPECT data with different techniques. Notice that the CGLS+GCV
and GCV+L-curve fail to predict noise levels. Hybrid methods on the

other hand give reasonable inverted models. . . . . . ... ... ... .. 131
A comparison between the relative number of flops for the solution of a

linear problem with different methods. . . . . ... .. .. ... ... .. 132

A hypothetical path for the solution of a nonlinear ill-posed problem by
minimizing for four different B’s . . . . . ... oo 155
The example problem: One datum is collected near the edge of a fault.
We try to recover ¢y and @o. . . . . . . .. ..o 159
Four iterations of the example problem. . . . . . . . .. .. .. ... ... 161
Two possible paths for the TSM. In the first path TSM(1) we end with a

model with the right misfit but with large model norm and in the second,

TSM(2), we end with a reasonable model but, not the smallest model. . . 162
The path of the cooling strategy on the L-curve. . . . . . . .. . ... .. 170
The path of the GCV strategy on the L-curve. . . . . . . . .. ... ... 175

The real problem, the near-by problem, the starting point and the place

that the near-by problem is not near by any more. . . . . . . . ... ... 186

The model and data used for nonlinear inversion . . . . . ... ... ... 195
Experiment one: results of Full-space+GCV, Hybrid+GCV, Cooling and

Shamanskii inversions. Noise level 10%. . . . . . . .. .. .. ... ... 197

XV



10.3 Experiment one: results of TSM, CGLS+GCV, Cord+GCV+Hybrid, Cord+GCV+Hybrid

inversions. Noise level 10%. . . . . . . .. .. .. ... ... ... ...,
10.4 Model norm and misfit as a function of iteration in the CGLS+GCV
10.5 Model norm misfit and the regularization parameter as a function of iter-
ation in the full space GCV . . . . . .. ... oL
10.6 Model norm misfit and the regularization parameter as a function of iter-
ation in the TSM . . . . . . .. .. . . o
10.7 Experiment two: 2-D Nonlinear Gravity Inversion. The reference model
is far from the true reference. . . . . . . ..o 0oL
10.8 Experiment two: 2-D Nonlinear Gravity Inversion. The reference model
is far from the true reference. . . . . . . ..o 0oL
10.9 Experiment three: 2-D Nonlinear Gravity Inversion, starting model is far
from the reference model . . . . . .. ..o o000
10.10Experiment three: 2-D Nonlinear Gravity Inversion, starting model is far
from the reference model . . . . . .. ..o o000
10.11The conductivity model used for the MT experiment . . . .. .. .. ..
10.12The MT data for the given conductivity model. . . . . . . .. ... ...
10.13Result of full-space GCV, Shamanskii, hybrid GCV and cooling MT in-
VEISIOMS. .« o v v v v e e e e e e e e e e e e e e e
10.14Result of secant GCV, cord GCV, TSM and CGLS GCV MT inversions.
10.15Result of approximate sensitivities MT inversions when starting model is
close to the final model. . . . . . . . ... oo
10.16Field MT data. . . . . . . . . . ... . .
10.17Inversion of the MT field data. . . . . . . . . . ... .. ... ... .. ..

XVl

198
199



Acknowledgement

Many people helped me putting up with this dissertation. However I would like to give
special thanks to two people: my wife, Yonat, who supported me through these years,
and my advisor, Doug Oldenburg. Doug has taught me not only about inverse theory,
but also how to develop scientific thinking, and more importantly, how to keep an open
mind. His help was not limited to the science; he also supported my personal goals and
ideas. I learned many things from him as a human being.

This thesis is a result of inter-disciplinary research and many of the ideas came through
discussions with my committee members. Jim Varah, Ken Whittall, Michael Bostock and
Uri Ascher. I would like to thank Jim and Uri for pointing me the direction and giving
useful ideas through personal discussion and through the SCV group meetings. Ken
deserves special thanks for many interesting discussions about inverse theory, and for
proofreading and correcting my thesis. People outside my committee who gave me good
ideas and constructive criticism are Phil Loewen and Brian Wetton.

Other people who helped me are my fellow students and Post Doctoral fellows. I
would like to thank Chen Greif, Mauricio Sacchi, Yaguo Li, Colin Farquharson and
Partha Routh for their encouragement and ideas.

Special thanks deserve all the people who made the work in the Geophysics de-
partment of UBC so pleasant: the glaciology group, especially Jinj Flowers and Shawn
Marshall, Dave Hildes and Yuval.

xvil



Chapter 1

Introduction

This thesis deals with the numerical treatment of ill-posed inverse problems. Such prob-
lems are solved on a daily basis in many disciplines such as geophysics, medical physics,
image and signal processing and astrophysics. Most inverse problems arise in the physical
world, and their solutions are used by geologists, medical doctors and others as a study-
ing tool. The field involves people from different disciplines and it is inter-disciplinary in
its nature.

A simple way to visualize an inverse problem is to imagine we are given a black box
and we would like to find out its contents. We are allowed to carry out experiments and
try and guess the contents of this box, however we are not allowed to open it. In inverse
problems, we call the contents of the box “the model”, the result of an experiment, “the
data”, and the experiment itself is referred to as “the forward modeling”. Usually an
experiment cannot provide sufficient information to determine a unique model, i.e., there
could be more than one model which would produce the same data. In order to select the
most reasonable model, we use the process of regularization. Regularization produces a
model which satisfies some specific criteria. Since the person interpreting the results of an
inverse problem is usually not the same one who made the computations, it is important
to integrate between the field of application and the computational field, and to let the
computational method be as flexible as possible. While this process works reasonably
well for small problems, large problems demand special attention and thus many of the

well-known computational techniques are not utilized. The two goals of this thesis are



Chapter 1. Introduction 2

first to bring existing knowledge which has been developed in numerical methods into
the field of applied inverse problems and secondly, to develop new methodologies and

algorithms when existing methods are insufficient.

1.1 TIll-Posed Inverse Problems

The concept of an ill-posed problem is not new. Hadamard [1923] defined a problem as
being ill-posed if the solution was non-unique, or if the solution was not continuous with
respect to the data, i.e., a small change in the data leads to a large change in the model.
Hadamard did not deal with the numerics of ill-posed problems as he believed that the
ill-posedness arose from an incorrect physical representation of the problem. Tichonov
[1963] was the first to deal numerically with ill-posedness, and in so doing introduced the
concept of regularization. Tichonov wanted the model to remain stable while producing
a smooth approximation to the data, even if the data changed by only a small amount. In
his work, regularization was introduced to stabilize the problem. Parker [1977 a] changed
the way regularization is viewed, by introducing a weighted regularization in order to
obtain a model which not only honours the data, but also possesses some specific desired
features. His approach was used and extended by Twomey [1977], Oldenburg [1984],
Menke [1984] and others.

This thesis deals with constructing discretized regularized solutions to inverse prob-
lems. This is only a part of the whole field of inverse theory. Other avenues available
for obtaining information about an underlying model from observed data are appraisal
(Backus and Gilbert [1968], [1970]), and inference problems. These are are not dealt with
in this thesis. The concept of regularization to obtain a specific model is often called
construction. Construction can be viewed in two ways: the deterministic approach, and

the probabilistic approach. While the underline philosophy of these two approaches is



Chapter 1. Introduction 3

different, in many cases the final equations which need to be solved are similar. This
thesis, in general, does not deal with the probabilistic approach. My main focus is on
numerical methods used for solving the linear or nonlinear equations and the phrase
“solving the inverse problem” relates to solving the regularized equations.

While the concept of regularization is well understood today, the main problem is
its implementation in large problems. In recent years significant advances have been
made in the field of linear inverse problems by the work of Hansen [1992 a,b], [1995],
Hanke and Hansen [1993], Oldenburg et al. [1991], [1993], [1994], Scales [1987], Scales
et al. [1987], [1990], [1994], Parker [1994], Parker and Whaler [1981], Nolet and Snieder
[1990], and others. However there are still a number of unanswered questions, and more
importantly, there is insufficient understanding as to which method should be used for a
specific problem. In the field of nonlinear inverse problems there are far more advances to
be made. Firstly there is a need to incorporate techniques from linear inverse theory and
computational methods from optimization theory. Current algorithms for the solution
of nonlinear ill-posed problems employ parameters and use heuristics which are not well
explained. Therefore, there is a need to add rigor to these algorithms and to suggest

better algorithms.

1.2 Motivation - Problems which are Solved

The aim of this thesis is to present practical algorithms for the solution of inverse problems
and therefore it is tied to real world examples and real data sets. The thesis deals with
a number of problems. Gravity is a commonly used technique in geophysics, and can
be viewed as an archetypal problem, since it leads to large, dense matrix system of
equations. Gravity data from a one-dimensional model is used to illustrate and compare

linear algorithms in inverse problems. Two and three-dimensional gravity problems are
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used in order to illustrate computational properties of large problems. A field data set is
used as a test example for the three-dimensional gravity problem. The gravity problem
suffers from non-uniqueness with respect to depth and therefore, in some cases, it can be
made nonlinear by reformulating the problem in terms of interfaces. This formulation
increases the depth resolution of the method, but compromises its linearity. The nonlinear
gravity problem is used to test linear imaging methods and nonlinear methods.

A second type of problem which is solved in this thesis is tomography. In contrast
to gravity, tomography problems lead to sparse systems with better resolution. Borehole
tomography is a commonly used method in the area of geophysics and a field data set is
used to test different methods. In medical physics, a commonly used tomography experi-
ment is the Single Photon Emission Computed Tomography (SPECT). This thesis shows
how the inversion of SPECT data can be improved by using new techniques. These tech-
niques are tested on a data set obtained from a patient at Vancouver General Hospital.
Finally in order to test techniques for nonlinear inverse problems, the magnetotelluric
(MT) example is used. The MT problem is an archetypal problem in electromagnetics
methods in geophysics.

In the next subsection short descriptions of these inverse problems are presented.

1.2.1 The Gravity Inverse Problem

A surface gravity survey is carried out to measure the anomalous gravitational accelera-
tion in the vertical direction. From Newton’s law we know that a unit mass positioned
at (z;,9i,0) on the surface of the earth is attracted to a mass anomaly density, Ap, in
position (z,y, z) inside the earth as:

Ap(z,y,z) de dy dz
7
(z—z)?+(y—w) +2°

(1.1)

Agif' = Ag(wivyiv O)f. =7
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where 7 1s the gravitational constant and 7 is a unit vector pointing from the observation
location, (#;,¥;,0), to (#,y, z). Using this relation we can describe four inverse problems.
Three-Dimensional Gravity Problem

In three dimensions, the anomalous mass can be anywhere at the region D. The gravity

anomaly at a point height h above the surface would then be:

v 5 Ap(wvyvz) TA
Ag;t = Ag(zi, y;, )7 = fy/D PR PR E R PR dz dy dz (1.2)

However, we usually do not measure the gravity field itself, but rather only its vertical

component. The data are therefore:

A
b, = b(z;,yi, h 'y/ Pz, y,2) 2 de dy dz (1.3)
(=) + (y —y)? + (= + B2

The goal of this problem is to recover Ap(z,y, z) from the measured data in the z — y

plane.

Two-Dimensional Gravity Problem

Here it is assumed that the model is only two-dimensional, i.e., Ap = Ap(z, z) is inde-

pendent of y. We can integrate equation 1.3 with respect to y and get:

prz)
b = b(zs, h / dz d 1.4
(i —7 (z — @)+ (24 h)? v az (1.4)

The goal of this problem is to recover the model Ap(z, z) from the measured data in the
z direction.
One-Dimensional Gravity Problem

Now assume that we are at the edge of a fault (z = 0) and measure the gravity data on

the surface (A = 0) as plotted in Figure 1.1. On our left there is a uniform half-space
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with a known density and on our right there is a layered density which depends only on

z. In this case we can divide the integral 1.4 into two quarter spaces. The integration

Data
*

*

Bp(z)

I
|
Figure 1.1: The 1-D gravity data example

over the first quarter space produces zero since its density anomaly is zero. We therefore

have to carry out the integration over z:

b(z;, 0 'y/z o/mow—w +z2dwdz (1.5)
which gives
bai,0) = [ (5 —atan(Z))Ap(2) d (1.6)

The goal of this problem is to recover the one-dimensional profile Ap(z) from the data

in the z direction.
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Nonlinear Gravity Problem

It is possible to solve the gravity inverse problem as a linear inverse problem. However,
for some situations a different formulation is more suitable.

Assume that we measure the gravitational field on the earth’s surface. The gravity
anomaly in the z direction is related to the density of the earth according to equation 1.3.
Assume now that the earth has two layers with known densities and the density contrast
between them is Ap. The first layer has a mean depth of h(z,y) which is assumed to be
known. Changes in the gravitational field are due to a change in the depth of the first
layer relative to h. This change is given by the function m(z,y). In this case we can

write:

h+m(z,y) A
b = 7// / ¢ i dz dy dz (1.7)
D Jh (2 — )2 + (y — 9:)? + 22]:

Integrating the expression with respect to z gives:

b—'y// ———dwdy (1.8)

where § = Apy, i, = (z—2:)* + (y —w:)* + A and 7], = (2 —2:)* + (y — )" + (R + m)*.

The goal of the inverse problem presented in this example is to recover the surface
m(z,y) from the given gravity anomalies b;. In order to do this we would also need the
Fréchet derivatives of the operator. By differentiating equation 1.8 with respect to m we

get:

// (h + m(z,y)) dz dy (1.9)
[(z — z)2 + (y — y;)? + (b + m(z,y))2]

1.2.2 The Tomography Inverse Problem

A very different type of inverse problem arises in tomography. Although the physics
of geophysical borehole tomography differs from that of medical tomography, the equa-

tions are similar. The primary difference between the equations is the geometry of the
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experiment. While geophysical tomography is limited in view to the boreholes and the
surface, medical tomography is unlimited in its view and can observe the object from

every direction.

Radio Imaging Borehole Tomography

Radio Imaging - (RIM) is a high frequency EM survey which is used to obtain information
about electrical conductivity. A transmitter, in this case a vertical magnetic dipole, is
deployed in one borehole and a receiver coil is in another. Ray theory is adopted and
the source signal is assumed to travel along a straight line connecting the source and

receiver. The amplitude of the EM wave at the receiver is given by

_ ée—f;im(m,z)dl(m,z)

T3

(A) (1.10)

were Ag is the amplitude at the source, r; is the distance between the transmitter and
the receiver, I; is the ray path and m(z, z) is an attenuation coefficient which depends
upon the conductivity of the medium. Taking the logarithm of equation 1.10 yields a

linear relationship between the attenuation coeflicient and the data:
b, = log(A,); — log(Ao) + log(r;) = —/m(w, z)dl(z, z) (1.11)
I;

The goal of this experiment is to estimate the attenuation m(z, z) from the discrete data

b;. Note that the data do not have physical dimensions.

Single Photon Emission Computed Tomography - SPECT

A very different experiment, which can nevertheless be described by very similar math-
ematics, 1s SPECT. This experiment is used on a daily basis in almost any large hospital.
The experiment involves administering a dose of radioactive material to the patient. This

radioactive material is attached to a molecule which targets a specific functional area,
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such as the heart or the brain. Active areas will emit radiation, and thus the experiment
provides information on the biochemical activity of the body.

In order to collect data, a special crystal, which detects photons, is placed in collim-
ated bins in a plane around the patient. A schematic of the experiment is shown in Figure

1.2. The number of photons b; which is detected at bin z, at an angle 6, is proportional

Figure 1.2: The geometry of the SPECT experiment. The data at the bin is proportional
to the amount of radioactive material which is inside the black ray

to the amount of radioactive material m(z,y) which is viewed by this bin. This can be

written as:
4(6) = [ m(@9)di,9) (1.12)
1;(6

The experiment is done for different 8’s and finally we have the data set b;(6;).
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1.2.3 One-Dimensional Magnetotellurics Problem

The one-dimensional magnetotelluric (MT) problem is a well-studied nonlinear problem
in electromagnetics, (see for example Parker [1994], Dosso [1990], Whittall and Oldenburg
[1992]) and therefore it is very suitable as a test example. We start with Maxwell’s

equations in the frequency domain:
V& = —twpueH (1.13)

VxH =o€

where £ and H are the three-component electric and magnetic field intensities, po is the
magnetic permeability, which is assumed to be constant, w is the angular frequency and
o is the electric conductivity.

Assuming that £ and H are plane waves, i.e.
£ =(FE,0,0) H =(0,H,0)

and that ¢ = o(z), we can take the curl of the first equation in 1.13 and get:

d’E

d2?

= twpoo(2)E (1.14)
The boundary conditions for this equation are (see Parker [1994]):
E(c0)=0

E(0) =1

This i1s the governing equation for the MT experiments. The data for this experiment

' B E(z=0,w) B 1
CO(wva(z)) - _aZE(z = 0,(_0) N _(9ZE(Z = va)

(1.15)

Our goal is to recover the conductivity profile o(z) from the complex measurements co.
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It was proved by Parker [1977 b] that the data ¢y are Fréchet differentiable with

respect to the conductivity o(z):

J(w,0(2))(.) = (W, )= iw,ug/:OCZ(a(z), z,w)(.)dz (1.16)

where:

E z,W)
o(z)29) =~ g5 0w

1.3 Overview of this Thesis

As stated earlier, the aim of this thesis is to give numerical treatment for inverse prob-
lems. An overview of the basic principles and techniques in numerical methods is given,
which is then used to motivate and build algorithms. The thesis is divided into three
main parts. In the first part (Chapters 2-6) linear inverse theory is treated. Chapters
2 and 3 are a basic review of the formulation of ill-posed problems and Tichonov reg-
ularization. In Chapter 3 a short review of two methods, Generalized Cross Validation
and the L-curve, are provided. A new interpretation is presented for the L-curve tech-
nique and a connection is established with the probabilistic approach to inverse problems.
Chapter 4 discusses subspace methods. It provides an overview of the truncated singu-
lar value decomposition, conjugate gradient least-squares, least-squares QR as well as
an explanation for the regularization properties of Krylov space methods. As part of
the subspace formulation, a new multilevel method to solve ill-posed problems is devel-
oped. Another technique for solving linear problems which is reviewed is a gradient-based
method. Finally, in Chapter 4, Generalized Cross Validation is extended for subspace
type algorithms. This work is new and it is a building block of a strategy to solve
nonlinear problems.

Chapter 5 covers the combination of subspace methods and Tichonov regularization.
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This type of regularization is often referred to as hybrid type regularization. Two al-
gorithms are developed for this purpose. First, least-squares QR is utilized for hybrid
regularization, and then a second new Krylov space method is developed. This technique
deals with the loss of orthogonality which is the main problem of the Krylov spaces.
The last part of Chapter 5 deals with a gradient-based method for hybrid regularization
which was developed by Oldenburg et al. [1993], [1994].

In Chapter 6, the algorithms developed in the previous chapters are tested using the
examples presented in Section 1.2. At the end of this chapter a short discussion about
which method should be used for the solution of linear ill-posed problems is presented.

Chapters 7-10 cover the second part of this thesis: nonlinear inverse theory. Chapter
7 serves as a review of the formulation of nonlinear inverse problems, formulation of the
solution, review of minimization techniques and a review of current algorithms for the
solution of nonlinear ill-posed problems. In this chapter an example is provided to show
that one of the most common algorithms used for nonlinear inverse problems can fail.

Chapter 8 is dedicated to the development of computational techniques for nonlinear
inverse problems. A new method for solving nonlinear inverse problems, based on Gen-
eralized Cross Validation and Damped Gauss-Newton steps is developed, along with a
discussion on the calculations of such solutions when the problem is large.

Chapter 9 reviews some of the methods to approximate sensitivities using cord up-
date, Approximate Inverse Mapping (AIM) and secant update. A new global concept of
approximate sensitivities is developed. This new concept can be used to provide a bound
on the solution obtained by using approximate sensitivities.

Chapter 10 is a summary of the nonlinear chapters. The algorithms developed in
Chapters 7-9 are tested on two nonlinear inverse problems, the nonlinear gravity and the

MT problems, which were presented in Sections 1.2.2 and 1.2.3.
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Formulation and Pre-Processing of the Problem

This chapter contains the basic tools for the formulation of linear inverse problems which
are used later for the nonlinear case and it is mainly a review of the work of Elden [1977],
[1982], [1990], Hansen [1995], Engl et al. [1996]. We review the discretization process
and the transformation of inverse problems into a standard form. These two stages of
pre-processing of the problem are important because they allow similar treatment for

different problems.

2.1 Formulation of Linear Problem

Most inverse problems describe the continuous world, with an origin in Fredholm integral
equations of the first kind. Let H be a Hilbert space, let m(¢)€H be the model and let
b = [by...by]T be a vector of the measured data. This thesis deals with problems where

the connection between m and b is:
b = / K(si,)ym(t)dt + ¢ (2.1)
D

Where K(s,t) is a smooth kernel (i.e. the kernel does not posses singularities), ¢; is
the measurement noise assumed to be approximately Gaussian and D is the domain of
integration. Our goal is to find the model m given the noisy data b.

The first question which might be asked is how to discretize the system. There are
two approaches to the problem. The first is to discretize it with a number of parameters

M which is smaller than N. In this case problem 2.1 becomes a well-posed least-squares

13
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system. This approach is taken on a regular basis in medical physics but its major
disadvantage is that it imposes regularization on the problem by making the solution lie
in a small subspace which does not necessarily fit the problem. Since meH, it is better
to discretize the system as finely as possible such that the discrete system possesses some
of the characteristics of the continuous system. In this work the system is discretized
with a number of parameters M > N.

The discretization can be carried out by two main methods. First it is possible to

approximate the integral 2.1 by some quadrature rule:
M
/ K(sj, tym(t)dt ~ 3 wiK (s, t:)m(t:) At (2.2)
D =1
which leads to the rectangular system:
b= Az + ¢ (2.3)

where A;; = w; K(s;,t;)At; and = = m(t;) is a vector in RM™.
A different method for discretization uses Galerkin methods. Let 9;(s), 1 = 1...M be
an orthonormal set of basis functions. If the solution m = M z;4;(s) then, the integral

can be written as: "
/D K(s;,)m(t)dt = ;w /D K (s, 8)0i(t)dt (2.4)

which again gives a system of equations:
b= Az + ¢ (2.5)

where Aj; = [pK(s;,t)i(t)dt and z is a vector of coefficients.

The choice of discretization method is problem dependent. While quadrature methods
are somewhat easier since they need only the estimate of the kernel at some points,
Galerkin methods may be more accurate and require fewer unknowns to obtain the same

accuracy.
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In both cases the matrix A : RM — R¥ is typically ill-conditioned and the data contain
noise, therefore regularization is needed for the solution of the problem. In this thesis

three possible types of regularization are analysed:

e Tichonov regularization, which involves the definition of a norm or a semi-norm

||Wz|| and looking for a solution of a global objective function:
minimize ¢(B,z)= ||Az —b||* + B||Wz||? (2.6)
The minimization problem is equivalent to the solution of the least-squares system:
A

b
JBW T = L)] (2.7)

This type of regularization is analysed in Chapter 3.

e Subspace regularization, which involves the definition of a £ dimensional subspace

Sk, k < N and solving the minimization problem:
minimize ¢4(z) = ||Az —b||> €S (2.8)

If we let Sy = span(V}) then # = Viz and the minimization problem is equivalent

to the solution of the least-squares system:
AVi,z =b (2.9)
This type of regularization is analysed in Chapter 4.

e Hybrid regularization, which involves the definition of a norm or a semi-norm ||Wz||

and a subspace S, k < N and solving the minimization problem:

minimize ¢(B,z)= ||Az —b||* + B||W=z||*? =zcS5% (2.10)



Chapter 2. Formulation and Pre-Processing of the Problem 16

If we let Sy = span(V}) then # = Viz and the minimization problem is equivalent
to the solution of the least-squares system:
AV

b
- z= L)] (2.11)

This type of regularization is analysed in Chapter 5.

2.2 Characteristics of Inverse Problems

Most inverse problems have common characteristics. Perhaps the most important one is

the behaviour of the spectrum. Let
A=USVT (2.12)

be the singular value decomposition (SVD) of A, where V' = [v1...vy], is an M x N matrix
which spans the active part of the model space, U = [u;...uy| is an N x N matrix which
spans the data space and S = diag(A;...A\x) with singular values A; > Xy > ...Ay>01is a
diagonal matrix of size N xM. Although it is impossible to prove in general, the large
singular values are associated with smooth singular vectors, v, and the small singular
values are associated with oscillatory vectors. This characteristic is of major importance
when dealing with inverse problems. It can also be shown (Sterling and Porter [1990]) that
the singular value decomposition is closely related to the singular function expansion of
the operator [, K(s,t)(.)dt. In most inverse problems the model is assumed to be smooth,
and this thesis deals only with this kind of model. Smooth models contain mostly vectors
which are associated with large singular values. This characteristic of the model is also

used extensively throughout this thesis.
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2.3 Reduction to Standard Form

The Tichonov formulation of the inverse problem discussed above is regularized with an
arbitrary norm. This leads to some complications in the analysis of the methods, and
later on, to problems with implementation of the regularization especially in subspace
and hybrid methods. It was therefore suggested to transform 2.6 into the standard form
which is:

minimize ¢,(8,2) = ||Az — B[ + Bl[a|[’ (2.13)

This transformation is discussed by Elden [1977], [1982], [1990] and Engl et al. [1996]
and we review it here with some modification. There are three possible cases: W is
square and well-posed, W is rectangular and over determined and W is rectangular and
under-determined.

The matrix W can represent either a priori knowledge about the problem (such as
in Li and Oldenburg [1996]) or a general regularizer to get a specific type of solution for
example a smooth one. In this work the matrix is the discretization of the continuous

operator:

a V3(f(t)(.))
W(.) = | «V(f)()) (2.14)
Oé3f3(t)(-)

where f;(t) ¢ = 1,2,3, are semi-positive functions. This could lead to an over-determined
W. Another possibility is to choose W such that it corresponds to a differential operator

of the form:
W(.) = ea V(fa(t)(-) + a2V (£2(t)() + asfa(t)() (2.15)

This could lead to a square or an underdetermined W. The underdetermined case appears
if the differential operators do not include boundary conditions. In this case the operators

are calculated only for the points which are inside the domain. The discretization of the
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differential operators is done using central differences and, in one dimension we use the
stencil [—1,1] or [—1,0,1] for the first derivative and the stencil [1, —2,1] for the second

derivative. We now discuss the three possible situations.
2.3.1 W is Square and Well-Posed
For this simple case we let # = Wz and rewrite 2.6 as:
¢(B,%) = ||[AW ™"z —bl* + Bllz[]*
Define A = AW~'. The problem is now in its standard form with the operator A instead
of A.

2.3.2 W is Over-Determined

The over-determined case is only slightly more complicated than the square case. In this

case:

[ aq Wl i
a2W2

| o, W), |

is a pM x M size matrix, and has a unique generalized inverse W which obeys:
Wiw =1
This enables us to write the minimization problem as:
¢(8,%) = [|[AW'e —b|[* + Bl|z|]”

where again & = Wz, and the matrix A is replaced by AW!. Notice that for this case,

the matrix AW is NxpM and the transformed model Z is of size pM.
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Another possibility for the transformation in this case is to form the matrix @ =
WTW and to use the Cholesky decomposition in order to obtain an upper triangular
M x M matrix W such that WTW = Q. If we take this approach then we go back to the
case that W is square.

The choice between the method of transformation depends on the size of the problem
and the method of solution. For small and medium sized problems it might be easy
to carry out the Cholesky decomposition of Q and store the matrix W. However for
very large scale applications where the matrix WTW could not be decomposed, we use
iterative methods for the solution of the inverse problem, and need only the application
of W1 on a vector, v. In this case it might be better to calculate WTv when needed and

not compute and store w.

2.3.3 W is Under-Determined

The case which is the most difficult is the case of W under-determined. The main reason
1s that if we try to set £ = Wz then = cannot be recovered by using the generalized
inverse W1 because W has a nontrivial null space, i.e. WIW#£I.

For this case let W be a PxM matrix with a pseudo-inverse W1 and let W, be an
M x(M — P) size matrix which contains the null space of W, i.e. WW, = 0. Usually
P is close to M and the null space, which contains only M — P independent vectors, is
relatively small. The solution = can be divided into two parts, one which is in the active

space of W, and one which is in the null space of W:
w:ww—l—w():Wji—l—ngg

where Z i1s a P-vector and %o is M — P vector. The matrix le is of size M x P which
projects any P-vector to the active space of W. The goal of this decomposition is to

choose W1 such that the problem is transformed into the standard form. Substituting
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this decomposition in 2.7 gives:

b
(Wi + Wozo) = (2.16)
lﬂw ] ! 0
This is equivalent to these two systems equations:
AWLE + AWoio = b (2.17)

WWis + WWeio = WWiz =0

From these two equations we can get le which transforms the problem into the standard
form. First, Wle should give the identity, which is similar to the over-determined and
the square case. While this character of le takes care of active space of W in the solution
it does not take care of the null space of W. Since o appears only in the first equation

of 2.17 it could be expressed as:
2o = (AWo)Tb — (AW,) AW 2 (2.18)

where (AW,)! is the generalized inverse of AW,. This expression has two parts: (AW, )b

which depends only on the data, b, and (AWO)TAWji which depends on . If o is not
dependent on & then the problem is separable and we could solve for &y first and then

get an equation for £ which is in the standard form. This happens only if:
(AWo) AW =0

If le is equal to the generalized inverse of W, W1, then WW1 = I, but (AW,)I AW =£0

and therefore this choice is not a good one. Elden [1982] has proposed that:
Wi =Wt — Wo(AW,) AW (2.19)
This choice is good since:

WWh = W(WT — Wo(AWR) AW = WWT — WWo(AW,) AW =T —0=1
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and

(AWo)T AW = (AW A(WT — Wo(AW,) AWT) =
(AWo)T AW — (AW,)T AWo(AWL) AW = (AW,) AW — (AW,) AW =0
The matrix le 1s often referred to as the A weighted generalized inverse of W. Using
the matrix le, Who, o and Z, the problem can be reformulated. First zo is found:
then we are left with the standard form for the P vector z:
A
VBI

T =

b
] (2.21)
0

where A = Ale 1s an N X P matrix.

2.3.4 Practical Implementation

From a practical point of view it is useful to separate iterative methods, where only
products of the form Av and ATw are calculated, from direct methods where A is actually
calculated.

First we discuss the cases of W well-posed or over-determined. In iterative methods
we calculate products of the form AW 'u or AWty and (WT)1ATv = W-TATy or
(WHT ATy . These operations are divided into two parts, first the solution of the system
Wp = u 1s calculated, then the multiplication of Ap is calculated. The transpose is done
by first calculating the product p = ATv and then solving the system W¥q = p. If
W is given by an elliptic differential operator the solution of the systems Wp = u and
WTq = v can be done in O(M) operations using multigrid methods as suggested by
Dendy [1982]. The problem with multigrid solvers is that they are generally complicated

for general purpose algorithms. In this thesis we have used a direct LU solution for small
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scale systems and BICG, BICG-STAB or GMRES with incomplete LU preconditioning
(as suggested in Saad [1996]) for the solutions of the differential systems. In general if
the differential system is well-conditioned, the number of operations is of order M
(with 4~0.3) which is usually satisfactory even for large scale problems (30000-100000
unknowns). Solving the inverse problem typically requires at least O(kN M) operations
(where k is some integer and hopefully k< N) and therefore the reduction to standard
form does not impose major difficulty.

If we choose to use a direct method then the calculation of A is done for each row
separately. Let af be the k™ row of A and let af be the k™ row of A. The matrix
A= AW~" and therefore:

AT =w-TAT

For each vector a; and a, we can write:
Wty = ay, (2.22)

Thus aj is calculated a row at a time, and the calculation of A takes O(M'™7N) opera-
tions.
When W is underdetermined, the product lev and (le)Tu is somewhat more diffi-

cult. First we need to obtain the null space of W. Let
W — [Wl, W2]

where W1 is a Px P matrix and W is a Px(M — P) thin matrix. The null space of W

can be found by:
W1_1W2
W() —

—Iy-p

Using this matrix we form the N x(M — P) matrix:

Ao = AW,
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This matrix is usually small and can be stored. Using it we calculate the component of

the solution which is in the null space of W:
Lo = (A())Tb

and the residual

b():b—AéBo

assuming again that the operation of the generalized inverse of W on a vector is easy
to obtain, the product of lev and (le)Tu i1s done sequentially. First we calculate the
product: s = Wiv, then calculate so = Wo((AW,)!(4s)) and finally subtract s — so to
get the result. The transpose is carried out in the opposite order.

If we choose to work with direct methods then again the calculation of A is done for

each row separately. This is done by solving the system:
Wty = ay, (2.23)

with the A weighted generalized inverse.

In general, in order to make the reduction to standard form efficient, fast solvers to
the systems Wq = v and WTp = u are needed. If such solvers are not available then the
reduction to standard form should be avoided. This would make Tichonov regularization

more expensive and it would give an advantage to full space methods.
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Tichonov Regularization

In 1963 Tichonov proposed that the solution # should not fit the data exactly. The

problem of finding a solution to 2.3 is transformed into a minimization problem:
minimize §(8,2) = || Az —b|[* + BlWel* = da + Bdm (3.1)

The function ¢(3,z) which is used extensively in this thesis is referred to as the global
objective function, ¢4 is the data misfit function and ¢,, is the model objective function.
The parameter 3 is a penalty parameter which determines how well the solution should
fit the data. As 8 becomes large the solution fits less well to the data and as 8 becomes
very small, the solution starts to fit noise. 3 is adjusted such that the solution fits the
data in some optimal way. This is discussed in Sections 3.2-3.4.

The solution to the minimization problem 3.1 is achieved by differentiating with

respect to # and forcing it to zero. This gives:
(ATA + BWTW)z = ATb (3.2)
The system, 3.2, is also equivalent to the least-squares system:

A b
T = l ] (3.3)
0

VBW
3.1 Analysis of Tichonov Regularization

In order to understand the basic properties of regularization it is often useful to look

at the spectrum of the operator and the way it is affected by the specific regularization

24
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method. Let:
A=USVT (3.4)

be the singular value decomposition (SVD) of A described in section 2.2. Using the SVD

the system 3.2 (assuming in standard form) can be written as:
(ATA+ Bz = (VS VT + 8z = V(S® + BI)VTz = VSUTb
Multiplying both sides in V7 gives:
(S*+BNVTz = SUTS

and

z=V(S*+BI)SUTh=VSH(S* +BI)'S*UTb

This can also be written as:

z=VS'DrUTb (3.5)

where D = (5'2 + ﬂ])_152. In vector format this can be written as:

N bT’u,i
=1 ?
where fr is the Tichonov filter function:
)\2
A) = .

Figure 3.1 shows the Tichonov filter for different 3’s. The filter penalizes vectors which are
associated with A2< 8. Thus the role of Tichonov regularization is to damp the singular
vectors which are associated with small singular values. This process is fundamental to

regularization of inverse problems.
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3.2 Discrepancy Principle

While the idea of regularization is clear, so far we have not discussed how much to
regularize. In the Tichonov regularization case it is clear that if the penalty parameter 3 1s
too small, the model fits noise and if the regularization parameter is too large then some of
the original signal is damped. If the noise level is known then the regularization parameter
can be determined. This principle is often refered to as the discrepancy principle (Engl
et al. [1996]).

Assume that the noise is Gaussian with mean 0 and standard deviation o i.e. exN(0, o).

The true solution z, obeys:

N N
€;
ba= b~ Azl = [l = 556 = o75( 5

The last sum is simply a sum of N squared Gaussian random variables with mean zero and
unit standard deviation. This sum is another random variable which can be described
by the x? distribution function. The expected value of this variable is simply N and

therefore the expected value of the misfit is:

¢ = 0’N (3.8)
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Figure 3.1: Tichonov filter function
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According to the discrepancy principle the right § is found by solving:
16— Aw(B)I12 = |I(I — A(ATA + BI)~ ATYB = No? (3.9)

This is a nonlinear equation in one unknown B3 which can be solved in various ways.
Techniques to solve this equation have been proposed by Parker [1994], Engl et al. [1996]
and Golub and Von-Matt [1991]. The major cost of the solution of such problem is the
calculation of the function, which requires the inversion or decomposition of ATA + 81.

The discrepancy principle is also closely related to constraint minimization. In this

case the inverse problem is formulated as:
minimize ||[We||® (3.10)

subject to ||Az — b||*<T

Using this formulation a Lagrangian is formed:
L(B,z)=B7"([Az —b||* = T) + [[Wal? (3.11)

The Lagrangian is then minimized over z and maximized over 3, and the stationary point
with respect to 3 is a saddle point. In the linear case differentiating the equation with
respect ¢ and (3 gives exactly the same equations as Tichonov regularization 3.2. The
Tichonov formulation is often referred to as a penalty formulation and although the final
equations are identical, the philosophy of the penalty and the Lagrangian formulations are
different. While the Lagrange formulation forces us to define a target misfit 7' the penalty
formulation is more general and allows other possibilities for the choice of regularization
parameter, such as the model norm or some relation between the misfit and model norm.
In this thesis the formulation which is used is the penalty one because it is more general
and leads to simpler algorithms from non-constrained optimization, although parallel

explanations to many of the processes can be found in constrained optimization.
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3.3 Generalized Cross Validation

While there is a statistical estimate of the misfit when the noise level is known, real data
rarely come with standard deviations. The main reason is that geophysical experiments
are costly and rarely repeated more then once. Most applications ignore this difficulty
by guessing the noise level, which is, of course, not a very good idea. One of the more
successful methods to deal with this problem is the Generalized Cross Validation (GCV)
and we review it in this section.

The major idea of GCV is that a good model could predict new data points. We
cannot go to the field and measure a new datum each time we try a new regularization
parameter to verify our solution and therefore we simulate the experiment by eliminating
one datum from the data set. A good solution of the reduced data set, should predict
this datum fairly well even if it was not used when calculating the model. This idea is
repeated for each datum and therefore the model obtained in this way is the model which
can predict most of the data points even if these data points are not used.

In mathematical language, this is done by introducing the following notation. Let
zx(F) minimize:

dr = || 4z — B[ — (aTz — b)* + Bl (3.12)
where al is the k" row of A and by is the k** data point. Notice that ¢y is the same
objective function as 3.1 but with the k** data point and equation missing. We can now

ask, how well is the k** datum predicted when it is not used? This can be measured by:

(ag z(B) — br)?

The Cross Validation function is defined as the sum of the squares of these differences

between a predicted datum and the actual datum, for all data points:

N

CV(B) = Y (aFzx(B) — be)’ (3.13)

k=1
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The minimum of the C'V function with respect to 3 represents the 3 for which the model
would change the least if we drop one data point.

The CV as it i1s defined above is not very practical to compute because it involves
solving N systems for different regularization parameters. A shortcut was found by

Wahba [1977] who proved that:

i (1 — )’
where z(8) = (ATA + BI)71ATb, b,(B) = alz(B) and ci, is the kk element of C' =
A(ATA +BI)1AT.

(3.14)

The Cross Validation function has one unfavorable behaviour. If the matrix A and
the data b are rotated by an orthogonal transformation to form a new rotated system,
the minimum of the Cross-Validation function for this new system changes. Therefore
Golub et al. [1979] suggested replacing the Cross-Validation by the Generalized Cross

Validation which keeps its minimum under orthogonal transformations. The GCV is

defined as:
|6(8) — b]|?
GC =
V(p) trace(I — C(B))?
or explicitly
T —1 AT\1||2

[trace(] — A(ATA + BI)~1AT))?
The GCV function is again a function of 3 alone and various optimization methods can be
used in order to minimize it. The major step in calculation of the GCV function involve
the inversion and calculation of (ATA + ﬂ])_l and the estimation of the trace elements
of the denominator. In a recent paper Golub and Von-Matt [1996] have developed a fast
method to compute a close approximation to the GCV function for the over-determined
case (M < N). We will use similar methodology when using hybrid methods (Chapter
5).
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3.4 The L-Curve

Recently Hansen [1992 a| has developed the L-curve technique as a method to predict
the regularization parameter. Although this technique does not have a formal proof, it is
often used because of its simplicity. In this section we prove the connection between the
L-curve and the probabilistic approach to inverse problems. According to this connection,

a new choice of regularization parameter is proposed.

3.4.1 Description of the L-Curve

The L-curve is made by plotting the log of the misfit (log(||Az — b||?)) as a function
of the log of the model norm (log(||z||?)) which are obtained for different regularization
parameters. As 3—0 the model norm goes to infinity and the misfit is low, and as 8—o0
the model norm goes to zero but the misfit goes to ||b||%. The plot has a typical L shape
(Figure 3.2).

10°

Misfit

1 . .

0 5 1 2 3

10 10 10 10
Model Norm

Figure 3.2: A typical L-curve of the one dimension gravity problem. The example is
discussed in Chapter 6

Hansen [1992], [1995] claimed that the “best model norm” for a small misfit is obtained

at the corner of the curve and therefore suggested to look at the maximum of the second
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derivative of the curve. While his approach was heuristic in nature we prove that if
the place which is chosen on the curve is different from the corner, the L-curve strategy

agrees with the probabilistic approach.

3.4.2 The Probabilistic Approach

The probabilistic approach (Tarantola et al. [1982], Tarantola [1987]) looks at the prob-

ability density function of the noise €

[b— Az||?

202

P(e=b— Az) = Crexp(— ) (3.16)

where () is a normalization constant. In the probabilistic approach we also define the
probability of the model z. It is often assumed that the model = i1s Gaussian with 0
mean and known constant standard deviation o,. The probability density function of

the model is:

IE3IR

2
202

P(z) = Crexp(— ) (3.17)

The next stage is to look at the probability of the model given the data:
I 1 | e Sl

202 202

P(z|b) = Cexp( ) (3.18)

where again (' is a normalization constant.
The main idea in the probabilistic approach is to maximize the probability of the

model given the data, which is equivalent to the minimization of:
o2
minimize ¢ = ||b— Az|]® + —2||w||2 (3.19)
0-17

We therefore see that if the distribution of the errors and the model parameters are

Gaussian with known standard deviations o and o, then the regularization parameter

B is simply:

)
[\

g="= (3.20)

Q
8
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This fact can be taken into consideration when searching the regularization parameter
with unknown standard deviations. One could think of the following search method:

B Search Method

e 1. Choose regularization parameter 3.

e 2. Minimize 3.19, get (3) and €(8) = b — Az(S)

3. Calculate o )*(e(8)) = €(8)Te(8)/N and Oest)>(2(B)) = z(8)Tz(8)/ M

o 4. If:

2
O(es
/B(est) = G %/B

2
U(est)m

accept the regularization parameter.

A similar approach was suggested by Claerbout [1985]. However he did not carry out a
line search, but tried to boot-strap in order to directly estimate the standard deviations.

We now show that this approach is connected to the L-curve.

3.4.3 Connection Between the Probabilistic Approach and the L-Curve

In order to show the connection to the L-curve we look again at the minimization problem
3.1.
minimize ¢ = ¢q+ Bdm

Notice that if z~N(0, o) then:
o(est)s(2(8)) = 2(B) 2(8)/M = /M (3.21)
and if e~N(0,0) then

o(est)’ ((B)) = e(B)' e(B)/N = ¢a/N (3.22)
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If ¢ is minimized with respect to  then at the minimum:

d¢’ = d¢d(wM1n(/8)) + /8d¢m(wmzn(/8)) =0

Therefore:
d¢d(wmin )

If we combine the relation 3.20 to the probabilistic relations 3.23 and the estimated

= -8 (3.23)

o and o, from 3.22 and 3.21 we get:

déa  Meg
dpp N
dlog(¢a) M
dlog(¢m) ~ N (524
more specifically:
dllog(||(1 — AGATA + BIY AV M 25)

dllog||(ATA + BI)"tAT)b||] N
The L-curve is log(¢4) as a function of log(¢.,). The point on the curve which is suggested
here is the one at which the derivative satisfies 3.24. Again this equation is a nonlinear
equation with one unknown parameter and can be solved by the same methods as the
GCV or discrepancy principle.

Let us look at this point. If the number of model parameters is close to the number of
data, then the slope is close to —1 and the result should be close to the knee of the curve.
In this case this result will be close to Hansen’s criteria (Hansen [1992 a]). However as
the number of data grows, the slope should get closer to 0. This means that the point
will lie to the right of the knee, and the regularization parameter should go to 0. In the
other extreme, if the number of model parameters grows, the slope will approach infinity
and the point would lie to the left of the knee, and the regularization parameter would

approach oo.
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3.5 Practicalities and Limitations of Tichonov Regularization

3.5.1 Advantage of Invertible Objective Function

The operator W can be chosen arbitrarily. After it has been chosen we transform the
problem into its standard form as discussed in Chapter 2. The only problematic case
of W under-determined has to be handled with care. In most cases W is some form
of differential operator and the null space can be calculated analytically. In general it
1s useful to avoid the case of W under-determined by adding a small number é to its
diagonal. The advantage of using W square is that we could use a canned solver such as
the black box multigrid (Dendy [1982]) for the solution of Wv = q and WTu = p. If we
add ¢ to the diagonal, the solution does not change significantly and the change can be

quantified with some arithmetic. Let
2y = (ATA+ WTW) T ATh

and

zy = (ATA+ BWTW + 61)" T ATb
Write B = (ATA+ BWTW) and s = ATb. The difference between the solutions is:
21 —23=B 's—(B+6&)'s=B " (I—-(I+68B ") ")s= (3.26)
BN (I—-1+468B'+0(6°)B™%)s=(6B2+ O(8*)B™®)s

and therefore:

|21 — 22| <8]|B™ 24| | + O(67)

Notice that the smallest singular value Apin(B)>BAmin(W) = B and therefore:

i)
|21 — w2||§5||w1|| + 0(8%)



Chapter 3. Tichonov Regularization 35

The difference between the models is O(8) and from a practical point of view it is
simpler to work with a well-posed system. One more reason why this change is usually
justified i1s that in most cases the choice of W is somewhat arbitrary. The reason is that
W represents prior knowledge about the model which is usually not in a form of a hard
constraint and in most cases is based on interpretation. Therefore changing the objective

function in a slight way should not be of major concern when formulating the problem.

3.5.2 Solving the Equations

In order to practically solve the inverse problem one needs to decide on a method for
the estimation of the regularization parameter (discrepancy principle, GCV or L-curve),
find this regularization parameter and solve the system. All three methods require the
calculation of a function of one parameter 3, which involves the inversion of (AT A+ 31),
which requires O(M?) operations. Usually the function has to be calculated several times
and this will increase computational time even for relatively small scale problems. For
this reason it might be better to decompose the matrix A, for example using the SVD
of A which is O(12NM?). Elden [1982] has proposed a cheaper variation. He suggested
decomposing the matrix A into:

A=UBVT (3.27)
where UTU = UUT = I, VIV = I and B is bidiagonal. This decomposition is only

O(%). Using the decomposed system the problem is transformed into:
Bz=y (3.28)
where z = VT2 and y = UTh. The regularized solution is then:
z=(BTB+BI)'BTy (3.29)

The calculation of (BT B + BI)~!BTy requires only O(N) operations and therefore the

search for a regularization parameter is computationally efficient. After the regularization
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parameter is found, and z is calculated, the solution z is calculated by projecting z into
the model space:

z=Vz (3.30)

The two main bottle-necks in the Tichonov regularization are the computation of

the inverse or the decomposition of A and the storage of the orthogonal matrices U and

4NM?
3

V. The solution of the system requires O( ) operations which might be very large
even for moderate M’s. The storage requirement for V is M x N and for U 1s Nx N and
that could be prohibitive. In many applications such as the three dimensional gravity
problem, the matrix A itself is too large to be stored and the only things which can be
calculated are products of the form Av and ATu. This type of application can not be

handled with Tichonov-style regularization. We therefore turn to subspace methods.
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Subspace Methods

Most real world problems have two or three dimensions which lead to problems with a
few thousand to a few million unknowns. Tichonov regularization solutions take a long
time and considerable memory, and some shortcut is desired. The simplest shortcut is
to discretize the problem with only a few parameters, which leads to an over-determined
system. As stated in Chapter 2, this is not a good idea since coarse discretization can
be viewed as forcing the solution to lie in a small subspace (chosen by the discretization)
which might not fit the problem. Subspace methods can be viewed as a transformation
of the problem into a small tractable subspace, and the major difference from naive
under-parametrizing is that the subspace is an appropriate one for the problem.

In a more mathematical formulation we define a subspace S with k<N < M and

solve the minimization problem:
minimize ||Az — bl|? (4.1)

subject to xESy

Problem 4.1 leads to a well-posed over-determined system for a good choice of Sj and a
small enough k. In this thesis we review and explore four methods for choosing such a
subspace. The most obvious subspace is that which is spanned by the singular vectors.
Other methods try to obtain cheap approximations to the singular vectors. We review and
explore the Krylov space, spaces from different grids and subspaces based on gradients.

We then discuss the question of how many subspace vectors should be used, which is

37
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equivalent to the choice of regularization parameter. We review the choice in the case of
discrepancy principle and in the case of the L-curve, and develop the GCV principle for

the selection of the subspace size.

4.1 The Truncated Singular Value Decomposition

Perhaps the most natural subspace to understand is the truncated SVD (TSVD) (Varah
[1983], Van Huffel and Vandewalle [1991]). In TSVD the matrix A is decomposed into
its singular-values and singular-vectors. The least-squares solution with zero misfit, can
be written as:

N Tb

z=VS'UTh=Y "
=1 )\l

As stated before, typically, the small singular values correspond to oscillatory singular
vectors and cause an increase of the norm of the solution, but they do not have a big
effect on the misfit. The simplest regularization is to throw away singular vectors v;

associated with small singular values. This is equivalent to defining a filter function of

the form:
0 A<$
frsvp(}) = { (4.3)
1 A>4
The solution = can be written as:
usz usz
TTsVD = ) —— by ZfTSVD BV (4.4)
i 1 1 1

where k i1s the index of the last singular value which is bigger than §. The solution is
spanned by [v;...v;] which is a subspace of the whole active space of A, [v;...vy]. It is well
known that while this solution is mathematically different from the Tichonov solution,
it approximates it well.

A different way to look at this process is to define the regularization problem as a
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minimization problem in the form:
minimize ||Az — b||? (4.5)

subject to €Sy

where Si is a subspace spanned by Vi = [v1...v].

The major advantage of TSVD is the separation of the problem to its eigen-modes, and
distinguishing the important modes from the minor ones. This is a very basic principle in
mathematics and physics. The major problem of the TSVD is that it costs O(12M%N)
operations, and therefore cannot be practically used on large scale problems. While it
1s expensive to calculate the whole SVD, the solution uses only k vectors and typically
k<< N. The main question is then: is it possible to calculate a cheap approximation to
these k vectors? If such approximations are found, then a cheap solution to the system
with similar properties to the TSVD can be constructed. In the next two sections we

discuss such approximations.

4.2 Approximations From Krylov Space

Some of the most robust and successful algorithms to approximate the large singular

vectors use the Krylov space (Lanczos [1961]). The Krylov space is the space:
K(A,u,n) = span(ATu, (AT A)ATu...(AT A" ATu) (4.6)

where u€RY.

In this section we review some of the Krylov space algorithms which are useful for the
solution of ill-posed problems. We start with Lanczos bidiagonalization process which
leads to the least-squares QR (LSQR). It has been shown by Paige and Saunders [1982]

that LSQR is equivalent in infinite precision to the conjugate gradient least squares
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(CGLS) method which we review next. We then analyze the regularization properties

of Krylov space methods and discuss the situations in which Krylov space methods can

fail.

4.2.1 Bidiagonalization and the LSQR Method

One way to obtain an approximation to the singular values and vectors of A is by Lanczos
bidiagonalization. In this subsection we review the process as presented by Golub and
Van Loan [1996] and explain its connection to the LSQR.

The goal of complete bidiagonalization is to generate the N x N matrix U = [u;...un],

and the M xN matrix V = [v;...u5y] where UTU = I and VIV = I, and an NxN

bidiagonal matrix:

[a; O 0 1
B az ... 0
B =
0

| 0 5N—1 an |

such that:
UTAV =B (4.7)

or

A=UBVT o ATU = VBT AV = UB

Notice that U and V are not the singular vectors discussed in the previous section.

Let a;...an and B;...0n_1 be the diagonal elements of B, we can write:
A’Uk = pUp + ﬂkukﬂ k=1.N—-1

and

ATuk = Uk + ﬂk_lvk_l k=2.N
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Defining;:

P = Ave — agug
T
Tr = A Up — 5k—1vk—1
501)0 =0

we can conclude from the orthonormality of the vectors of U and V' that:
Oék:ﬂ:HT'kH, ’Uk:T'k/Oék

Br = x||pell,  wrt1 = i/

These equations define the bidiagonalization process, given a matrix A and a starting
vector u; €RY:

Lanczos Bidiagonalization

o Choose a vector u1ERY | set vo = 0.

o B1=lurl|, u1 = u1 /B
o fori=1:k
- r= ATW — Bi—1vi-1;
— o =r|l; vi=r/oy;
— p = Av; — aiu;;
= Bi = llpll; wirs = p/Bi;

If rank(A) = N, then no zero oy arise, however if a;—0, then the matrix is “almost”
rank deficient. This character of the decomposition is used in the next chapter when

discussing hybrid methods.
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Now assume that only k steps of the bidiagonalization are carried out with a starting
vector b. We have the Nx(k 4 1) matrix U1 = [¢1...°g41], Wwhere u; = b, the M xk
matrix V = [v1...v] and the (k 4 1)xk bidiagonal matrix Bj . The matrices obey the
relation:

AV, = U1 By (4.8)

It has been shown by Parlett [1980] and Golub and Van Loan [1996], that if the starting
vector u contains the singular vectors which are associated with the large singular values,
then the space spanned by the vectors in U and V' contains good approximations to the
space spanned by the k singular vectors of A. More over, the singular values of By, which
are called the Ritz values, are good approximations to the singular values of A. Using
this partial decomposition we can get a cheap approximate solution to the system.

Let z; lie in the space which is spanned by V%, then
zr = Viz
Substituting for « in 4.8 we can write:
Az = AVipz = Upy1Brz = b

Multiplying both sides by UZ,; and remembering that u; = b is orthogonal to the rest of

the u;’s we obtain: Ug+1b = Bie; with e; = [1,0...0]F. This gives the system:
Bkz == /8161 (4:9)

By, is only a (k + 1)xk matrix and therefore the solution for z is straight forward.
This type of solution requires storing the M xk matrix V4, which for very large scale
applications might be very large. Paige and Saunders [1982] found an iterative way to
update the solution for every new vector v;, and a bidiagonal elements 3 and oy which are

found in each iteration. Their algorithm is called LSQR and it is one of the more stable
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algorithms for the solutions of least-squares problems (Bjork and Strakos [1995], Bjork
[1990], [1996]). Each step of the LSQR contains two parts. In the first part the vectors
vk, up are found through Lanczos bidiagonalization. In the second part an orthogonal
transformation is used in order to update the solution z,. The vectors u, and vy do not
have to be stored in each iteration and therefore the storage requirements are minimal.
For some uses the vectors might need to be stored (see Chapter 5) and then the algorithm
is similar to the bidiagonalization algorithm.

In their paper, Paige and Saunders have shown that the LSQR is equivalent to the

conjugate gradient least-squares (CGLS), which we analyze in the next section.

4.2.2 The Conjugate Gradient Least Squares Method

Conjugate gradient least-squares (CGLS) is an iterative method to solve linear equations.
There are several ways to view this method. We take the approach of Golub and Van
Loan [1996], and look at CGLS from a minimization point of view.

According to this approach at each iteration we try to minimize:

1

minimize Qg = §||Aw —b||?
Let us assume we are at iteration k, with a solution z; and an A weighted residual:
_ 4T
Sk+1 = A (b — Awk)

The main idea of CGLS is to update the model in the next iteration by a vector djyq

multiplied by a scalar agyq:
Tht1 = Tk + Qpy1dit1
The special property of this dj; is that it is AT A conjugate to all previous d;, (5 = 1...k),

and therefore to z,. By ATA conjugate we mean that:

dFATAd; =0 i#j
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The special property of agi 1s that it minimizes ¢4 in the dj; direction:
o 1 2
minimize §||A(wk + ag1det1) — bl

It can be shown that the new direction dg; is a linear combination of the last direction

di and the A weighted residual sg; ;. The algorithm can be written as follows:

CGLS Algorithm
o Initialize: 2 =0 ,d, = ATb, 7o =b, s, =d4

o for k=1,2...

ap = |[sk||*/]| Ady|]?
— =z 4+ apd
— T = Te—1 — OékAdk

_ T
— Spy1 = A1

B = llsesa|*/]se]|”
— dit1 = Sky1 + Brds
The algorithm does not calculate the product AT A and the only things needed for

the implementation are the calculation of the product of the matrix A with a vector and

the product of the matrix AT with a vector. After k iterations are performed the solution
CCkEIC(A, b, k)
4.2.3 The Krylov Space Filter Function

The regularizing effects of Krylov space methods are well known in practice, but the

properties of the Krylov filter are not well studied. In this subsection we find an expression
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for the Krylov filter. First we notice that the Krylov solution is in the space K(A4,b, k),

which means that Krylov space solution is a solution to the problem:
minimize ||Az — b||? (4.10)

subject to
reK(A, b, k)

where k is the number of steps taken in the algorithm. The filter function can be derived
from the definition of Krylov space. Since the Krylov solution is obtained from the Krylov

space, the solution z; can be written as:
zr = 21 ATD + 2 (AT A)ATb + .. + 2, (AT A)*-D ATp (4.11)
where the coefficients z minimize 4.10. Using the SVD of A and the identity:
(ATAY =V S¥yT
the solution can be written as:
2y, = 2VSUTb + 2,VS*UTh + ... + 2, VS*1UTh = (4.12)

V(218 4 298 + ... + .S HUTh =
V(21S? + 2,8 + ... + 2 S™) S UTb = VDR STU D

The matrix Dy is a diagonal matrix and its diagonal elements are:
Dii = )\?(zl + 22)\? + ...+ Zk)\?k_Z) == )\12Pk_1()\12) (413)

where Pj_; is a polynomial of degree k — 1 in A%. Using this polynomial we can write
the solution as:

N .
LT — Z)\fpk—l()\zZ)—vz (414)

=1
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This means that the Krylov filter is:
fr(A) = NP1 (V?) (4.15)

The polynomial Pj_; is also known as the Ritz polynomial. The coefficients of P,_; and
their character can be found from the minimization problem 4.10. Substituting in 4.10

the solution zj from 4.13 gives:
min||Az — b||> = min||US(215% + 2,8* + ... + 2,5%)SUTb — b||?
The minimization does not change under orthogonal transformation and therefore:
= min||(215% + 25* + ... + 2,5\ UTb — UTd||?
= min||(2:5% 4+ 2,5* 4+ ... + 2 S™* — DU

This minimization problem can be represented also as:
( blug (2002 + .+ 2 A2 — 1) ]
blua(2102 + ... + 2 A2F — 1)

man|| I§

BT un (21, + o+ 2 A5 — 1)
which is equivalent to:

min||T(S*Srz — e)||? (4.16)
where I' = diag(UTb), e = [1,1,...1]T and X} is the N xk Van dermonde matrix:
DD D Y Cah
1 A2 L 22D

1 2% . AN
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Thus, the coeflicients z are the solution of the least-squares problem:
IS?y,z =Te (4.17)

with the solution:

z = (T'S*%)Te (4.18)

and the Krylov filter function is given by:
fK()‘z) == )\iZPk_l()\iZ) == (SZEkZ)z == (SZEk(FSZEk)TFe)z (419)

We now examine this filter more closely.

4.2.4 Properties of Krylov Space Filter Function

We are interested in the properties of the Krylov filter. We take a step back and look
how this filter would be obtained under very different circumstances.

A very common problem is polynomial fitting (Saad [1987]). Assume we have the
constant function ¥()) = 1 sampled at the points A\2...\4 and we want to fit a polynomial

in A? of degree k < N of the form:
P70 LN Tl
to that function. This would lead to the following system:
S2Ek()\2)z =e

where z is a vector of size k& which holds the coefficients of the polynomial and e =
[1,1...1]%.
If all the equations in this least-squares problem have the same importance then we

would use the generalized inverse of S23;,, however if we want to fit some equations better
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then others then we weight the equations by multiplying them by a diagonal matrix T

and solve:

IS?%i(A?)z =Te

At this stage I' is a diagonal matrix which states how much weight we put on each
equation. If we let T' = diag(UTh), then the solution z of this interpolation problem is
equivalent to 4.18. The problem is over-determined so the constant function ¥(A) = 1
does not equal its polynomial approximation at the points A?. Instead at points A\? we

have:

1 = (X)=(S?T(S?T) Te);

which is equivalent to the Krylov filter function 4.19. We therefore view the product ulb
as the singular value weighting.

The Krylov filter depends on three things:

o The spectral content of the right hand side, .
o The distribution of the singular values, A.

e The iteration number, k.

Observing the spectral content of the right hand side, we can give an intuitive idea of
how the Krylov filter works. Since the singular value weighting is u} b, the approximation
for the constant function 1 at points )\; which are associated with small u7b is bad, but
when a singular value has large weighting ul'b, it approximates the constant function 1
better. This means that the filter does not affect in a significant way vectors with large
ulb but filters vectors which are associated with small u7b. If the data is not noisy it
contain large quantities of ulb for large singular values and small quantities of ulb for
small singular values. Therefore the convergence is achieved first for the large vectors.

When the data are noisy, one would still hope that the noise level is low enough so that
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the amount of uTd for small i is still relatively larger than the amount of ufb for large 3.
However in cases that the data are noisy some of the noisy components could converge
before the vectors which are associated with large singular values have converged. In
such cases Krylov space methods might fail.

The dependence of the filter on the distribution of the singular values and on the
iteration number is harder to explain. The Krylov filter cannot be calculated analytically
for an arbitrary distribution of singular values and spectral content of the right hand
side; however, we can take typical examples and look at the filter coeflicients for these
examples. We could then use these examples to identify which types of problems Krylov
methods solve well and in which problems it might fail. In order to construct the examples
we need to assume something about the spectral content of our right hand side. To make
the analysis simple, we take a “worst case scenario” and assume that the spectral content
1s:

Ufb=[1,1..1)]F =e
which means that we have as much noisy components as we have signal. We now observe

the filter for different distributions of the singular values and different iteration numbers.

Effect of Clustered Singular Values

The first example is a very common one. We assume that the singular values 1...5 are of
the order of one and the rest are a few orders of magnitude lower. In order to analyse this
case we build such an artificial distribution, then, calculate the corresponding Krylov filter
for an artificial spectrum. The results are shown in Figure 4.1. The results demonstrate
that this type of singular value distribution is very stable for the Krylov method. It is
also possible to give some theoretical justification for the reasons that Krylov methods

work so well when the singular values are clustered. Assume that the eigenvalues 1...5
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Singular Value Distribution
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Figure 4.1: CGLS filter for step-like spectrum for 2,4,6,8 and 10 iterations

are of order of 1 and the rest are of order §. We can then partition the matrix ¥ into:

Y
S =
Yy

where ¥ contains the singular values 1...7 and X, contains the rest which are O(8), The

Krylov filter then is the solution to the problem:
A? 0 ¥

0 &2A.%] [ 2,

where A; contains the large singular-values and A, contains the small singular-values.

Z =¢€

This problem is solved by:
A1221 A1221 A1221
62A,%%, 62A,°%, 62A,°%,

In order to calculate z we need to invert the square matrix on the left hand side which

T T

z = e

1s:
TTAAS + 648, T A0S,
Assuming that ¥, TA4Y, is invertible:

(31TA S + 648, TA )™ = (2, 7AS) (T + 642 T AL 18T ALY, ix
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(ElTA1421)_1(I - 64(21TA1421)_1E2TA24E2) — (ElTA1421)_1 —|— 0(64)

The solution z can then be written as:
z=2z(A1)+ (’)(54)

where z(A;) is the solution which is achieved only with the large singular values. The
solution in this case depends strongly on the large singular values and only to a very

small extent on the small singular values.

Effect of Continuous Decay of the Singular Values

In some cases the singular values decay slowly. These cases are not as stable as the

~* and for

clustered one. In Figures 4.2 and 4.3 we observe the behavior for A = e
A = s7!. Notice that for the exponential decay the filter is still stable, however for
A = s71, the filter does not weed out the small singular values and therefore Krylov

space methods might break down for this case especially if the data are very noisy.

o Singular Value Distribution
10

10° + B

L L L L L L L L L
o 5 10 15 20 25 30 35 40 45 50

CGLS Filter for 2,4,6,8 and 10 iterations
15 T T T T T

0.5

I I I I I I I
o] 5 10 15 20 25 30 35 40 45 50

Singular Value Index

Figure 4.2: CGLS filter for slowly decaying spectrum for 2,4,6,8 and 10 iterations.
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Figure 4.3: CGLS filter for very slowly decaying spectrum for 2,4,6,8 and 10 iterations.

4.2.5 Some other Properties of Krylov Space Solutions

One more aspect of the regularization is the fact that the norm of the solution increases as
we solve the system to a lower misfit. This is evidently the case in Tichonov regularization
and TSVD. It can be shown (Hestenes and Stiefel [1952], Hestenes [1980]), that this is
also the case in Krylov space methods. This means that in every iteration we reduce the
misfit at the expense of increasing the model norm.

Another important property of Krylov spaces is the loss of orthogonality. The filtering
discussed earlier assumes that the Krylov vectors keep their orthogonality. In most
cases the orthogonality breaks down and therefore the analysis is only approximate. In
order to keep orthogonality the vectors could be re-orthogonalized at each iteration or
partially orthogonalized as suggested in Golub and Van Loan [1996]. This can increase
the cost of Krylov space algorithms. However in most straight-forward applications such
orthogonalization is not needed, since the vectors are not stored for further use. In cases
that the vectors are needed for further use we might use an orthogonalization procedure.

We will return to this problem when using hybrid methods in Chapter 5.
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We stated before that Tichonov regularization is achieved in O(4M?*N/3) operations.
Krylov type regularization is much more efficient. In the worst case, when A is not
sparse, and we have to perform almost N iterations in order to get a very low misfit, the
number of operations is of the order of O(2M N?). However if the matrix is sparse or
the desired misfit is relatively high, then the number of operations is O(kM N), where k
is the number of steps taken. In many applications k<N and therefore the solution is
much more efficient than Tichonov regularization.

Finally we noticed in the last section that in some situations Krylov space methods
might fail. The main problem of Krylov space methods is the dependence of the solution
on the right hand side, which might be very noisy. It is therefore desired to develop a
method which does not use the right hand side and the solution does not depend on the

noisy data. This is the goal of the next sections.
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4.3 Multilevel Algorithms

Multilevel algorithms are widely studied in the context of differential equations (Briggs
[1987], Hackbusch [1985]), however application of the same methods to ill-posed integral
equations is not straight-forward. The main reason is the different behaviour of the
spectrum of the equations. While integral equations have smooth vectors which corre-
spond to the large singular values, differential equations possess smooth vectors which
correspond to small eigenvalues. Our goal here is to develop a multilevel method for the
approximation of the TSVD solution.

In order to obtain a cheap approximation for the solution, we turn to a solution from a
subspace. We want our solution to be composed of the smooth singular vectors. We seek
a method to approximate these smooth vectors. One of the possibilities is to introduce
a coarse grid and to approximate these smooth vectors on it. In order to demonstrate,
we look at the 1-D example in 1.2.1. Equation 1.6 is discretized with 129,17 and 5 grid
points. The discretization is done by the midpoint rule. We then decompose the matrices
into their singular values and singular vectors, and view the first and the fourth singular
vectors of this system on the different grids (Figure 4.4).

The fourth singular vector is recovered reasonably well on 17 grid points but not so
well on the 5 grid points. The first singular vector is approximated well even on the 5
point grid. This means that we could approximate the first vector reasonably well on a
lower 5 point grid and save computations. We would like to use the vector which was
calculated on the 5 point grid and transfer it on to the 129 point grid. This cannot be
done by regular interpolation because if we naively interpolate from the coarse grid to
the fine grid we would introduce elements from the null space. We therefore choose to
interpolate in the following way. Let Aj be the discretized system on the fine grid and

Apg be the system on the coarse grid. Any vector from the active set of Ay can be written
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Figure 4.4: First and fourth singular vectors on 129, 17 and 5 grid points

as a linear combination of the kernels of the coarse grid:
N
o ="l = ALY (4.20)
7=1
where H notes the coarse grid. The same applies for the fine grid:

N
I Zz;‘a? = Afzh (4.21)

The N vectors 2z and z" are the coefficients of the kernel functions on the coarse and
fine grids. If the vectors v and v" describe the same function on different grids then

their coefficients z¥ and 2" should be similar. We therefore interpolate from the coarse
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grid to the fine grid by:
v?{ = iz?a? = Asz (4.22)
In this way no elements from the null space of Aj, are introduced to the approximation of
v". This means that in order to interpolate a vector v to v}, we need to find its decom-
position into the kernel functions (4.20) and use these coefficients for the interpolation.
If the vector v is well represented on both grids then the approximation would be
valid. However if v is not well represented on the coarse grid then the approximation is
poor. Since we are not interested in very oscillatory solutions we could use a solution
which is a subspace solution from the coarse grid. Each vector in this subspace would be a
vector which is made from the fine grid kernels, but with coeflicients from the coarse grid.
We postpone the selection of the coarse grid, and explore two different methodologies to

use multilevel algorithms, the approximated TSVD and the Landweber iteration.

4.3.1 The Multilevel TSVD

One way to obtain the coefficient vector z is using the SVD. Our goal is to approximate
the singular vectors v on the coarse grid. We recall that the singular vectors v; and u;
have the following relations:
Mol = ATl
and
Aoff = AR
R

This means that the coefficients of the kernels for generating the singular vectors v} are

just u?. We therefore approximate the singular vectors as:

o (ATuE)
T T (+.23)

In order to demonstrate the efficiency of such an approximation we look at the norm of

the difference between v} and v}y, |[v} — v}y ||, for i = 1...17 where k is the 129 point grid



Chapter 4. Subspace Methods 57

and H is the 17 point grid. This difference i1s plotted in Figure 4.5. We see that while

0.2

0.18f

0.141

0.12f

Difference %

0.1

0.081

0.061

0.04r

0.021

# of Singular vector

Figure 4.5: The norm of the difference between the approximated and the true singular
vectors (|[v" — vl|]).

the difference is small in the first vectors, it increases as ¢ > 6. In this case solutions
which are built mainly from the first five vectors could be approximated well.

The solution which is achieved by the multilevel TSVD (M-TSVD) can be written as:

k
TMTSVD = ) %y (4.24)
=1
We now describe an algorithm to obtain the coeflicients z;. First we have to decide on

the coarse level H and the fine level h. If we use some quadrature rule for the integration

then the matrix Ay can be obtain by simply projecting Ay into H. In 1-D this is simple:

.. . AH
Ag(i,j) = Ah(%lj)ﬁ (4.25)

where AH is the coarse grid discretization interval, dh is the fine grid discretization

interval and [ is the ratio of the number of points. The SVD of the coarse grid system
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can be obtained at the low cost of O(12M% N) where My is the number of grid points
used in the coarse grid and usually (but not necessarily) Mg < N. This gives the

decomposition:

Ag = UgSgVy

The diagonal matrix Sy has at most My singular values which are different than zero.

The singular vectors ug which are associated with these singular values are then used

h

to approximate the singular vectors v} using equation 4.23. In most cases some of the
singular values of the coarse grid are very small. As seen in the example, when a singular
value is very small, we do not expect to have a good approximation to the singular vector.
Therefore, we choose the singular value number k < My, A where its associated
singular value is small enough, and work only with the singular vectors of the coarse

system which are associated with singular values larger than A\, Let the matrix

Q= [v{l,Hv vI}cLH]

be the M xk matrix which spans the model subspace. The solution z can be written as:
z=0Qz (4.26)

and the inverse problem is transformed into:
min ||(AnQ)z — b||> = min ||A,z — b||? (4.27)

where A, = ApQ is an N xk matrix. While in principle the problem is over-determined,
practically it could be rank deficient. In order to solve this problem we use again the

SVD but this time apply it to the matrix A, and write the solution z as:

I bT,u,il
ZMTSVD = Y v
=1 7

g (4.28)
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where the subscript g relates to the singular values and vectors of A4, and with [ < k.
After z is found we calculate the solution  using 4.26. The algorithm can be summarized

as follows:

Multilevel TSVD

e Discretize the system and calculate A, and Ag
e Find the SVD of Ay

e Calculate the matrix Q = [v] g, ...v} ]

o Calculate 4, = ApQ

e Solve A,z = b using TSVD

o set x = Q2

The cost of this algorithm is as follows: the SVD of the coarse grid system is obtained
at O(12M%4N). Calculating the matrix @ requires the multiplication of ATuf ¢ =1..k,
which is O(kNM), where M is the number of fine grid points. The calculation of 4,
requires the multiplication of a matrix size N xM and a matrix of size M xk which
requires O(kN M) operations. Finally we solve A,z = b using SVD, which requires
O(12k*N). The total complexity of the algorithm is then:

Cue = O(12M}N) + O(2kNM) + O(12k°N) (4.29)

If M > N<Mg > k, then the algorithm is efficient and the dominant term is order
O(kNM). However if the required misfit is low and many vectors are needed, then the
coarse grid My would not be so coarse and the dominant term in the cost of the problem
is O(12M%N). In these cases the multilevel method suggested here is not going to be

efficient.
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4.3.2 The Multilevel Landweber Iteration

Another possible implementation of a multilevel algorithm is as a preconditioner to other

methods. The most simple is the Landweber iteration (Landweber [1951]) which is:
2t = 2k o Af(b — Ahwk) (4.30)

This iteration may converge slowly; however, it can be accelerated by the Generalized

Landweber iteration, which is given by:
2t = 2F o nAfD_l(b — Ahwk) (4.31)

where D is a preconditioning matrix, and 7 ensures that the norm of the residual is
decreasing. The optimal D is of course: D = (A, AT) because the iteration then converges
in one step. We now show that the multilevel iteration could be used as a Generalized
Landweber iteration with D = (AgAL).

As stated before any vector in the active space can be written as: =z = Afz. The

Landweber iteration can be written as:
" = AT — gk L AT DTN (b — Ape®) = ALZF + AT D7 (b — ARALZY)
This can be rewritten as a Richardson iteration for z
= 2% 4 D7 (b — ARALZ) (4.32)

This Landweber-Richardson iteration can be divided into two parts. The first is the
preconditioning, i.e to apply D! and get pr = D~(b— ArAF2*) and the second to find
n such that the residual 741 = ||b — An(zx + 7ATpe)||? is minimized. We now look at

the first step. We want to calculate the vector pg:

pr = DM (b — ARATZF) = (AgAL) 'y
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which is equivalent to the solution of:
AHAgpk =7
This problem is equivalent to the inverse problem on the coarse grid:
Agsg =7

where sg = Agpk. This means that the vector p; contains the coeflicients of the kernel
functions which span the solution on the coarse grid. When these coeflicients are found,
they could be used on the fine grid. In order to use them we need to find the number 7.
We choose 7 such that the residual rg1; = rp — nAhAfpk is reduced as much as possible,
P

i.e we look for 5 that will minimize ||rpi1||?> = ||rx — 74n AL pi||?. By differentiating with

respect to 1 and setting to zero we get:

7'1:: AhAfpk

— kTR AR 4.33
= Ay ATy | (4:33)

Thus the algorithm for the multilevel Landweber iteration goes as follows:

Multilevel Landweber iteration
er;=b =0

o fork=1,2...

Solve AHAgpk =7
— Calculate 7 using 4.33
= zpp1 = 25 + DAL
= Tkt1 = Tk — Ah(Afpk)

The matrix A HA% could be rank deficient and therefore solving the problem A HAgpk =

rr might not be possible. This problem can be solved again by the TSVD. Let:

Ag = UgSgVy
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then a regularized p; can be found by:

k pToH
prsvp = Y 7 v (4.34)

=1

The cost of the multilevel Landweber iteration is as follows. Decomposing Ag into its
singular values and vectors is O(12M% N). The update of the solution takes O(N M), and
the calculation of the residual is another O(NM). Thus the total cost of the multilevel
iteration is:

Cur = O(12M3N) + O(2kN M) (4.35)

This cost is dominated by the O(2kN M) term if the coarse level is coarse enough.

4.3.3 Coarse Level Selection

The multilevel algorithms presented here used only two grids. The question is then,
“how coarse should the coarse grid be”? Since it is not known a-priori how many vectors
are going to be used we suggest to solve the problem iteratively starting with a very
coarse grid and progressing to a finer grid if we cannot satisfy our stopping criteria. The

algorithm is as follows:

Multilevel Algorithm

o Decide on a coarsest level H;
e z=0,r=5>
o For:=1,2,..

— Use the M-TSVD or Landweber (Sections 4.3.1-2) to convergence on H; to
solve

Apw; = 7;



Chapter 4. Subspace Methods 63

Calculate the optimal step size obtained by this grid:

o_ rzTAfwi
|| A w;i|?

— Update: z; = z; + fw;

Calculate the residual 7,7 = b — Ahw’}{i

If the residual satisfies stopping criterion stop.

Refine grid to H; 44

This algorithm becomes expensive as the coarse grid becomes fine. The hope is that the
stopping criterion is achieved long before this happens. In numerical experiments with
the method (Chapter 6) we observed that when the noise level is about 10% or higher,
the coarse grid is “coarse enough” and does not impose a real problem, however for
relatively low noise levels, the multilevel algorithm becomes computationally intensive

and not very useful.
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4.4 Gradient Vectors

In this section we review the subspace method based on gradients which was developed
by Parker et al [1987] for the analysis of magnetic data. The method is based on picking
a space size k and generating k vectors which are made from gradients. The gradient of
the 7** equation is:

gi = aj(a?w —b;) (4.36)

Assuming z = 0, we generate k subspace vectors from a linear combination of the kernels:
J2 J2

’U;l = Zgi == szaz (437)
1=j1 1=j1

where j; and j, are some indices of the rows of A. The vectors are put in a matrix Qg

which spans the subspace:

Qr = [v1...v¢] (4.38)

We now look for a solution z which is spanned by @)%. The solution can then be written

as:

Substituting @)z instead of  in the equation leads to the least-squares problem:
minimize ||AQrz — b||? (4.40)

Typically this problem can be ill-posed and the solution z is obtained through regular-
ization. Let A, = AQ) be an N xk matrix. There are a few ways to carry out the
regularization process. The Tichonov regularization is one and we will look at the im-
plementation of such regularization method in the next chapter. If we want to work
with a subspace formulation then we could use the SVD. These two alternatives are also

proposed by Parker [1994]. In this section we stick to the subspace formulation. The



Chapter 4. Subspace Methods 65

matrix A, is decomposed into its singular vectors:

Aq = UquV;T
and the solution is written as:
I 1T, q
b ’u,i
zaTsvD = Y 3 V] (4.41)
=1 7

with | < k. Substituting back for z;, = Qrz we get:

where 77 is a diagonal matrix which holds the TSVD filter function, 1.e. one for the
singular vectors which are larger than some é and 0 for singular vectors which are smaller

than 6. The algorithm can be summarized as follows:

Gradient Subspace Method

e Choose a space size k and a starting vector.

e Calculate k subspace vectors using gradients 4.37, (j2 — j1~=N/k).

Calculate the matrix A, = AQ

Calculate the SVD of A,; A, = UquV;T

Solve A,z = b using TSVD

set x, = Qrz

The complexity of the algorithm is as follows: Calculating the subspace vectors is
only O(kM) operations. The calculation of the matrix A, is O(kNM) operations. The
calculation of the SVD of A, is O(12k?N) operations. The total cost of the algorithm is:

Ce = O(kM) + O(kNM) + O(12k*N) (4.43)

This complexity is dominated by the O(kNM) term. The storage requirement of this

algorithm is the storage of the matrix ()5 and the matrix A, and its decomposition.
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4.5 The Discrepancy Principle for Subspace Formulation

In the last sections we were concerned with the choice of the subspace. The question
which is now asked is: how many subspace vectors should be used in order to obtain the
solution? The number of vectors yields the number of subspace vectors needed in the
TSVD, a stopping rule for the Krylov space methods, the coarsest level in the multilevel
algorithms and the number of gradient vectors which should be used. If the number of
vectors 1s too large, then the solution might fit the noise, and if the number of vectors
i1s too small, then the solution might not fit the data. The problem is similar to the
one we have when we solve for a regularization parameter 8, however this problem is
discrete and replaced with finding the integer k* for the number of vectors. In parallel
with Tichonov regularization, we review and develop methods to estimate the size of the
subspace. We start with the discrepancy principle.

One simple stopping criterion is to stop when the misfit is lower than the tolerance
level. Let T be the tolerance level. Let the misfit of ¢;* > T be the misfit which
is achieved when using k subspace vectors and let ¢;"™ <T be the misfit using k + 1
vectors. Then we could set k* = k + 1 as the subspace size.

This choice might not be satisfactory because, in some cases it could happen that the
misfit at iteration k is ¢%5>>T and in the following iteration k+ 1 we could have ¢5T' < T
however from statistical point of view, we are interested in a solution which ¢g~T.

This problem can be easily overcome. By looking at any subspace algorithm we see

that:

Tpy1 = Tp + QPR

The result gﬁflk“) < T means that if take a step size a4 in the direction p; the step is too

large. A reasonable thing to do then is to go in the same direction, but not take a full
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step ag, but rather find oj such that:
A(zs+ ) —b|* = T (4.41)
this gives aj as the solution of:
1 Ape|*a® + 2(ri Api)a + (|lril|* = T) = 0 (4.45)

This quadratic equation for aj gives two ajs that produce the same target misfit. The
q q k8 k P 8

way to choose between them is simply to take the one which gives smaller solution norm
(||z||). The algorithm can be summarized as follows:

Discrepancy Principle In Subspaces
e Choose a desired misfit level T

o Fork=1,2...

— Form the solution z and calculate the new subspace vector p, and the solution
Lh41-
— If ||Azpy1 —b|]? < T , solve 4.45. where p; is the last direction.

— Given a; and as which solves 4.45, choose a; such that:
||z + capel| < [|ze + capuel|

o Set zpy1 = o + a1pg; return.

4.6 Generalized Cross Validation For Subspace Selection

The GCV principle is well developed to deal with Tichonov style regularization and it
was reviewed in Section 3.3. Although Golub et al. [1979] suggested to use it for TSVD
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subspace selection, it is not well developed for subspace type regularization. In this
section we develop such a methodology.
Let z,€S, be the minimum of 4.1. Now assume we deleted the k** data point, b

from the system 4.1 and repeat the minimization without it. This can be written as:
= ||Az — b||* — (afz — by)? zeS, (4.46)

where al is the k** row of A. Let ¥l be the minimum of 4.46. We might ask the question:
How well does the solution without the k** data point reproduce that data point? The
answer to this question is given by measuring the difference between the predicted data

point without using it, and the actual k** datum:
(a'k z, — b)”

If this difference is small, then the k** data point is reproduced well even when it is not
used. This 1s of course a good property since the solution does not depend on this data
point in a strong way.

For a fixed subspace size n this estimate can be calculated for every k. By summing

all these differences together we get the Cross Validation function:
N
CV(n) = Z(akw — b)? (4.47)
k=1
Notice that the CV depends only on n, and therefore for every n we have a measure of
how well the data would be reproduced without using one datum. Since we want our
solution to be independent of one datum as much as possible we want to choose n which
minimizes the CV function.
The main problem with the formulation we have presented so far is that calculating

the CV function looks practically impossible. In order to practically calculate the CV

we have to find another expression for it. This is done next.
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4.6.1 Calculating the Cross Validation Function

In this subsection we follow Wahba [1990] in order to derive an expression for the CV.

We define h,(k, z) as the minimizer of:
Vn(k, z,2) = ||Az — b||* — (aFz — bp)* + (aiz — 2)? zES, (4.48)

for a constant k£ and z. The function % is the same as the subspace function ¢, but with

the data point b; replaced with an arbitrary data point z. Let us find an expression for

h,. We define by(2) = [b;...bx_1, 2, bp11...bx]T. Then h,, is the minimizer of:
||Az — br(2)||?  z€S,
Let S, = span(V,,) = span([v1...v,]). Then any vector z€ S, can be written as:
z = V.qn
where ¢, 1s an n-length vector. Instead of finding h,, we find ¢, which minimizes:
||AVagn — bi(2)|I?

By taking the derivative with respect to ¢, and setting the result to zero, it is easy to
show that:
ho(k, 2) = Vign = Vo (VI AT AV,) VT AT (2) (4.49)

If we note the matrix C,, = V,(VITATAV,)*VT AT and by(z) = bx(0) + zes, where e; =
[0,...1,..0]T then:

hn(k, 2) = Cobr(0) + 2Cper, = Cpbi(0) + zcM (4.50)

where c*! is the k" column in the matrix C,.

n

We are now ready for “the leaving out one” lemma which was proved in Wahba [1990]

for the Tichonov regularization case:
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Let w ] be the minimizer of 4.46. Then:
hn(k, ap zl) = ol

The “leaving out one” lemma means that if we replace the k** data point by its
predicted data point when it is not used, then the minimizer of the subspace objective
function would be identical to the one without that point.

The proof is straight-forward. Let vE€S, be any vector different than z!¥|. Then:
Yalk, ageld, el) = [|Azld — b|]* — (af2}) — bi)? + (aie)! — aiel)? =

= || Ay — bl]” — (agel) — bi)* = ou(al))

n

Since z[*] is defined as the minimizer of ¢, then:
| Az = b][* — (aizh! — bi)*<||Av — B|* — (aiv — b)’<

|40 = b]> — (agv — b)* + (azv — azel])?

Kl zl¥) and therefore it is equal to h,(k, af ).

Thus z* is the minimizer of v, (k, alz* zl*

In order to get an expression for the CV we use the property above. First we look at

the following identity:
%] bk — a%wn

where
T., _ Tk
ay Tn — ai, T,
Chke = (4.52)

T k]

Noting bk = az z}” and using the minimizer h, we rewrite cyy as:

Crk = @i hn(k, be) — aghn (k’i)k) (4.53)
b — by

In order to get an analytical expression for cx, we use the expression for h,,.

e aic (Cubi(0) + breld — Cabi(0) — bickl) _ af (brcly? — buck!) _ (4.54)
b, — by b, — by
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= - = a.cC

(b — i)k)f‘fcgc] T [k]
by, — by k

If we denote AC,, = é(n) then we see that ci is merely the k, k& element of this matrix

and therefore:

T
by — ol = = Chtn (4.55)
1—C(n)y
Using this identity, the CV function can be written as:
N N (bk _ aTw )2
CV(n) = (aTwEf] — )= R (4.56)
kz:; ¢ kz::1(1 = C(n)y)?

We therefore have an expression for the CV as a function of the subspace n, the
matrix A and the right hand side . This expression is parallel to the one which was
developed by Golub et al. [1979] for Tichonov regularization.

The CV function in the Tichonov regularization is replaced by the GCV function,
which i1s a weighted version of the CV function. The reason is that the CV function does

not keep its minimum under orthogonal transformation of A. In our case we do exactly

the same and replace the CV by the GCV which is:

b—An TATAn_l TATb2
GOV (n) = D= AV AT AV,) T AT

- 4,
trace(I — AV, (VT AT AV, )" 1V.T AT)? (4.57)

The GCV function for subspaces possesses similar characteristics to the regular GCV
function. We use this function for the choice of the number of subspace vectors n.

The GCV expression can be further reduced. Assume that AV, = @, and assume
that @), has full rank. The dimension of @, is N xn. The GCV with is rewritten as:

- u(QTQ.) QT
GOV = Grace(T - 0.(Q1@y) QI

The numerator is just the misfit. Let us take a closer look and the denominator. Let:

Q=UgSeV,



Chapter 4. Subspace Methods

be the singular value decomposition of ¢),,. We can then write:
Qn(Qr @)1 Qn = UgSeVq (Vg S5SaVa) Vo SqUq =
= UqSq(5550) ™" SqUq = UqUq
and the trace in the denominator can be written as:
trace(l - Qu(@7Qn)QF) = trace(I - UgU%) =
= trace(l) — trace(UQUg) =N — trace(UgUQ) =N-mn
where the last equality is due to the identity:

trace(AB) = trace(BA)

Therefore we rewrite the GCV function as:

||b — AV (VT AT AV,) VT ATh||?
(N —n)?

GCV(n) =

4.7 The L-curve and Subspace Formulation

72

(4.58)

While the L-curve formulation is clear when we work with continuous quantities, it can

also be used to estimate the size of the subspace. The basic idea is that if while expanding

the subspace, we plot a discrete curve of the log of the misfit as the number of vectors of

the subspace as a function of the log of the model objective function, we get a discrete

L-curve. Since there is no real “corner” to a discrete curve, Hansen [1995] suggested to

interpolate between the discrete points and then to find the corner of the interpolation.

The size of the subspace is then set as the point which is closest to that corner. Possible

problems could arise when trying to estimate the corner of the curve. In some cases the

corner of the curve is not so sharp and its choice can be unambiguous.
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Hybrid Methods

Iterative subspace methods may well be the best way to solve a standard inverse problem.
However as was demonstrated before, subspace methods could fail, the main reasons being
the convergence of small singular values in the case of Krylov vectors, or the increase of
the size of the subspace in multilevel and gradient methods. In these cases, we need a
different approach. Hybrid methods can successfully deal with these problems. These
methods use a subspace first to reduce the size of the problem while capturing the large
singular vectors, and then use Tichonov style regularization inside that subspace. A

general hybrid solution is the solution to the problem:
minimize ¢ = ||Az —b||> + B||Wz||? (5.1)

subject to xESy

In this section we review and develop such approaches. We first review the Krylov hybrid
method and develop a new iterative approach to deal with the storage requirements and
the loss of orthogonality. We then review the hybrid method based on subspaces which
are spanned by gradients. This method was developed by Oldenburg et al. [1993], [1994].

Finally we review and develop criteria for parameter selection for hybrid methods.

5.1 Hybrid Krylov Methods

Hybrid Krylov methods can be viewed as a variation of the LSQR algorithm. Recall that

the LSQR algorithm uses the Lanczos bidiagonalization to solve the system in the Krylov

73
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subspace. The problem of the convergence of small singular values before the large ones is
addressed by continuing the bidiagonalization process. In this case one hopes that larger
singular values would converge if we continue the iteration enough. After k iterations,

just like in the LSQR, we have a partial decomposition:
AxUp1 B VY
and we solve the problem (see Section 4.2.1):
Brz = B1e1 = & (5.2)

This equation looks identical to equation 4.9, however this is not the case. The main
difference between the problem (5.2) and 4.9 in Chapter 4 is that the matrix By in
this case is practically ill-conditioned because some of its singular values are numerically
close to zero. In this case one cannot simply invert the matrix, and some regularization
i1s needed. This gives extra degrees of freedom which we can use by choosing the right
regularization method. O’Leary and Simmons [1981] suggested using the TSVD to solve
5.2, however Tichonov regularization could be used as well. The hybrid solution in this

case, is a solution to the problem:
minimize ¢ = ||Az — b||* + B||We||? (5.3)
subject to zeK(A,b,k)
The solution is given by:
z(k,8) = Va(B; Bx + BI) ' Bi & (5.4)

Notice that the hybrid solution depends on the iteration as well as the regularization
parameter. For this type of hybrid method it is important to have the space size, k,

capture some of the singular vectors which are associated with the small singular values.
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We propose two ways for ensuring that this happens. The first option is through the
LSQR algorithm. Recall (Section 4.2.1) that each iteration of the LSQR contains two
steps. In the first step we calculate the Krylov vectors which bidiagonalize the matrix,
and in the second step of each iteration we use these vectors to update the solution. The
difference between the hybrid implementation of the LSQR and the regular implementa-
tion in Chapter 4 is that in the hybrid case while carrying each LSQR iteration we save
the Krylov vectors Vj, and the bidiagonal elements of By. The calculation of the solution
for each iteration is just a simple rotation (second stage of each LSQR iteration) and
therefore does not add to the cost. In a regular implementation of LSQR we would have
stopped after some convergence criteria such as GCV, L-curve or discrepancy principle
had been achieved. In this case we would achieve that criterion and continue iterating
further. Only after we iterated enough (to capture some of the zero singular values) we
would stop. Since we stored the Krylov vectors in the LSQR process, we now have the
matrices V4, Ury1 and By and we can choose the regularization parameter 8 which solves
5.4. This algorithm goes as follows:
Hybrid LSQR

o Begin LSQR process

— Carry out LSQR iteration (Chapter 4 section 4.2.1)

Save the Lanczos vectors V;, and the bidiagonal elements of By,
— Check convergence

— If converged continue iterating to iteration n = (1 + )k
o Use the Lanczos vectors V,, and B, to solve for # using equation 5.4

In most cases we found that the choice ya0.2 is satisfactory, which means that most

of the vectors which are associated with the large singular values have converged.
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Another approach to the same problem is to use the Lanczos bidiagonalization process
directly (as was described in Chapter 4 section 4.2.1). In each step of the bidiagonalization
process we obtain a bidiagonal matrix By which contains an approximation to the singular
values of the system. To ensure that we capture some of the small singular values we carry
out the SVD of the small sparse matrix By. In this case we continue the decomposition
until we have a matrix B,, with n; singular values which are greater than a small number
6 and n — n, singular values which are smaller than §. After the decomposition has been
obtained it is used in equation 5.4 in order to calculate the solution. In most cases we
found that if the number of almost zero singular values is roughly 10 — 20% from the
overall singular values of B,, the results are satisfactory.

The main problems of Krylov spaces as presented above is first the storage require-
ment. We need to store a matrix which holds the Lanczos vectors. This is a full matrix
of size kx M. In some sparse problems like tomography, the storage of these vectors can
be larger than the storage of the whole system! In very large scale problems, although
the system is full, it might not be stored and only the multiplication process of a matrix
times a vector is stored. In this case the storage of the Lanczos vectors can become a
problem. The second problem is the loss of orthogonality. It is very well known that
Krylov methods in finite precession lose orthogonality. After a relatively low number of
iterations the vectors in V4, are not orthogonal any longer and as a result, we cannot use
5.4 in order to solve the system. The solution to this problem is to re-orthogonalize the
Lanczos vectors which can be done fully or partially (Golub and Van Loan [1996]). In
this thesis we implement the re-orthogonalization with a modified Gram-Schmidt process,
however one could use Givens rotations for the same purpose as was suggested in Kelly
[1995]. To fully re-orthogonalize the Lanczos vectors at iteration k costs O((k — 1)M)
operations, which for large & might be very computationally burdensome. In practice

most problems we handle in this thesis needed to be re-orthogonalized for & > 15. It 1s
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therefore desirable to develop a different methodology.

5.2 Iterated Hybrid Krylov Method

Optimally we would like to use Lanczos bidiagonalization as presented in the last section
to solve any inverse problem, however we might have two main problems. First, we need
to store k vectors of length M. This may be a problem when the system is very large. The
second difficulty is that the Lanczos vectors lose orthogonality, and the bidiagonalization
process has to be carried out with a re-orthogonalization procedure. This procedure
becomes computationally intensive as the problem starts to grow. To calculate that
effect, assume we calculate n orthogonal vectors. Since in each iteration we orthogonalize
the new vectors with respect to all previous vectors, the number of vectors to be re-
orthogonalized would be one in the second iteration, two in the third iteration up ton—1
in the n'* iteration. The total number of vectors which needs to be re-orthogonalized is
then:
1—|—2—|—...—|—(n—1):%n(n—1)

This process makes the decomposition slow. In order to avoid these difficulties, we develop
the iterated Krylov method. The idea is a combination of two techniques, the gradient
subspace method developed by Oldenburg et al. [1993], [1994] and the Generalized
Minimum Residual method with restarts (GMRES) (Saad [1996]).

The GMRES is a method for the solution of square non-symmetric well-posed prob-

lems. At the k*® iteration of the GMRES the vector p;, solves the least-squares problem:
minimize||Apy — 75| prEX(A,b— Az, l) (5.5)

where 7, = b — Az;. In the GMRES method the number of vectors { which is used is

relatively small especially when the system is large. In this section we adopt this idea
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from the GMRES method. However we do not adopt the GMRES procedure exactly.
Since the problem we solve is ill-posed in nature, we solve the least-squares problem
5.5 using Tichonov regularization, similar to the subspace method which was used by
Oldenburg et al. [1993], [1994].

The major idea of the iterated Krylov method then is to use only a small number, [,
of orthogonal Lanczos vectors to obtain an update to the solution = and a new residual
r. This means that we need to store only an [ x M size matrix and we need only %l(l -1)
orthogonalization steps in each iteration of this process. The solution using only ! vectors
is probably not satisfactory, i.e. the solution does not satisfy some stopping criterion such
as the GOV, and therefore we repeat the process. This process is similar to the restarts of
the GMRES. In our case it means that we repeat the Lanczos bidiagonalization process
but this time with the right hand side vector r. The iteration is done until convergence
(to some kind of criterion) is achieved. If we carry out k iterations of this procedure then

the total number of re-orthogonalization steps is
1
—kl(l—-1
SR 1)

which is hopefully smaller than %n(n— 1). The number of vectors [ is chosen according to
the size of the problem and the size of the available memory. Another option is to avoid
the re-orthogonalization process totally and to iterate only a small number of iterations
[ in the bidiagonalization process, hoping that the orthogonality is not violated seriously.
In this case the solution of B;z = r does not necessarily yield an optimal vector p = V2
which minimizes ||A(z + p) — b||* and therefore the solution is updated similarily to the
CGLS, by solving for a real number a which minimizes ||A(z + ap) — b||*. The solution
for a is simply:

rT Ap

|| Apl[®
In this thesis we use [~ — 10 for problems with 4000 — 30000 unknowns. The algorithm
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is as follows:

Iterated Hybrid Krylov Method

e Choose a number of vectors per iteration [
er=bz=0
o Fork=1,2...

— Carry out [ steps of the bidiagonalization process with starting vector r:
A~U 1 BV
— Solve Bz, = é; using hybrid methods:
zi= (B B+ B) "B/ &

where the regularization parameter (; is chosen according to the stopping

criterion method.
— pr = Vizk, s, = Aps
— a = (rTs)/l| skl

—T=T+ apE; T =7 — QS

One of the most important steps in this algorithm is the solution of the system B;z; = é;.
Since we regularize the solution, the choice of regularization yields the type of solution
achieved. Typically at starting iterations no regularization is needed (i.e. 8 = 0 is
satisfactory), since the subspace V| contains mainly vectors which are associated with
large singular values. However as the iterations proceed the right hand side r contains
more noise and the Lanczos vectors which are associated with it could consist of some

vectors which are associated with the small singular values. In this case, regularization is
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needed and the regularization parameter 8 grows. Finally as the right hand side contains
only noise, the regularization parameter 8 approaches infinity which means that the
perturbation p goes to 0 and the process is terminated. This solution converges more
slowly than CGLS or LSQR processes however, it tends to converge to smoother types
of solutions.

The total cost of the algorithm is as follows. The bidiagonalization process is O(IM N)
and we carry out k such processes. The solution of the reduced linear system of the
process is only O(l) and the calculation of the update and the residual is O(2M N).

Therefore the total cost of this procedure is
Cixk = O(k(l + Q)MN)

where k is the number of iterations. Usually the number k(!+2) is larger than the number
of vectors needed for Lanczos bidiagonalization with no restarts, therefore this method
1s usually more expensive than the implementation of hybrid Lanczos bidiagonalization
which was discussed in section 5.1. However since the method takes less storage space
and still allows convergence of the vectors which are associated with the large singular
values, in some problems where storage 1s a problem, this method may be the only way

to obtain a reasonable solution.

5.3 Hybrid Methods Based On Gradients

In this section we review the subspace method which is based on gradients. This method
was developed by Oldenburg et al[1993], [1994]. Similar method was suggested by Kennet
and Williamson [1988]. The method is based on an iterative regularized solution of the
least-squares problem, just as in the last section. The difference between this method

and the previous one is that the vectors here are taken from gradients and not from a
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Krylov space. The method can be viewed as an iterated version of the gradient subspace
method which was discussed in Chapter 4.
Just like in the last section, this method is based on picking a space size [ and

generating [ vectors which are made from gradients. The gradient for the j** equation is:

g; = aj(a) x — b;) (5.6)

Now assume we are in iteration k£ with a solution vector z; and we want to calculate an

update pi to the solution vector. The gradient with respect to pr can now be written as:

1 0
5(—(0?(% + k) = b;))pumo = aj(a) zp — b;) = —rFa; (5.7)

k__
9 = 6Pk

We generate [ — 1 subspace vectors from a linear combination of these gradients:

J2 J2
v;? = ng = Z — rfai (5.8)

1=j1 1=j1
where j; and j, are some indexes of the rows of A. Note that if we generate only one such

vector then this vector is simply the steepest descent vector. We keep one last vector v}

as a vector which is a descent direction to the function ||z + p||* and therefore v} = =zj.

The vectors can be put in a matrix ¢); which spans the space:
Qi = [vF.. 0] (5.9)

The subspace vectors can be linearly dependent and in this case the matrix ¢); can be
ill-posed. This could lead to later complications and therefore the vectors in @); are re-
orthogonalized using the SVD. We now look for a direction p; which is spanned by @

and decreases the misfit by some amount a, 0 < a < 1. Write

pr = Quz (5.10)

Substituting the subspace decomposition into the equation gives the least square
problem:

minimize ||ria > = [|AQiz — i |? (5.11)
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subject to ||rrsa||?<al|rel|?

for the coefficients z. This problem can be also written as:
AQiz = 1y,

where the solution z is regularized such that ||rp,i||*?<a||r%||*. In order to solve this
problem let A, = AQ); be an N xI matrix. The system can still be ill-posed and therefore
regularization is needed. Again the choice of regularization yields the type of solution.
Since the final goal is to decrease ||z|| Oldenburg et al. suggested regularizing the system

with respect to ||z + p|| = ||z + @:z||. This leads to the minimization problem:
minimize B||lzr + Qiz|]? + ||Agz — ri||? (5.12)

with the solution:
z= (AT A, + BI) Y(Alr — BQ] z1) (5.13)

The regularization parameter 3 is adjusted such that the misfit would be reduced by a
constant factor a.

After the solution z is found we calculate pp = @);z and update the model:

Tyl = Tk + Pi

The algorithm can be summarized as follows:

Gradient Subspace Method
e Choose a subspace of size k and a starting vector zo, r; = b — Az,
o Fork=1,2...

— Calculate subspace vectors using 5.8 and re-orthogonalize them.

— Calculate the matrix A, = AQ;
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— Solve: z = (AgAq + ﬂf)_l(Ag;T'k - 5Q1ka)

— set p = Q2

— Update the model z; = z¢ + p and residual rpy; = b — Azpyq

The number of subspace vectors [ is chosen according to the size of the problem and the
available memory. Since the subspace @); is made of gradients and is not guaranteed to
be smooth it is advantageous to use a large subspace. Oldenburg et al. used [~10 to 100
vectors for the solution.

The complexity of the algorithm is as follows: Calculating a subspace vector is only
O(M) operations. The calculation of the matrix 4, is O(INM) operations. The calcu-
lation of the solution of the system 5.13 is O({2N) operations. If this process is repeated

for k iterations and the total cost of the algorithm is:
Ce = O(IM) + O(IkNM) + O(I’N) (5.14)

This complexity is dominated by the O(lIkNM) term.

5.4 Parameter Selection and Space Size

In previous chapters we had to estimate the regularization parameter (for Tichonov reg-
ularization) or the space size (for subspace methods). When using hybrid type methods
we have to estimate both space size and regularization parameter. In this section we
discuss some of the heuristics which we develop for this choice.

We start with the choice of the subspace size. In order to understand our motivation
we recall the reasons which motivated us to work with hybrid methods. In general, hybrid
methods require more storage than subspace methods and they converge slower. The
reasons for the use of such methods is to let the singular vectors which are associated with

large singular values converge, and to regularize the convergence of the singular vectors
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which are associated with small singular values. Keeping this in mind, we differentiate
between two types of subspace methods. The first type is the hybrid Krylov method. In
this method we are not concerned with storage and therefore we can increase the size of
the subspace as we wish. On the other hand, with iterated Krylov methods and gradient
subspace methods, we are limited by storage. We therefore describe the heuristics for

each of the criteria we have and adjust them to the method used.

5.4.1 Discrepancy Principle

Recall that the discrepancy principle is based on a target misfit. Our goal is to find a
regularized model z such that ||b — Az||> = No?. When storage is not a problem, the
process 1s divided into two steps. In the first step we estimate the space size. Since we
want to capture most of the large singular values and use Tichonov regularization on
the reduced system, we make sure we capture some of the small singular values. This
can be done in two ways as explained in Section 5.1. First through LSQR we can check
the misfit at each iteration, and only after the misfit is reduced further than the target
misfit do we stop. Alternatively we can use the bidiagonalization process and calculate,
in each step, the SVD of the small bidiagonal matrix Bj. Our experience shows that
when 10 — 20% of the singular values of By are small enough (smaller than § = 107°,
assuming A; = 1), then most of the large singular values have converged. We then use

the bidiagonal system Bj to solve the nonlinear equation for 3:
1ex — Bez(B)I1* = [I({ — Bu(Bi B + BI) 7' By )a||* = No® (5.15)

This nonlinear equation can be solved quickly since By is of small size and bidiagonal.
When the space is limited we carry out the process above iteratively. In each step we

reduce the misfit in half until we get to the target misfit. In the n® iteration we solve:

1é1 = Binza(B)|* = (I = Bn(BicnBun + Bul) " Biy)al|* = (5.16)
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1.
5”61 - Bk,n—lzn—l(/gn—l)||2

The same process is done with the gradient subspace method. However when using
this method we cannot benefit from a bidiagonal system and we have to solve the N xk

problem 5.13 for different 3’s in order to solve the nonlinear equation:
1
[44(Ag Aq + BI) 7 (Agr = BQ i) — BI|* = J || Aze — b (5.17)

Although the solution of this problem is not as fast as for the bidiagonal system, it is

relatively fast since A(I;Aq is only Ix[ in size.

5.4.2 Implementation of the GCV

The application of the GCV criterion in the case of the Krylov method is straight-forward.
After the space is calculated with the bidiagonalization process, and the almost singular
matrix By is calculated, we use the GCV principle and find the minimum of the GCV
function in the subspace. This is done by minimizing:

(I — B(Bi B + BI)"' By )é||?

GOV(]{?,/B) = [tT‘dC@(I — Bk(BI:cFBk + /BI)_lBg)h

(5.18)

The evaluation of the GCV function in this case is very cheap and the minimization can
be carried out easily.

When storage is a problem we can still use 5.18 in the small subspace of k vectors.
The major problem in this case is that if the subspace is too small, no regularization is
needed and $—0. This kind of behaviour is observed in the first few iterations. However
as the process proceeds, the vectors which are associated with large singular values have
converged and even small problems need to be regularized. The regularization parameter
then is increasing, until the residual contains mainly noise and the regularization para-

meter B—o00. Practically the values 0 and oo are determined versus the singular values
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of By. If the value of B<min(A(By)) then we consider the regularization parameter as
0 and if B>>maz(A(By)) we consider the regularization parameter as infinity. Therefore
the iterative hybrid process is terminated when 8>>maz(A(Bg)).

When working with gradients, the implementation of GCV is exactly the same, how-
ever in this case we have to minimize:

I(Z — Ag(ATAg + BI) M AT)b||?
[trace(I — A,(AT A, + BI)"*AT))?

GCV(1,8) = (5.19)

Minimizing this equation is a bit more expensive because we cannot benefit from the
bidiagonal structure, however since the space size [ is small we only need to invert an [ x!

matrix in each evaluation of the GCV function.

Implementation of the L-Curve Technique

Implementation of the L-curve technique is very similar to the implementation of the
GCV when working with the bidiagonalization process. After the bidiagonalization is
performed we use it to calculate the corner of the L-curve of the small bidiagonal system
Bz = é;. The implementation of the L-curve in the case of limited space is different.
If the space size is small, then the shape of the graph log(¢q) as a function of log(¢y,)
does not necessarily have the L-shape. In this case we might get into trouble if we simply
try to use the L-curve criterion. In general I would try to avoid using the L-curve for
this type of regularization. One possible implementation is to calculate a regularization
parameter, exactly like in the discrepancy principle, and reduce the misfit by a certain
amount. At some stage the misfit is not reduced but the model norm starts to increase.
This 1s somewhat parallel to process in CGLS and we therefore suggest to stop at this

point.
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Applications

The methods and heuristics developed in previous chapters were motivated through work-
ing on specific applications. The goal of this thesis is to develop methods that are generic
in nature. The problems presented here are often solved in geophysics and medical phys-
ics. In some of these applications such as 3-D gravity and medical tomography, the size
of the problem can prevent an attempt to invert the real problem and to deal with the
non-uniqueness. In many of these cases the problem is simply under-parametrized, and
the inverted image might be distorted. Another goal of this thesis is to compare the va-
riety of methods, test their strengths and weaknesses such that given a specific problem,
we can find computationally feasible method for carrying out the inversion.

This chapter 1s built as follows: We use the test problems to test different aspects
of the inversion process. We start with gravity and use the 1-D problem to compare
methods to estimate noise levels. The goal here is to test which of the methods is more
generic in nature. The small size of the problem enables us to work with all methods
and compare solutions. The 2-D gravity problem is then used to compare the number
of floating points operations (flops) and the efficiency of the different methods. It is
very common to use linear solvers as imaging operators for a crude approximation of
a nonlinear problem, we therefore test our methods on the linearized nonlinear gravity
problem. In the final test of the gravity problems, we use the most efficient method
on a large 3-D gravity problem and apply our methodology to field data. We then do

the same process for the tomography inverse problem and consider borehole tomography

87
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and SPECT imaging. We apply the methods on field data sets in order to demonstrate

robustness.

6.1 The Gravity Problem

The gravity inverse problem is a generic type of problem. As with many other geophysical
problems the kernels are concentrated close to the surface and therefore it is hard to
obtain good depth resolution. The physics of gravity is well explained and it is a common
tool in geophysical prospecting. Numerous papers and books are written on modelling
and inversion of gravity data (see for example Blakely [1995], Li [1996], Mirzaei [1996]),
and the main difficulty in applying an inversion scheme is the size of the problem. In this
section we test our algorithms on the one and two-dimension gravity problem, experiment
with the linearized nonlinear gravity problem and finally apply the best strategy to a three

dimension field example.

6.1.1 The 1-D Gravity Problem

The goal of this section is to compare different methods for estimating noise. We have
four such methods: GCV in the full space (GCV-F), GCV in subspace (GCV-S), L-curve
in full space (L-F) and L-curve in subspace (L-S). We are going to test these methods
on different gravity problems. The tests are made from synthetic data sets for each of
these problems. In the first stage we add different amounts of Gaussian noise to the data,

varying from 0.1 — 30% i.e.:

where N;(0,ab;) is a Gaussian random variable with zero mean and ab; standard de-

viation. Real world data are seldom strictly Gaussian and therefore we test our noise
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estimation methods with a combination of Gaussians:
b;—b; + N;(0, ab;) + N;(0,0||b]|) (6.2)

where a = 0.01...0.3 and ¢ = 0.01...0.2. We then test the methods for two extreme cases.

We generate Gaussian correlated noise and test the case:
b—b+ R N(0,«al||E(b)||) (6.3)

where N(0, a||E(b)||) is a vector of random numbers, each number is generated from a
Gaussian distribution which has a zero mean and «||E(b)|| standard deviation. RTR = C,
and C is a data correlation matrix. Finally, we add this correlated noise to Gaussian

non-correlated noise and test the case where the noise is:
b—b+ R N(0,af|b][) + N(0, o[[b]]) (6.4)
Recall from Chapter 1 Section 2 that the integral equation in the 1-D gravity case is:

b; = 'y/ooo(g — arctan(%))Ap(z)dz (6.5)

where @; is the position of the measurement and Ap(z) is the anomaly density model,
and v is the gravitation constant.

In order to carry out the synthetic experiment, we assume that we measure 32 data
points at distances 0 to 70 meters from the fault. We choose a smooth model and
calculate the data by discretizing the integral equation 6.5 into 129 grid points using the
trapezoidal rule as explained in Chapter 2. The kernels are plotted in Figure 6.1. The
kernels decay rapidly with depth and therefore we do not expect to obtain good depth
resolution. The important role which the spectrum plays in the problem was emphasized
in Chapter 4 . Since this problem is small, we calculate the SVD of the discrete system

and plot the singular values (Figure 6.2). The singular values decay rapidly and we plot
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the function e (where n is the singular value index) to demonstrate that. The problem
is very ill-conditioned as the condition number is 1£17. The model and the data used
for this example are plotted in Figure 6.3 As a final stage of the forward modelling we

add noise to the data. To summarize the process of the forward modeling we have:

e Choose 32 measurement points equally spaced from 0 — 70 meters.
o Pick a model.

o Discretize the system using 129 grid points and calculate the integral using the

midpoint rule.

o Add noise to the data.

In order to carry out the inversion we need to choose an objective function. For
this example, we chose an objective function which is a discrete representation of the
continuous operator:

0.1V, f(2)I)F
When discretizing the operator V? we do not use boundary conditions. The function
f(z) is plotted in Figure 6.4. The function penalizes the amplitude of the model at the
surface and at great depth.

1D Gravity Kernels

L L L L
60 70 80 20 100

L L L L
o 10 20 30 40

50
Depth [m]

Figure 6.1: 1-D Gravity Kernels
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Figure 6.2: 1-D Gravity Singular Values
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Figure 6.3: 1-D Gravity model and data

We then invert the system using different noise levels in the right hand side. Table
6.1 shows the misfit which was produced with different methods in the case of Gaussian
noise. The curves of the GCV-F and L-F are plotted for high level noise (20%) and for
low level noise 0.1% in Figure 6.5.

Secondly we carry out the same experiment but with the right hand side contaminated
by noise from two Gaussian distributions. The first component of the noise is proportional
to each datum and the second is proportional to the norm of the data. In Table 6.2 we

summarize the results of the predicted misfit for this case.
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Noise | GCV-F | GCV-S | L-F L-S | True ||€]|
30% | 3.2E-1 | 3.3E-1 | 3.4E-1 | 3.3E-1 | 3.4E-1
20% | 1.6E-1 | 1.5E-1 | 1.6E-1 | 1.6E-1 | 1.8E-1
10% | 1.1E-1 | 1.1E-1 | 1.1E-1 | 1.1E-1 | 1.1E-1
5% 6.1E-2 | 6.3E-2 | 6.3E-2 | 6.8E-2 | 6.5E-2
1% 8.4E-3 | 8.2E-3 | 9.1E-3 | 8.2E-3 | 9.3E-3
01% | 9.2E-4 | 9.1E-4 | 9.6E-4 | 9.6E-4 | 0.10E-3
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Table 6.1: Predicted square root of the misfit using the different methods versus the true
square root of the misfit ||¢||. The noise is Gaussian ¢; = N;(0, ab;)

Noise GCV-F | GCV-S | L-F L-S | True ||€|
0.3N; +0.1N, 2.7E-1 | 2.7E-1 | 2.8E-1 | 2.7E-1 2.9E-1
0.2N; +0.1N, 1.9E-1 | 1.9E-1 | 1.9E-1 | 1.8E-1 1.9E-1
0.1N; +0.1N, 1.2E-1 | 1.1E-1 | 1.2E-1 | 1.2E-1 1.2E-1

0.05N; + 0.05N, 6.7TE-2 | 6.6E-2 | 7.1E-2 | 5.6E-2 7.1E-2
0.01N; + 0.01NV, 1.3E-2 | 1.1E-2 | 1.3E-2 | 1.3E-2 1.3E-2
0.001N; +0.001N, | 1.5E-3 | 1.5E-3 | 1.6E-3 | 1.5E-3 1.5E-3

Table 6.2: Predicted square root of the misfit using the different method versus the true
square root of the misfit ||e||. The noise in the first column is made from a combination of
a1 Ny + asN,y. Np is Gaussian with 0 mean and standard deviation which is proportional
to the datum. N, is Gaussian with 0 mean and standard deviation which is proportional

to the norm of the data.
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Noise | GCV-F | GCV-S | L-F L-S | True ||€|
30% 1.9E-1 | 1.9E-1 | 3.3E-1 | 2.4E-1 3.0E-1
20% 1.2E-1 | 1.3E-1 | 1.3E-1 | 1.3E-1 2.1E-1
10% 5.3E-2 | 4.3E-2 | 6.2E-2 | 7.2E-2 9.6E-2
5% 2.3E-2 | 2.1E-2 | 4.9E-2 | 3.1E-2 5.1E-2
1% 1.0E-2 | 1.1E-2 | 1.3E-2 | 1.0E-2 1.9E-2
0.1% | 8.6E-4 | 9.5E-4 | 1.0E-3 | 1.0E-3 1.7E-3

Table 6.3: Predicted square root of the misfit using the different methods versus the true
square root of the misfit ||¢||. The errors are correlated.

In the next stage we add correlated noise to the data. Table 6.3 summarized this
experiment. The covariance matrix is plotted in Figure 6.6. The covariance for a datum

b, measured at location L; and a datum b; measured at location L; is assumed to be:
COV(bi(Li),b(L;)) = ce™

where L is a characteristic distance and cis a constant. For this example we use L = 10m.
Finally in Table 6.4 we combine our correlated noise with Gaussian uncorrelated noise
with a uniform standard deviation proportional to the norm of the data. We use the

same covariance matrix. Table 6.4 which contains the combinations of the correlated

Weighting function for 1D gravity inversion
T T T T T

12

. . . . . . . .
o 10 20 30 40 50 60 70 80 90 100
Depth (m)

Figure 6.4: Weighting function used for the inversion
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The star represents the point chosen for noise estimation.

Figure 6.6: Covariance Matrix for 1-D example
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Noise GCV-F | GCV-S | L-F L-S | True ||€nc|| | True ||e]|
0.1N +0.2C 1.2E-1 | 1.3E-1 | 1.4E-1 | 1.4E-1 1.0E-1 2.1E-1
0.06N +0.2C 1.1E-1 | 1.4E-1 | 1.5E-1 | 1.4E-1 7.3E-2 2.4E-1
0.1N +0.1C 1.1E-1 1.E-1 | 1.7E-1 | 1.1E-1 1.0E-1 1.0E-1
0.01N +0.1C | 9.1E-1 | 8.7E-1 | 7.8E-1 | 5.1E-1 7.2E-1 99E-1

0.05N +0.05C | 5.0E-2 | 4.7E-2 | 5.3E-2 | 5.2E-2 4.3E-2 4.8E-2
0.1N +0.05C | 9.3E-2 | 9.4E-2 | 9.8E-2 | 9.8E-2 1.0E-1 4.8E-2
0.05N +0.01C | 5.5E-2 | 5.4E-2 | 5.6E-2 | 5.4E-2 5.8E-2 1.0E-2

Table 6.4: Predicted square root of the misfit using the different method versus the true
correlated noise ||€e||. and the non-correlated noise ||€]|ne-

and non-correlated noise is interesting. It shows that our methods tend to detect the
non-correlated noise and ignore the correlated noise. This observation for the GCV is
not new and Wahba [1990] refers to other such observations. One last aspect which does
not appear in the tables is the behaviour of the model norm. The model norm of all
the techniques above was equivalent and therefore at least from an interpretation point
of view the results obtained from different methods are comparable. This can be seen
graphically in Figure 6.7, where we plot the different models which are obtained in the
1% case. Further examination of the model norm with different methods is discussed in
the 2-D case.

As a summary for the 1-D example, from the Tables and Figures we conclude:
e When the noise is Gaussian with range 1 — 20% all methods did well.

o When the noise level was very low GCV methods could have problems. The min-
imum of the GCV function was flat and the regularization parameter was not
well-determined. This occurred when noise levels were lower than 0.1%. However,

all GCV methods preformed well and detected the noise level quite accurately.

e When the noise level was very low L-curve methods were well-defined.
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Figure 6.7: Models which are obtained using the different methods in the 1% case.

o When the noise level was high, L-curve methods had a problem. The L-curve did

not have the typical L-shape, and therefore detecting the corner was hard.
o When the noise level was high, the GCV function possessed a sharp minimum.

o All methods did well when the noise was not strictly Gaussian, so long as the noise

was not correlated.

e All methods did not do well when the noise was correlated. The predicted square

root of the misfit is lower than the true square root of the misfit by a factor of 2.

e When noise is made from a correlated part and a non-correlated part, the methods
tend to detect mainly the non-correlated part and the square root of the misfit was

roughly equivalent to the norm of the non-correlated noise.
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The above experiments demonstrate the robustness of the techniques we have in
estimating noise levels in different scenarios. The experiments also show that subspace
methods are not only computationally efficient, but they are robust for noise estimation
and give practically the same results as full-space methods. In the next examples the
size of the problem solved is larger and Tichonov regularization in the full space is very

expensive. We therefore use mainly subspace and hybrid methods.
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6.1.2 The 2-D Gravity Problem

In this section we concentrate on the amount of computation needed for the solution
of a problem. We test subspace methods: CGLS with GCV, CGLS with the L-curve,
multilevel iteration with GCV and gradients with GCV. We compare the number of
floating points operations (flops) which are needed to solve the problem for noise levels
of 5,10 and 20%. We then carry out the same comparison between hybrid methods:
hybrid LSQR, iterated Krylov and iterated gradient.

Recall that the gravity data in two dimensions is given by the integral equation:

prz)
b = b(zi, h / dz d .
(zi,h) = (@2 + (21 ) z dz (6.6)

We assume we measure 200 data, b; = b(z;, h) 7 = 1..200. The data are assumed to be
measured at height A = 0.5 meters above the surface, at equally spaced intervals from
0 to 100 meters. In order to calculate the data we pick a model made of two positive
anomalies. The model is plotted in Figure 6.9 (bottom). In order to calculate the data,
the integral 6.6 is discretized into 50x30 = 1500 cells and the integral is approximated
using the midpoint rule as explained in Chapter 2. As in the 1-D case, the kernels decay
rapidly with depth. Although the number of cells used for the problem is large, we
have data only above the surface and therefore the number of data is not large. We can
therefore calculate the eigenvalues of AAT which is an N x N matrix. The eigenvalues
of this system are the squared singular values of the system. The square root of the
eigenvalues of AAT (which are the singular values of the discrete 2-D gravity system) are
plotted in Figure 6.8. This time the singular values decay in steps. This is an important
observation for the implementation of iterative methods. Recall from Chapter 4 that
Krylov space methods work well on such problems. The problem is ill-conditioned as the
condition number is 3.6 ES8.

To summarize the process of calculating the data and discretizing the system we have:
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e Measured 200 data points 0.5 meters above the ground.

The data are evenly spaced over the interval 0 — 100.

The model is made of two smooth anomalies.

The model space is discretized into 50x 30 points.

The data are calculated using the midpoint rule.

Since the model is smooth and the kernels are localized near the surface, we chose an
objective function which minimizes roughness and penalizes structure close to the surface
and at infinity. We discretize the Laplacian operator in 2-D without using boundary
conditions. Depth penalization is obtained by a weighting function f(z,y) which is
plotted in Figure 6.10. The function is assumed to represent a prioriinformation. Thus,

the final weighting operator is:

W=-V? + f(wvy)j

This problem is of a large scale and we cannot easily calculate the product ATA,

store it, and invert ATA + BWTW for different B’s. We therefore use this problem to
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Figure 6.8: 2-D Gravity singular values
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test subspace methods, i.e. CGLS-LSQR, multilevel and gradients. We also test hybrid
methods, 1.e. Lanczos, iterated Krylov and iterated gradients. While the main goal of the
last section was to test different noise estimation methods, the emphasis of this section
i1s on computational properties. Our goal is to compare the amount of computations
needed in order to solve the system using a specific regularization method and a specific
method for noise estimation. We test the difference between the solutions by looking at
the model norm of each of the solutions and we compare the predicted and real misfit.

The results are in Tables 6.5-7.

Method Pred ||Az — b|| | ém | flops
CGLS+GCV 973.2 0.173 | 6.3E7
CGLS+L 973.2 0.173 | 7.8E7
Multilevel4+GCV 971.2 0.171 | 19E7
Gradients+GCV 973.9 0.175 | 13E7

Table 6.5: Comparison between Subspace Methods for the solution of the 2-D gravity
problem. Noise level is 20%, real square root of the misfit is 978.45.

Method Pred ||Az — b|| | ém | flops
CGLS+GCV 513.4 0.166 | 6.3E7
CGLS+L 513.4 0.166 | 8.4E7
Multilevel+ GCV 515.2 0.165 | 20E7
Gradients+GCV 513.9 0.164 | 14E7

Table 6.6: Comparison between Subspace Methods for the solution of the 2-D gravity
problem. Noise level is 10%, real square root of the misfit is 515.57.

The inverted models using CGLS+GCV, hybrid LSQR and using gradients with GCV
for the case of 10% are plotted in Figure 6.11.

From the above Tables we conclude the following:

o All methods are comparable in terms of predicting the misfit.
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e All methods are comparable in terms of the model norm.

o CGLS is the most computationally effective. The gradients and multilevel methods

are two to three times more expensive.

Our next experiment is the comparison of hybrid methods. Here we compare Lanczos
bidiagonalization, iterated Krylov and iterated gradients. We use the GCV as a stopping
criterion. Results for 5,10 and 20% noise levels are in Tables 6.8-10.

The result of the inversion of hybrid LSQR is in Figure 6.11. From the Tables we

conclude that:

o All methods are comparable in terms of predicting the misfit.
e All methods are comparable in terms of the model norm.

e Hybrid LSQR is the most computationally effective. Iterated Krylov and iterated
gradients are more or less equivalent and are 1.5 — 2 times more expensive than

hybrid LSQR.

We end this subsection with a comparison of the most effective subspace, which is the
Krylov subspace (CGLS and LSQR) and hybrid methods. Notice that the difference in
model norm is small and from an interpretation point of view, the models are equivalent.

However from the number of computations point of view, Krylov subspace methods need

Method Pred ||Az — b|| | ém | flops
CGLS+GCV 270.3 0.148 | 6.3E7
CGLS+L 279.2 0.142 | 9.5E7
Multilevel4+GCV 275.2 0.144 | 20E7
Gradients+GCV 270.4 0.150 | 14E7

Table 6.7: Comparison between Subspace Methods for the solution of the 2-D gravity
problem. Noise level is 5%, real square root of the misfit is 273.4.
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Method | Pred ||Az —b|| | ¢ | flops
H-LSQR 269.7 0.143 | 1.3E8
I-KRY 269.7 0.144 | 2.1E8
I-GRAD 270.3 0.148 | 2.7E8

Table 6.8: Comparison between Hybrid Methods for the solution of the 2-D gravity
problem. Noise level is 5%. H-LSQR - hybrid LSQR, I-KRY - iterated Krylov, -GRAD

- iterated gradients. True square root of the misfit was 273.4.

Method | Pred ||Az —b|| | ¢ém flops
H-LSQR 510.8 0.160 | 1.3E8
I-KRY 512.4 0.1603 | 2.1E8
I-GRAD 511.7 0.158 | 2.7E8

Table 6.9: Comparison between Hybrid Methods for the solution of the 2-D gravity
problem. Noise level is 10%. H-LSQR - hybrid LSQR, I-KRY - iterated Krylov, -GRAD

- iterated gradients. True square root of the misfit was 515.5.

only half of the amount of flops and are substantially more efficient. In terms of storage,
subspace methods need to store only three vectors which belong to the model space while
hybrid methods need to store more. We therefore conclude that unless there is no other

option, it is better to use Krylov subspace methods over hybrid methods.
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Method | Pred ||Az —b|| | ¢ | flops
H-LSQR 973.7 0.173 | 1.3E8
I-KRY 970.4 0.175 | 2.0E8
I-GRAD 974.1 0.171 | 2.6E8

Table 6.10: Comparison between Hybrid Methods for the solution of the 2-D gravity
problem. Noise level is 20%. H-LSQR - hybrid LSQR, I-KRY - iterated Krylov, -GRAD

- iterated gradients. True square root of the misfit was 983.3
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6.1.3 Imaging of Nonlinear Gravity

Another important type of problem is imaging. This type of problem arises, in general,

when a nonlinear problem is linearized. Assume that we have a nonlinear problem:
Flz]+e=b (6.7)

The operator F' can be very complicated and we might not know how to calculate it.

However for some situations we could write F' as:
Flzo+ (2 — ®0)] = Flzo] + A(zo)(z — zo) + R(zo, ) (6.8)

where we know how to calculate the linear operator A(zo) analytically. Such examples
are the Born and Rytov approximations (Born [1975]). In this case we can solve the

linear problem for x:
A(zo)z + R(zo,z) + € = b — Flzo] + A(zo)zo (6.9)

It is of great interest to check how our linear inversion algorithms work for this case,
first, because this type of approximation is very common in industrial settings (Claerbout
[1985]) but more importantly, the “noise” for the linear operator is made of a Gaussian
random noise and the nonlinear part R(xo, z) that is not necessarily small and is obviously
correlated. It is interesting to observe the result of an imaging algorithm for this very
different type of noise. This is the goal of this test example. In parallel with the Born
approximation, we use the Fréchet derivative operator derived from a half space as the
operator A(z).

Recall from Chapter 1 that the gravity measurement b; due to a change in the sub-
surface topography m(z,y) from the assumed subsurface topography h(z,y) is given by
(setting yAp = 1):

1 1
b, = // _ dzdy 6.10
’ D Th(wvyvh(wvy);wjvyj) Tm(wvyvm(wvy);wjvyj) ( )
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with:

r(z,y, b2, y);25,95) = /(2 — 25)2 + (y — 9)? + h?

and

P2y, m(2,9); 25,95) = /(& — 25)2 + (y — 95)? + (b +m)?

In order to experiment with this type of problem we assume that 30x30 gravity data
are measured on the surface. The data are equally gridded in the interval [0, 100] x [0, 100]
meters. In order to calculate the data we pick a model with average depth of 20m. We
therefore set the reference height hA(z,y) = 20 meters in equation 6.10. The model,
m(z,y), has zero mean about this surface. The integral 6.10 is calculated with the
midpoint rule. The 100m x100m square domain is divided into 49x49 grid points. The

model and the data are plotted in Figure 6.12.
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Figure 6.12: The model and data for the nonlinear example.
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In order to calculate A(0) = A(m = 0) we set mo(z,y) = 0. Recall from Chapter 1

that the Fréchet derivative operator in this case is given by:

B h(w,y)()dwdy
A0)() = //D (2 —z;)?+ (y —y;)? + h(w,y)2]%

(6.11)

Using the same discretization, the operator is discretized into a matrix A. We used 2401
model parameters and we have 900 data and therefore the size of A is 900x2401. This
leads to the linear system:

Az =b— F, (6.12)

where:

Fo = F[m = 0] (6.13)

Again A is large and full and again direct methods cannot be applied. We therefore solve
this problem using subspace and hybrid methods. This example is used to test noise
estimation techniques and the computational properties of the different methods. The
singular values which are larger than 1E — 9 are plotted in Figure 6.13, and a typical

kernel is plotted in figure 6.14. Note that the kernel is very different from the ones we
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Figure 6.13: 2-D Nonlinear Gravity SVD

encountered so far. The kernel is localized around the point of observation. This type
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Figure 6.14: A nonlinear gravity kernel for the data point measured at point [50, 50]

of kernel is ill-posed, and with a spectrum which decays slowly. This is demonstrated in
Figure 6.13 where we can see that the functions a/n and a?/n? (a is used for scaling),
decay faster than the spectrum of this problem at least for the first 40 singular values.
We therefore anticipate slow convergence when the CGLS algorithm 1s used.

In order to test our algorithms we add random Gaussian noise to the data and invert
the system using the different methods. We compare the prediction of noise (the random
and the nonlinear) by the different methods and their computational properties. We
compare the square root of the linear misfit, \/@lin = ||Az — (b — Fy)||, the square root
of the nonlinear misfit, \/@nonlin = ||6 — F[z]||, the model norm and the number of
flops needed for the inversion. While the linear misfit represents how well the system
was inverted, the nonlinear misfit provides information about the nonlinearity of the
problem. If the linear misfit and the nonlinear misfit are similar then the nonlinear
operator is approximated well by the linear one and the term R(zg, ) is small. However
if the linear misfit is significantly different than the nonlinear one then the nonlinear
term R(zo,z) is large and the linear approximation breaks down. Our goal is to test

our methods exactly under this different condition. This test would serve us later when
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Method ||Az — b+ Fo|| | ||Flz] —b|| | ¢m | flops
CGLS+GCV 0.27 3.71 9.47 | 4.4E8
CGLS+L 0.27 3.71 9.47 | 6.3E8
LSQR+GCV 0.26 4.10 9.60 | 5.6E8
LSQR+L 0.26 4.10 9.60 | 6.6E8
GRAD+GCV 0.28 3.62 9.31 | 25E8
ML+G 0.31 3.51 8.99 | 31E8
H-LSQR 0.33 3.72 9.23 | 14E8
I-KRY 0.31 3.41 9.31 | 42E8
I-GRAD 0.35 3.23 9.11 | 44E8

Table 6.11: Comparison between all methods for 1% noise. True square root of the misfit

1s 0.25.

Method ||Az — b+ Fo|| | ||Flz] —b|| | ¢m | flops
CGLS+GCV 1.25 4.31 9.23 | 3.6E8
CGLS+L 1.25 4.31 9.23 | 5.2E8
LSQR+GCV 1.23 4.32 9.26 | 4.7E8
LSQR+L 1.23 4.32 9.26 | 5.4E8
GRAD+GCV 1.53 4.67 8.77 | 22E8
ML+G 1.29 4.39 9.20 | 26E8
H-LSQR 1.31 4.21 9.15 | 12E8
I-KRY 1.36 4.18 9.10 | 35E8
I-GRAD 1.33 4.15 9.06 | 36E8

Table 6.12: Comparison between all methods for 5% noise. True square root of the misfit

1s 1.23.

solving the nonlinear problem. Results of the different experiments are in Tables 6.11-13.

In Figure 6.15 we plot the models which were obtained using the different methods

for the 10% noise level. From the Figure and Tables we conclude that:

o Predicted linear misfit is approximately equal to the random noise. This is observed

both for the case of large nonlinear terms versus random noise and for the case that
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Method ||Az — b+ Fo|| | ||Flz] —b|| | ¢m | flops
CGLS+GCV 2.50 4.81 8.97 | 1.1E8
CGLS+L 2.50 4.81 8.97 | 1.1E8
LSQR+GCV 2.53 4.79 8.9 | 2.0E8
LSQR+L 2.53 4.79 8.9 | 2.0E8
GRAD+GCV 2.98 4.11 7.9 | 2.0E8
ML+G 3.29 3.91 6.88 | 22E8
H-LSQR 2.66 4.06 6.95 | 9.2E8
I-KRY 2.73 3.92 6.81 | 27E8
I-GRAD 2.79 3.81 6.75 | 29E8

Table 6.13: Comparison between all methods for 10% noise. True square root of the

misfit is 2.50.
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Figure 6.15: 2-D Nonlinear Gravity Imaging.
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the random noise is of the scale of the nonlinear terms.

e All methods predict random errors but do not predict nonlinear terms. The meth-

ods tend to see the nonlinear terms as a part of the signal.

e The models obtained using different methods are comparable. This can be seen by
looking at the model norm and Figure 6.15. However hybrid solutions tend to be

smoother.

e From a computational point of view, CGLS and LSQR with a combination of GCV

are the most efficient methods.
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6.1.4 3-D Gravity Problem

The last of the gravity problems tackled in this thesis is a large 3-D gravity problem.
Three-dimensional gravity is a common measurement in geophysics however the shear
size of the problem often prevents any attempt to invert it, and usually conclusions are
based solely on interpreting the data. The goal of this subsection is to apply the methods
developed previously to a real field data example. In order to do this we first test our
algorithm on a synthetic example. Recall from Chapter 1 that the gravity data is given

by (setting v = 1):

Ap( dz dy d
b(zi, y:) /// z ’””'y’ 2) de dy dz (6.14)
CB

— )2+ (y —y:)? + 2]
In order to make the test as close as possible to the real data example, we assume
we measure 982 data on the surface, located at the same place as the real data. The

measurement points are plotted in Figure 6.16. We divide the earth into 40x40x20 =

Measurament position

*

1200%
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200%

N O U
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Figure 6.16: Measurement points in the field data set.

32000 cells, and carried out the integration using an analytic expression for each cell (Nagi

[1966]). The synthetic experiment emulates the field data set and therefore, the kernels
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of the synthetic example are the same as the field data example which will be tested
later. This discretization leads to a full system of size 982x32000. The system cannot
be stored and therefore we never compute the system directly. Since we use iterative
methods which need only the calculation of the product of a matrix and a vector and
the product of the matrix transpose and a vector, we calculate these products as follows:
First we calculate the forward product of the matrix A and an arbitrary vector v by
calculating each datum separately using the midpoint rule on the integral equation 6.14.
In this way we avoid storing the matrix, however this means that we have to calculate the
elements of the matrix A for each matrix-vector product. The transpose product is given
by reciprocity. Noticing that the operation of row 7 of AT on a vector u (u€R"Y describes
the gravity measurement on the surface) is equivalent to the gravity measurement in cell
t due to a density which is distributed on the surface and given by the vector u. We can
therefore calculate Av and ATw and we are ready to carry out the inversion.

We have developed a variety of methods for doing the inversion but, since the problem
is so large, we want to use the most efficient one. The obvious choice is the combination
of CGLS and GCV, however in order to be certain that this choice is justified we need to
know something about the spectrum of our problem. Since the problem is so large, there
i1s no chance to calculate the SVD directly. However we do not need to know the exact
SVD of the problem, and it would be sufficient to know the behaviour of the spectrum.
We therefore discretize the problem using 11x11x8 grid points and check the spectrum
of this system. The spectrum is plotted in Figure 6.17. The spectrum is of the steps
type and therefore we feel safe with the choice of CGLS+GCV. We proceed by picking a
model and calculating the data. The model and the data are plotted in Figure 6.18.

In order to invert the system we need to choose a weighting matrix and we choose the
discrete version of W = —V? + eI. The operator V2 does not have boundary conditions

and therefore is singular. We use ¢ = 0.01 to ensure that the operator is positive definite.
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3D Gravity SVD
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Figure 6.17: Estimation of the SVD of the 3-D gravity matrix.
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Figure 6.18: Three Dimensional model and data.
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Noise Level | Number of Iterations | ||Az — b|| &l flops
5% 18 1.357TE4 | 1.346E4 | 1.9E9
10% 16 2.745E4 | 2.853E4 | 1.7TE9
20% 12 5.341E8 | 5.431E4 | 1.4E9

115

Table 6.14: Performance of the CGLS+GCV algorithm for the inversion of 3-D gravity

Figure 6.19: Results of 3-D gravity inversion.

The results of the inversion are summarized in Table 6.14 and plotted in Figure 6.19.

From the table we see that the methods we developed could predict the noise levels for

this problem and produced reasonable models.

Next we use the same procedure to invert the field data from Heath-Steel-Stratmat.

The data are plotted in Figure 6.20. The results of the inversion are plotted in Figure

6.21. The result of this inversion agrees well with other inversions of the same data set

(Li [1996]) which were obtained using gradient subspace methods and fits to the geology

of the area.

As a conclusion to this section we see that the methodologies which where developed

allow us to work with large problems, calculate solutions and predict noise. Again the

conjugate gradient type algorithm has been found to be robust and easy to implement.
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Figure 6.20: The 3-D Gravity data set
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Figure 6.21: 3-D Gravity Inversion of the field data
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6.2 The Tomography Problem

A very different type of problem arises in tomography where the kernels describe rays and
the matrix is sparse rather than full. In this section we test our algorithms on different

problems which arise in tomography and use the different methods on two field data sets.

6.2.1 Borehole Tomography

The first geometry we deal with is borehole tomography. In this case transmitters are
put on one side of the area we want to image and receivers are put on the other. Recall

from Chapter 1 that the governing equation for the tomography experiment is:

i) = [ (el m) (6.15)

where [({,n) describes the ray path.
In order to solve the problem we discretize the integral equation into M cells. As-
suming that m(z,y) can be written as piecewise constant functions v;(¢,n) in these cells,

the model is:

m(&,m) = >_z¥;(€,m) (6.16)

3=1

and the integral is transformed into:
M
bty = Yo [ i€, m)di(€,m) (6.17)
j=1 li(ﬁ:"])
which gives the system of equations:
Az =b

where:
A= [ il m)dl(en) (6.18)

The calculation of 4;; is straight-forward. It is the length of the ¢ ray in the j** cell.
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In order to test our algorithms, we use radio imaging (RIM) field data. Exactly like
in the three dimension gravity example, we would like to build a synthetic example with
the same geometry of the field data set. We therefore use the location of the transmitters
and the receivers as was given in the data set and generate the tomography matrix. We
have 51 sources and 41 receivers. Not all sources interact with the receivers and we have
a total number of 1153 rays which cover the area. In order to show the ray coverage, we

plot the geometry of the boreholes and the vector:

N
Cj = ZAU
=1

The vector ¢ represents the ray coverage of each cell since it shows the total length of

rays which pass through the j** cell. The vector c is plotted in Figure 6.22.

o =
-
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100 [ o=l
E g
P
=
D
0O 150 5
200 | —
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o 20 40 60
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(o] 20 40 60

Figure 6.22: Borehole Tomography Ray Coverage. Notice that the coverage is not uni-
form.
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The ray coverage of the model is not uniform and therefore we would like to test
the ability of this experiment to predict the true model. First we carry out a synthetic
experiment and pick a smooth model and generate data for it. The model is plotted in
Figure 6.23 (A), and is assumed to be an absorption anomaly above a baseline of 6m™".

The data anomalies are plotted in Figure 6.24. The model is made from 64x128 = 8192

Depth (m)
Depth (m)

0 20 40 60 0 20 40 60
Distance between holes (m) Distance between holes (m)

Figure 6.23: Synthetic Borehole Tomography Example. The true model is plotted in
Figure A and the reconstructed is in Figure B. This reconstruction is for the 5% noise
case. The units of the models are in m™* above a background of 6m ™!,

cells.
In order to get a smooth model we pick the weighting to be:
W=—-V2+el

with € = 0.01 and the V2 operator does not contain boundary conditions. In the next

stage we add 5,10 and 20% noise to the data and invert the system using CGLS, iterated
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Method |Az —b|| | &m | flops
CGLS+GCV 161.4 2.53 | 1.0E8
CGLS+L 161.4 2.53 | 1.3E8
LSQR+GCV 161.6 2.53 | 1.2E8
LSQR+L 161.6 2.53 | 1.6E8
ML+G 168.2 2.50 | 5.9E8
H-LSQR 163.2 2.52 | 3.1E8
I-KRY 169.7 249 | 4.1E8
I-GRAD 170.3 249 | 4.6E8

Table 6.15: Comparison between all methods for 5% noise. True square root of the misfit

1s 164.2.

Krylov methods, iterated gradients and multilevel methods. A comparison between the

methods is given in Tables 6.15-17.

From the tables we conclude once again that the combination of conjugate gradient

p
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Figure 6.24: Synthetic Borehole Tomography Data. The data is plotted as a function of
the z position of the transmitter and the receiver. Notice that the data have no physical
dimensions.
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Table 6.16: Comparison between all methods for

misfit is 324.2.

121

Method Az —bl| | ¢m | flops
CGLS+GCV | 3233 | 2.42 | 8.1E7
CGLS+L 326.2 | 241 | 1.1E8
LSQR+GCV | 321.7 | 2.40 | 1.0E8
LSQR+L 321.7 | 2.40 | 1.3E8
ML+G 331.2 | 2.36 | 9.2E8
H-LSQR 322.7 | 2.40 | 2.8E8
I-KRY 330.1 | 2.36 | 3.9E8
I-GRAD 329.5 | 2.37 | 4.1E8
10% noise. True square root of the

Method |Az —b|| | &m | flops
CGLS+GCV 638.1 2.52 | 8.1E7
CGLS+L 638.1 2.52 | 1.2E8
LSQR+GCV 638.2 2.52 | 9.8E8
LSQR+L 638.2 2.52 | 1.3E8
ML+G 644.7 2.49 | 8.9E8
H-LSQR 640.1 2.52 | 2.8E8
I-KRY 647.9 2.49 | 3.8E8
I-GRAD 649.3 2.47 | 4.0E8

Table 6.17: Comparison between all methods for 20% noise. True square root of the

misfit is 642.1.
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methods and the GCV is the most efficient method for the solution of the borehole
tomography problem. The result of the inversion for the 5% case is shown in Figure 6.23
(B). When trying to understand why these methods work as well as they do we look
again at the singular value distribution of the problem. The problem is very large and
therefore straight-forward calculation of the SVD is not practical. In order to calculate
an approximation to the spectrum of the problem we use a coarser discretization and
carry out the SVD of the same system which is discretized on 16x32 = 512 cells. The

SVD of this system is plotted in Figure 6.25. Again the singular values of the system

10°
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Figure 6.25: The singular values of the tomography system.

are decaying in steps and therefore the conjugate gradient algorithm is expected to work
well when applied to this problem.

After testing this problem with the synthetic data set we use a field data set, using
the same discretization and the same weighting matrix. The data set is plotted in Figure
6.26. Notice that the real data do not have a zero mean and therefore we would like to
find a simple reference model which can decrease the misfit by a large amount. The most
simple choice is a half space and we would try to find the “best half space” which fits the

data. The half space can be described as a vector of constant absorption ae, where «a is
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Figure 6.26: The field data.

a real number of the unknown absorption and e = [1,1,...1]T. This leads to the following

minimization problem:

minimize |lade — b||? (6.19)
The optimal « is given by:
b Ae (6.20)
a=—0 :
|| Ael|?

Using the data and the tomography matrix we evaluate the background « to be 6.34 m ™.
We now generate the residual » = b — aAe and use this residual as the data for this
problem. The result of the inversion of these data is plotted in Figure 6.27. The inversion
is performed using the CGLS and GCV. The final estimated noise on this problem is
37% which explains why other studies of the same data set where not very successful
(Haber and Oldenburg [1996], McGaughey [1994]), where the noise level was estimated
to be 10 — 20%. This field data set example shows the importance of noise estimation

techniques.
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Figure 6.27: The result of the field data inversion.
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6.2.2 Medical Tomography - SPECT

Another very common type of tomography is the Single-Photon-Emission-Computed-
Tomography (SPECT). This method is used on a daily basis in almost every large hospi-
tal. A common way to reconstruct SPECT images is by filtered back-projection (FBP).
The advantage of this reconstruction is its computational time which is very low, however
this technique does not take the non-uniqueness of the problem into consideration. The
technique does not allow incorporating additional a prior:i information and as a result the
images are often distorted. Recently Smith et al. [1992] suggested to use the TSVD for
the reconstruction and suggested the discrepancy principle as a stopping criterion. Ros
et-al. [1996] looked at the role of the regularization parameter, however it is commonly
believed that SPECT images are unique and therefore no considerable effort was made
to try and choose model objective functions. Noise estimation techniques are rarely used
rigorously and to my knowledge the GCV principle was never applied to SPECT recon-
struction. In this thesis we show that by a simple choice of weighting matrix and noise
estimation techniques we can improve the image with only a little sacrifice in computa-
tional time. It is also important to understand that the solution of SPECT reconstruction
is not unique. The ability to define a new objective function and obtain different models
which fit the data to the same extent, is an important step in this direction. In this
section we test our algorithms on a real data set which was obtained from Vancouver
General Hospital.

Recall from Chapter 1, that the data are obtained by putting an array of bins in a
plane which is rotated around the object to be reconstructed. Each plane in the rotation
is a projection of the image to that plane. The data are then plotted as a collection
of these planes (Figure 6.28). A filtered back projection inversion is plotted in Figure

6.29. This reconstruction is definitely not accurate since it does not take into account
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the fact that there are areas which are outside the patient’s body. We now show that
with very few assumptions the image can be improved. We choose a weighting matrix,
W, which incorporates some of our a prior: information about the problem. A similar
choice was used by Haber et al. [1996]. Our goal in choosing the weighting matrix is to
automatically specify a support region for the source activity (i.e. find the active region)
and to impose smoothness. We therefore choose our weighting by noting first that there
are many data which are zero. This means that the rays which generated these data
probably did not pass through any active area (since there is no negative activity). We
define such a ray as a null ray. Our goal i1s to locate pixels which the null rays passed
through so we can discriminate against having some activity in these pixels. Let I, be
the set of indices of all null rays. We sum the rows of the null rays together:

r = YAy (6.21)

i€l

where A is the tomography system matrix, and each row of A represents a ray. Each

counts
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Figure 6.28: SPECT data. The bin number is plotted in the z direction and the plane
angle i1s plotted in the y direction. The projections were collected from 0 — 180°.
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Figure 6.29: Filtered back projection reconstruction of the data.

element of the vector r, is the area of all the null rays in a particular pixel. If this number
1s large, then many null rays pass through this pixel. However if this number is 0, no null
rays pass through this specific pixel and we can therefore assume that the probability of
having activity in the pixel is high. We normalize this result by dividing by the total
area of rays which pass through the pixel, and hence the final weighting is:

w; = EiﬁI;Aij (6.22)
iz Ay

The result of such weighting is plotted in Figure 6.30. Using this simple weighting we

invert the data and use hybrid LSQR and GCV as a stopping criterion. The result

1s plotted in Figure 6.31. The improvement in the inverted image is obvious. Other

regularization such as smallness, smoothness and incorporating the anatomy as a prior:

information is possible using this strategy. This will result in improved images.

So far we have demonstrated that SPECT images can be improved significantly by

adding simple a prior: information and noise estimation techniques. We now test the
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different methods to achieve this goal. As done before, first we plot the spectrum of the
problem. Again since we cannot calculate the SVD of the SPECT system we discretize
it on a coarser grid of 32x32 cells and carry the SVD on this system. The spectrum of
the problem decays very slowly and therefore if the noise level is high, Krylov subspace
methods may fail. In Table 6.18 we compare the misfit which is obtained by different
techniques, the model norm and the number of flops. In this test Krylov subspace
methods did not perform well and the noise estimation is too low. This is obvious when
comparing the images (Figure 6.33). The Krylov subspace images are noisy while other
methods give smooth images. When comparing the methods developed here to the FBP,
we see that these methods are about twice as computationally intensive as the FBP,
however the images are significantly improved and while the noise level is not predicted
by using the FBP, it could be predicted using hybrid methods. Since the computational
time is short (about 120 seconds per inversion on a SPARC 10 work station), using
inversion techniques should not be a problem on a daily basis.

As a summary to this section we note that:

o Incorporating a prioriinformation to SPECT images improves the recovered image.

Figure 6.30: The special weighting of SPECT image.
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Method ||b— Az||/|]b]| | ¢m | flops
CGLS+GCV 0.17 115 | 4.2E7
CGLS+L 0.21 107 | 5.3E7
LSQR+GCV 0.17 115 | 4.9E7
LSQR+L 0.21 107 | 5.8E7
ML+GCV 0.28 68 | 23E7
H-LSQR 0.29 71 | 6.3E7
I-KRY 0.26 70 | 14E7
I-GRAD 0.27 72 | 13E7
FBP 0.35 33 | 3.2E7

Table 6.18: Comparison between methods for SPECT inversion. Note that subspace
methods underestimate the noise level.

o The spectrum of the SPECT tomography matrix decays slowly and the noise is
relatively high, therefore Krylov subspace methods tend to fail when applied to
SPECT inversion.

e Hybrid methods and subspaces which are not data dependent such as multilevel

and gradients, perform well when applied to SPECT.

Figure 6.31: Inversion of SPECT using the weighting in Figure 6.30.
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Figure 6.33: Inversion of SPECT data with different techniques. Notice that the
CGLS+GCV and GCV+L-curve fail to predict noise levels. Hybrid methods on the

other hand give reasonable inverted models.
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6.3 Summary

In this chapter we tested the techniques which were developed in previous chapters on
a wide range of problems. The problems can be characterized by three main features:
their size, the distribution of their singular values, the noise levels and types. A one-
dimensional problem gives rise to small systems which can be easily handled and therefore
we used the 1-D gravity data to compare noise estimation methods. We have found that
for this type of problem, which is characterized by a fast decaying singular values, all
methods work well, however Krylov space methods are the most efficient. The nonlinear
gravity spectrum behaves in a similar way, and therefore it is not surprising that the
same methods work well for these problems as well. The second type of spectrum was
characterized by steps. The two and three dimension gravity and the borehole tomog-
raphy have this type of spectrum. Almost all methods work well on this type of spectrum
and Krylov space methods are the most robust in terms of computations. A comparison

of the relative amount of computation for the different techniques is in Figure 6.34. The

I—Kry ~M

coLs LSORr Gradients  H-LSQR I—Grad

Figure 6.34: A comparison between the relative number of flops for the solution of a
linear problem with different methods.

advantage of Krylov space methods over any other technique is substantial and therefore
unless there is no other possibility, I would try to use this method on problems which

possess fast or steps decaying spectrum.
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A different type of problem is SPECT tomography. In this case the spectrum of
the system decays slowly and the noise level is very high. In this case Krylov space
methods tend to underestimate the noise level and converge to a noisy solution. The
reason 1s that oscillatory vectors may converge prior to the smooth vectors. In this case
either subspace techniques which do not depend on the right hand side such as gradients
and multilevel methods, or hybrid LSQR iterated gradients, or iterated Krylov are the
solution for this type of problem. If storage is not a problem, then hybrid LSQR tends
to be the most efficient method. However if storage is a problem, then iterated Krylov
methods or iterated gradients are the optimal solution to the problem.

When facing a new linear inverse problem I suggest the following guide for the choice

of a method:

e Estimate the spectrum of the problem. If the spectrum has steps in it or it decays

quickly, use Krylov space methods.

o If using Krylov space methods, estimate the noise level. If the noise i1s very low

(lower than 1%), use the L-curve as a stopping criterion, otherwise use the GCV.
o If the spectrum decays slowly use a hybrid method.
o If there is no storage problem, use the hybrid LSQR combined with the GCV.

o If using hybrid methods and storage is a problem, use iterated gradients or iterated

Krylov methods.



Chapter 7

Nonlinear Inverse Problems

This chapter presents the formulation and general ideas of nonlinear inverse theory. It
1s the equivalent of Chapters 2 and 3. In the first section a description of two common
methodologies for regularizing nonlinear ill-posed problems is presented. We then explain
why one of these methodologies is faulty in nature.

Solving nonlinear ill-posed problems leads to nonlinear optimization problems. In
the second section a review of the two main strategies for carrying out an optimization
problem, damped Gauss-Newton and trust regions, is presented. Finally, a review of
some of the commonly used techniques for the solution of nonlinear ill-posed problems
and a discussion of some of the difficulties using these existing methods is presented. A

simple example is given to demonstrate how one of these methods can fail.

7.1 Formulation of Nonlinear Ill-Posed Problems

Let z€H be the model, b€ RN the data and e RN be the noise. First we assume a general

connection between the model and the data:
bj = FJ[CC] —|— Ej ] = 1N (71)

This formulation is very general and therefore not a lot can be said about methods for
solution. We therefore look closer into the source of geophysical inverse problems. Most

geophysical inverse problems come from a physical description of the world. Usually this
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description can be presented in the form of a differential equation:

L(z,u)=f (7.2)

where L is a linear differential operator, u is some field, = is the model and f is the
source. For example the seismic velocity model is related to the wave field by the wave
equation, the conductivity structure of the earth is related to the electric field through
Maxwell’s equations. A common practice to obtain a relation between the model, =,
and the data which is the measured field, is to use a Green’s function (see for example
Tichonov [1963], [1977], Devaney [1989], Chow [1990], Li [1992]). First the field u is
decomposed into a primary field ug which is due to the background (and is therefore
known) and an unknown secondary field, u;. The problem 7.2 is transformed into an

integral equation of the form:

us(r) = wo(r) + [G(2(p), s plur(p)dp = uo + Gle)us (73)

where G is the Green function and G represents the linear operator which depends on .
This equation is a linear Fredholm integral equation of the second kind for u; and the

solution for u; can be written as:
ui(r) = (I — G(z)) " uo (7.4)

This is a nonlinear relation between the model z and the secondary field u;. Since the
data are just the field values measured at some places r; ,7 = 1...N, this gives a relation
between the model and the data. In order to understand the general behaviour of such

an expression we use the Neumann series expansion:
(I-G(z))'=1+G(z)+G()+ .. (7.5)

The series is nonlinear for the model z. However we see that as a first-order approximation

(which is known as the Born approximation), the relation between the model and the data
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can be represented by a linear Fredholm integral equation of the first kind for z. If we
take more terms in the series then the equation is a nonlinear Fredholm integral equation
of the first kind. In this thesis we assume that the inverse problem can be transfered
into a form such that the relation between the model and the data can be represented
by a nonlinear integral equation. If this is the case then all the characteristics of linear
integral equation of the first kind and the methods we have developed in the previous
chapters can be applied to the linearized equations. In order to be able to work with
linearized problems we make the important assumption that the operator F' is twice
Fréchet differentiable.

Since the operator F'is general, we avoid the question of how the forward modelling
should be computed. It is possible to carry out the forward modeling through the dif-
ferential or the integral relation and it i1s usually problem dependent. We stick to the
guiding principle which we had in Chapter 2 which is to discretize the model, z (z€H),
with M unknowns such that M > N where N is the number of data.

The first question that can be asked is about the existence and uniqueness of the
solution. For a general operator not a lot can be said. However for nonlinear Fredholm
integral equations of the first and second kind, Jerri [1985] proved the existence of the
solution under some conditions. We assume that the solution exists for all of our problems
and also assume that since we have only N data and M unknowns with N < M, that the
solution is non-unique and that the operator is ill-posed, i.e. there might be an infinite
number of models  which fit the same data and for a small perturbation in the data we
get a large perturbation in the model. Since we assume non-uniqueness and ill-posedness,
regularization is needed. The different ways to deal with nonlinear inverse problems are
revealed by the methods of regularization. In the next section we discuss two strategies

to deal with nonlinear ill-posed problems.
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7.2 Formulation of the Solution

In this section we review the two main strategies for nonlinear inverse problems. In
order to solve a nonlinear problem it is common to use linearization and iteration. Other
strategies such as genetic algorithms and simulated annealing are also possible. However
these methods are very computationally intensive and therefore we do not deal with them

in this thesis.

7.2.1 Creeping Versus Leaping

Traditionally, there has been two basic approaches to tackle nonlinear inverse problems.
In both cases we want to find a model * which fits the data to some extent. This leads

first to the solution of the equation:
0= ||F[e] -8l — T (7.6)

where T' is some tolerance level. This problem is not linear and therefore we choose an
initial model = and linearize equation 7.6 with respect to this model by using the Taylor

expansion for F':

Flz + éz] = Flz]+ J(z)éz + R(z, éz) (7.7)
where:
J(z) = (?9—}; (7.8)

is the Fréchet derivative and R(z,dz) is the residual. The linearization leads to the
equation:

b— Flz| — R(z,bz) = J(z)bz (7.9)

Quadratic approximation for the function F'is also possible in principle:

Flz + bz]~F[z] + J(z)bz + %(hTH(w)(Sw (7.10)
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where

H(z) = ;—wJ(w)

While a quadratic approximation is obviously better than a linear one, the second Fréchet
derivatives H are not usually calculated since that involves an inordinate amount of
calculation even for a small problem. We therefore stick to the formulation of calculating
only the first Fréchet derivatives.

The linearized formulation is local in nature, and if we are close enough to the min-
imum we can neglect the residual, R(z,dz), which is of O(6z?). This leads to a linear

equation for éz:

b— Flz] = J(z)bz (7.11)

While the non-uniqueness is not observed at first sight when working with the nonlinear
operator F', the Fréchet derivative J(z) is underdetermined (and therefore not invertible)
since there are M model parameters and only N < M data points. Furthermore, since F
is usually a nonlinear integral equation, the linearization can be represented as a linear
Fredholm equation of the first kind and therefore, the Fréchet derivative typically has a
large condition number. In order to solve equation 7.11 we have to add regularization to
the problem. As in the linear problem, different regularizations yield different types of
solutions. The first way to impose regularization is a naive regularization. Noticing that
we have to solve a linear inverse problem for 6z, we could use the same methods we used
for the linear case and transform this linearized ill-posed problem into an optimization
problem:

minimize B||Wéz||* + ||b — F[z] — J(z)éz||? (7.12)

Such methods are often refered to as creeping since they obtain a small perturbation
dz. Hanke [1997 a b] suggested using this type of regularization and proved that these

methods converge to a solution z* of the nonlinear inverse problem. The main problem
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with using these kind of methods is that while a solution with the desired misfit is
obtained, we do not have any control on the characteristics of the solution. The solution
z* depends on the starting point z¢ and on the path of minimization. The final solution

can be written as:

P
" =xo+ Z(ka (7.13)

k=1
While every ézj is small, the final result * does not have to be small. Parker [1994] has

shown that this type of method might converge to an unacceptable model. Finally, the
most important aspect of this solution, is consistency. There are many ways to calculate
the updates éxz;. One could use Krylov space methods or one could use a full-space
method. The result would be that the end model, *, even if it is reasonable, is different
even if the same kind of regularization operator W is used, and thus the final results of
the same problem using two optimization techniques may not be similar. Interpretation
of such results is somewhat meaningless because the features in the final model might not
be there because of a prior: information but as a result of the minimization algorithm.
This type of algorithm does not take into consideration the non-uniqueness of the original
nonlinear inverse problem and therefore although commonly used, is faulty by its nature.

A different methodology was suggested by Oldenburg [1983], who altered the for-
mulation such that a global objective function of the model could be minimized. This
formulation was used by Constable et al. [1987] to find the “simplest model”. This is
often referred as “Occam’s method”, named after the English philosopher who claimed
that “it is vain to do with more what can be done with fewer”. The interpretation of this
philosophy to the inverse problem is that the model which solves to a problem should
be as “simple” as possible. In order to obtain such a solution the regularization is not

imposed on the perturbation éz but on the model z, i.e. at iteration k + 1 we solve the
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problem:

minimize  B||W(zp + 8z)||> 4+ ||b — Flzx] — J(zx)bz]||? (7.14)

In this way the regularization takes into account the non-uniqueness of the nonlinear
problem. This method is often referred to as “leaping” since the step size dx might not
be small. Since the regularization is global, this problem can also be written as the
linearization of:

minimize ¢ = B||We||*+ ||F[z] — b||? (7.15)

which is a nonlinear optimization problem. The problem is consistent, and if the mis-
fit term is convex and W is not singular, it possesses one global minimum (Luenberger
[1969]). In this formulation the solution does not depend on the starting point zo (assum-
ing convexity) and on the nonlinear optimization process. In this thesis we shall study

this optimization problem further.

7.2.2 Penalty Formulation Versus Lagrangian Formulation

The minimization problem given by 7.15 is an unconstrained optimization problem. A
similar, yet different, problem can be derived from the point of view of constrained
optimization. We review these considerations and observe the differences between the
problem as formulated in 7.15 and the constrained formulation.

Assume that we have a target misfit 7' and we actually know that the noise level
of our problem can be represented by this target misfit. We could then formulate the

inverse problem as follows (Parker [1994]):
minimize ||Wezl||? (7.16)

subject to ||Flz] —b|> =T
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The next step is to form a Lagrangian:
L(z,B) = [|[Wazl||*+ B~ (||F[z] - b]|* — T) (7.17)

The Lagrangian is then minimized with respect to # and we want to find a saddle point
at 37'. When working with the linear problem, this formulation is equivalent to the
penalty formulation expressed in 7.15. However for nonlinear methods the Lagrangian
formulation is somewhat different. First we note that the domain ||F[z] — b||> = T is not

convex. This is easily shown since if
|| P[] = b][* = ||[Flzs] = b]|* =T

then usually:
||z + (e — 21)] = B*#T  0<y <1

This is obvious for the case where F' is linear. Therefore if we are on the constraint, i.e.
we have reached a point z. such that ||F[z.]—b||> = T', we might not be able to move from
this point to the minimum point of the Lagrangian while staying on the constraint. The
second reason that this methodology does not fit most data sets is that the tolerance
level T' is usually unknown a priori. We therefore stick to the penalty formulation of
trying to find the unconstrained minimum of the quadratic expression 7.15 exactly as in

the linear case.

7.3 Methods for Nonlinear Optimization

After a global objective function as in 7.15 is chosen, we are facing a well-posed nonlinear
optimization problem, with an unknown regularization parameter 8. In this section we

assume (3 is known and review methods for the solution of the nonlinear problem 7.15. We

review the work of Gauss [1801], Marquardt [1963], Armijo [1966], Cost [1983], Dennis
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et al. [1988], Dembo and Steihaug [1983], Eisenstat and Walker [1994], Fraley [1989],
Elster and Neumaier [1997], Gulliksson et al. [1997] and Knoth [1996], and examine
two types of nonlinear optimization algorithms, the first is the Damped Gauss-Newton

(DGN) iteration and the second is a trust region (TR) algorithm.

7.3.1 Damped Gauss-Newton Method

The DGN methods start with the differentiation of 7.15 with respect to # and setting

the result equal to zero. This gives:

0

6_¢ =g(z) = BWTWaz + J(2)' (F[z] = b) = 0 (7.18)
x

where g(z) is the gradient of 7.15. If we find z* which solves 7.18, then we have found the

desired solution. The main problem is that 7.18 is a nonlinear equation, which already

involves the derivative of F' with respect to z. In order to avoid the calculation of the

second derivative of F' to @, this equation is linearized by:
BWIW (z + 6z) + J(z)" (Flz] + J(z)éx —b) = 0 (7.19)

This gives a linear system of equations for éz. This process is repeated and our goal in
the k" iteration is to find the perturbation 8z which solves the linearized equation 7.19.

Rearranging the terms in the equation gives:
(J(zr) T (2x) + BWIW)oz = J(2)T (b — Flzi]) — BWT Wea, (7.20)
This problem is identical to the least-squares problem:

lj(wk)] soe | 0TI (7.21)
VBW

_\/wak

Writing zp11 = 2 + éx equation 7.19 is identical to:

(J(zr)F T (2x) + BWIW) sy = J(2r)T (b — Flzi] + J(z)z8) (7.22)
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This problem is identical to the least-squares problem:

vaw | T 0

Now, we can solve for either the perturbation éz or for the model zz,; and go to

(7.23)

the next step. If the steps 6z are small, then this approach would work, however in
most geophysical problems we do not start very close to the solution and therefore the
linearization process which involves neglecting the residual R(z,éz) from equation 7.9
might not be justified. Recall that R(zg,éz) is of O(§z?) and therefore when the step
size 1s large the minimization of the linearized equation might cause an increase in the
objective function. Such a step is obviously a bad choice because it does not take us
closer to the minimum of the nonlinear problem. This defect can easily be corrected. The
Gauss-Newton step is a descent direction (Dennis and Schnabel [1996]) and therefore if
the step size is small enough, the nonlinear function will have a similar behaviour to the
linearized problem. Based on this observation, Armijo [1966] suggested trying a step size
of éz+—wdx where 0.1 < w < 0.5 and to repeat the process. Finally, for small enough
step, the nonlinear function decreases and we get closer to the minimum of the nonlinear
function. This algorithm can be written as follows:

Damped Gauss-Newton Minimization

Choose a starting model z¢ and regularization parameter 8

Calculate ¢ = B||Wxol|? + ||b — Flzo]||?

Set ¢4 = ¢

e Until convergence do

— Linearize 7.15: Calculate the Fréchet derivative J(z) and the gradient g(zx)
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Check for convergence (see discussion next).

— Solve 7.20 and obtain éx

— Calculate ¢ = B||W (xy, + 62)|[2 + ||b — Flzx + 8z]||2

— If " < ¢°'¥ accept the step and set: zp 1 = zp + 6z, 2% = $™¥

— Elseif ¢™¥>¢°? reject the step and set §z—wdz where w insures that the

function decreases.

There are a few important details when carrying out the DGN method. The first is
checking for convergence. Our final goal is to find a model z* which solves the nonlinear
equation for the gradient of ¢, 7.18. It is therefore a good idea to check how well this
equation is solved. A very simple convergence criterion is to demand that ||g(z)|| < §
where § 1s some small number. This demand is usually not satisfactory since scaling is
a factor. If we minimize a¢ instead of ¢ then the gradient is multiplied by the factor
a. For this reason it has been suggested by Dennis and Schnabel [1996] to replace this
criterion by:

9(@) el _ -

or

<6 (7.25)

where |g(z)]| is the absolute value of the elements of the vector g(z). Another important
point in the DGN algorithm is the step size reduction factor, w. The choice of 0.1 < w <
0.5 is somewhat arbitrary and more efficient line search methods can be used in order
to find the minimum of the function 7.15 in the direction éz. For a collection of such

methods see Luenberger [1969)].
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7.3.2 Trust Regions

Another very popular method to deal with globally convergence optimization is to use a
trust region (TR). Again we are faced with the solution of the nonlinear equation 7.18
where we might take steps that are too large and the Taylor expansion might not hold.
The general idea of the trust region strategy is not only to limit the step size but also to
obtain a new descent direction. Assume that we know that the linearized problem 7.19
and the nonlinear problem 7.18 are equivalent in a region of size 5. We could then look

for the best perturbation 6z in this region by introducing a new optimization problem:
minimize B||W(z + 8z)||> + ||F[z] + J(z)éz — b||? (7.26)

subject to  ||6z||*<n

The radius 7 is known as the size of the trust region and its size is discussed later
in this section. Using the penalty formulation, this constrained problem leads to the

minimization of:
¢rr = B||W(z + 62)||* + || F[z] + J(z)5z — b||* + u(n)]|6z]|? (7.27)

where p(n) is another penalty parameter which depends on the trust region size. This

leads to the linear system:
(BWIW + uI + J(2)TJ(2))bz = J(2)T (b — Flz]) — pWT Wz (7.28)

or, in the least-squares formulation:
J(z) b— Flz]
VBW | sz = | —/BWz (7.29)
VEI 0

After this equation is solved and éx is found we check that the new update actually

decreases the function ¢. If this is the case then we update the model and go to the next
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step, however if the function does not decrease, then we have to decrease the trust region
size. Before we proceed and discuss how to determine the trust region size, we need to

have a method to find a perturbation §z such that ||6z||* = 7.

Calculating The Trust Region Step

The problem of finding a perturbation éz with a small norm is akin to the linear problems
that were dealt with in Chapters 3, 4 and 5. There, a small model which minimizes ||z||?
such that ||Az — b||*> = T had to be found. Here a model which minimizes 7.26 with
||6z||> = n has to be obtained. We therefore use three of the methods outlined in those
chapters. The first method is a full space methodology and it is a variation of the
algorithm suggested by Dennis and Schnabel [1996]. The second is a subspace algorithm
suggested in Haber and Oldenburg [1996], and the third is a hybrid algorithm based on
a method of Golub and Von Matt [1991].

In the full space method we solve equation 7.28 or 7.29 for different p’s. For each p

we calculate ||§z||, so effectively we need to solve the nonlinear equation for p:
162[1* = [|[(BWW + u(n)I + J(z)" I (2)) 7 [J(2)"(b — Flz]) — BW W]||* =7 (7.30)

This equation can be solved using a variety of methods. In this work we use a Newton-
secant method for the solution of this nonlinear one-dimensional equation.

While solving for g directly is possible when the problem is small, it is not practical
for large-scale problems. As discussed in the chapters on linear inversion, the inversion
of the matrix in 7.28 takes at least O(M?) operations, and therefore it is desirable to find
a cheap variation of this process. We recall from Chapter 4 that Krylov space methods
have regularization properties and that the norm of éz increases as the iterations proceed.

The use of Krylov space methods is also justified since for very large p the full space
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solution behaves like:

6wz%(J(w)T(b — Flz]) — BWTWe)

which is the gradient direction. For very small p the solution behaves like the full Newton
step. In CGLS the first direction is the gradient direction and it is therefore similar to
p—oo. If the CGLS is carried to its completion then we have the full Newton step and
1t 1s similar to the case of p—0.

We therefore suggest the use of CGLS as a method to find a trust region update. We

change the problem 7.26 into:
minimize B||W(z + 8z)||> + ||F[z] + J(z)éz — b||? (7.31)

subject to  ||6z||* = n
and bzeK(A(z),y(z),n)

where:

J(z) ]
VBW

b— Flz]
—/BWz

The implementation of such an algorithm is straight-forward. We solve the system

Az) = l
and

y(z) =

using CGLS and in each iteration check the norm of the solution. If at iteration k
||6zk||> < m, we proceed to the next iteration. At some stage we get to an iteration n
such that ||§z,|/?<n and ||§z,41||> > 5. At this stage we terminate our process and we

have a perturbation éz, with a norm which is smaller than the trust region size 7.
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It is also possible to obtain a model such that ||§z>||> = 7, using the same method
proposed in Chapter 4 when we wanted to hit the target misfit. Assume we are at

iteration n with ||§z,||* < 7 and that at iteration n + 1 we have
16201a]]” = |16z + apl* > 7

where p is the last CGLS direction and « 1s its coeflicient which is calculated in the CGLS

process. We seek a parameter 4 such that:
|825|1” = ||62n + yap||* =
This leads to the quadratic equation:
(@lpl*)y* + 262 p)y + (||62]]* —n) = 0 (7.32)

This equation has two roots since a?||p||> > 0 and ||éz||* — n < 0. We choose the root
which gives rise to a smaller ||A(z)éz) — y(z)|| as the trust region step.

The last method which can be used for determining a step for the trust region ap-
proach is a hybrid method. Golub and Von Matt [1991] showed that using a Krylov space
decomposition of the matrix A(z) one could construct an upper and a lower bound of
||6z(p)||?. Similarly, we use the hybrid LSQR which was developed in Chapter 5 to esti-
mate the regularization parameter g in 7.28 subject to the restriction that the solution

is in a Krylov subspace.

Determining the Trust Region Size

We now know how to take a step in the trust region method. In order to make the
algorithm complete we need to determine two further things. First, we need to estimate
the trust region size 7 and second how to change this size if it is not suitable for the
current step. We use the same methodology as in Dennis and Schnabel [1996] for both

of these processes.
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First we set the trust region size 5 to be the size of the Gauss-Newton step, i.e. no
regularization is used for the step size. After the Gauss-Newton direction is calculated,

we check whether our nonlinear function decreases, i.e. whether:

$(z + dz) < ¢()

If the function decreases, then the Gauss-Newton step is satisfactory and we proceed.
However, if the Gauss-Newton step is not satisfactory then we decrease the trust region
by a factor of two and try again.

Now assume we are at iteration k£ and we have a trust region size from the previous
iteration n_;. In order to calculate this iteration it would be useful to start using this 9z
as an estimation for the trust region size in order to save expensive function evaluations,
and therefore in iteration k we set n, = 71 as a starting trust region size. We use
the same strategy we had before to decrease the trust region size if it is needed. So far
the trust region size can only decrease in the course of optimization. If the iterations
proceeds we might find ourselves stepping in smaller and smaller steps and not utilizing
the full capacity of our Fréchet derivatives. We therefore need to add a condition for
increasing the trust region size. This is done as follows, after the update éz is calculated

we can estimate two functions, the nonlinear function:
A(x; bx) = BI|W (z + 6e)||* + || Flz + 6] — b||* — B||[We||* — [|F[z] - ||
and the linear function
AP (@; 82) = BI|W (e + 82)[|” + || Flz] + J(2)8z — b|[* — B|[Wel]* — || F[z] — b

If the agreement of these two quantities is very good, i.e.,

Ag = Agh
maz(Bg, AgH)

<T (7.33)
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we suspect we are not using the full capacity of the trust region and therefore we double
the trust region size. Dennis and Schnabel [1996], suggested that 7 = 0.1 and we adopt
this strategy.

Finally we summarize the trust region algorithm as follow:

Trust Region Algorithm For Gauss-Newton Iteration

e Choose a starting model o and regularization parameter 8

o Calculate

¢ = Bl[Wao||* + [|b— Flzo]|[?
o Set 4% = ¢

e Until convergence do

Linearize 7.15: Calculate the Fréchet derivative J(z)

Check for convergence (equation 7.24).
— If iteration number is 1, solve 7.20 and obtain §z. Set n; = ||§z||?

— If iteration number is different than 1 then solve 7.26 using either full-space,

Krylov space or subspace methods and obtain éz

Calculate
¢ = B||W (zr + 62)||* + || F [y, + 6z] — b]|?

¢ = BIW (i + 82)|* + || Flza] + I (22)bz — bl |”
Ad(z;6z) = ¢™ — ¢

and the linearized function

A¢lin(w; 6:3) — ¢)lin o ¢)old
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— If g™ < ¢ and |Ad — A"|/man(Ap, AH™) > T
accept the step and set: zpy1 = zp + bz, ¢4 = v

— Elseif ¢ < ¢°¢ and |Ad — A" /maz(Ad, AdHm)<r
increase n—2n and re-solve for Sz

— Elseif ¢nev > ¢eld

reject the step and set n—0.5n and re-solve for 6z

7.3.3 Comparison Between Damped Gauss-Newton and Trust Region

We have reviewed two common methods for the solution of the minimization problem
7.15. The main question to ask therefore is which method to use and when? The
question does not have a trivial answer and so, as a means of answering this question,
we summarize the advantages and disadvantages of each of the methods considering the
special structure of our optimization problem. When facing a specific problem one should
decide which method to use based on the weaknesses of the methods and the bottle-necks
of the problem.

The main advantage of the DGN method is simplicity. Determining the step direction
is not related to the step length and therefore each one can be done independently. This
gives rise to simple and elegant programs. Another advantage of the DGN formulation is
that there are not a lot of parameters which need to be determined. The only parameter
which is chosen is the step length w and there are simple criteria to choose it. From a
computational point of view, the separation of the direction and size yields only a single
matrix inversion at each DGN step. After the matrix has been inverted, preferably using
iterative methods, we work only with a single vector and therefore from a storage point
of view we need only to store the matrix (or have a method to calculate it) and three

more vectors for the iterative solver. Notice that in the regular implementation of DGN
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the iteration matrix SWTW + J(z)T J(z) is usually positive definite and unless 3 is very
small or W is ill-posed itself, its condition number is reasonable and therefore usually
convergence 1s obtained after a few number of iterations.

There are two major disadvantages to the DGN method. First, if the Gauss-Newton
direction is not satisfactory and the step length has to be very short, in the next step we
would face a similar Fréchet derivative and the minimization process might stagnate. In
order to stop this stagnation it might be better to take a different direction and the trust
region algorithm might be better. The second disadvantage of the DGN method is that
in each step we solve the linear system to a high accuracy which may not be needed. This
disadvantage can be overcome by using Krylov space methods and stopping the iteration
with a relatively large residual. This was suggested by Brown and Saad [1990], [1994],
and by Eisenstat and Walker [1994]. In this work we use CGLS and stop the iterations
when the normalized residual is lower than 0.01.

The main advantages of the trust region method occur exactly where the DGN fails.
By changing the direction of the step when the step is very small, there is a better chance
to find a satisfactory step and not to get into stagnation. However the disadvantages of
the TR method is that it is harder to implement. First, since the direction is related
to the step size the program is usually not as elegant as DGN programs. Second, the
implementation of TR requires the choice of some arbitrary parameters. Both the para-
meter 7 (which determines if we need to increase the step size) and the reduction of trust
region size are somewhat arbitrary. From a computational point of view, calculating the
parameter p for large scale applications is usually not possible. Working with hybrid
methods requires extra storage for the subspace vectors and therefore implementation of
TR for large scale problems can be done efficiently only through subspace methods.

As a summary, I would prefer DGN over TR for most inverse problems since it is

easier to program and implement. However for very nonlinear problems, and especially
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for problems where the iteration matrix SWITW + J(z)TJ(z) is not positive definite
because the matrix W does not have full rank (such as in Haber and Oldenburg [1996]),

I would prefer to use TR methods.

7.4 Common Nonlinear Strategies For Nonlinear Inverse Problems - Review

In this section we review two common techniques for the solution of nonlinear inverse
problems. This section is a review of the work of Tarantola [1987], Parker [1994] and
Engl et al. [1996]. We review the algorithms and the main difficulties of these algorithms.
Based on the strengths and weaknesses of the algorithms, we shall suggest new algorithms
in the next chapter.

In the previous section we have introduced the ideas of global regularization and re-
viewed two methods to solve the nonlinear problem which arises from this regularization.
However, there is one question which we did not answer. We work with the penalty
method and minimize:

¢ = BlWel]* +||F[z] — b]|* (7.34)

The main question then is how to determine the regularization parameter 5. We now

review two strategies for this problem.

7.4.1 The Method of Fixed Regularization Parameter

The first method, which was suggested by Tarantola [1987], Parker [1994] and Engl et
al. [1996], was to fix the regularization parameter 8x k = 1,2... and solve the nonlinear
optimization problem with similar methods to those suggested in the last section. After
the problem has been solved with a regularization parameter O, we can check if the
solution is satisfactory, i.e. if it obeys some criteria. The only criterion suggested was

the discrepancy principle. This method is similar to the Tichonov regularization in full
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space for the linear problem and it involves the sequential solution of the minimization
problem:
¢ = BrlWe|l* + || F[z] — b||*
for different 8’s. Now assume that we have solved the problem for 3 with a solution zj,
and found that ¢3(B:) = ||F[z;] — b||> > T. In this case we pick a new regularization
parameter Oyq such that 851 < Br. Exactly as for the linear problem we can interpolate
between different ¢ in order to approximate the nonlinear function ¢3(3). After solving
a few nonlinear problems we could find an acceptable 8* which yields the model z* such
that || F[z*] —b||2 = T.
The algorithm can be summarized as follows:

Fixed Regularization Parameter
o Choose regularization parameter 5; and a starting model z,

e For k=1,2... do

— Solve the minimization problem 7.34 and obtain zj
— If | ||F[z;] — b]|> — T'| < é terminate process.
— Elseif | ||Flz;] = b|>?—T| > 6
Interpolate/extrapolate the function ¢5(58:) and find a new regularization pa-

rameter i1

The main difficulty in this algorithm is that we need to solve a new nonlinear problem
at each stage and therefore this algorithm is computationally expensive. The algorithm
is substantially cheaper if we estimate 3; to be close to the optimal 5*. In Engl et al
[1996] and Bakushinsky et al. [1994], considerable effort is made to choose such a f3;.
However, the estimates there are asymptotic in nature and 7.34 has to be solved many

times.
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In order to better understand this and other such algorithms, we introduce the L-
curve for the nonlinear problem. Although there is no guarantee that the L-curve would
have the typical L-shape it has in the linear case, we assume that this is the case. Every
point on this curve is a solution to the problem 7.34 and we could plot the path of

minimization on this curve. This path is plotted in Figure 7.1 From this figure it is clear

log(lIF{x] - bll) 4

Ist itr

2nd itr

athi \3rd i

log(wx{f)

Figure 7.1: A hypothetical path for the solution of a nonlinear ill-posed problem by
minimizing for four different 3’s.

that some of the work which is done using this method is a waste. The method works
hard in order to get to a good solution for the minimization problem at the k** stage
when such a solution is not needed. For this reason, this method is not used very much

and a cheaper substitute has to be developed.

7.4.2 The Two-Stage Method of Constable Parker and Constable

As a cheaper substitute to the fixed regularization parameter, Constable et al. [1987]
have developed a different methodology. In their famous paper, the authors named their

algorithm Occam’s inversion because they wanted to differentiate their algorithm from
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the creeping algorithm which we discussed in the beginning of this chapter. This thesis
tries to find only models which minimize a global objective function and therefore the
underlying philosophy of algorithms here is not different from theirs. However, the way to
achieve this Occam goal is different. We therefore refer to the Constable et al. algorithm
as the Two-Stage Method (TSM). The reason for the name is revealed next.

The goal of the TSM is to minimize the global objective function 7.34. As in all

Newton-type methods, the equation is linearized:

¢=||F (2] + J(z)8z — b|[* + BI|[W (z + 82)||* = 5" + Bdm (7.35)
Differentiating with respect to dz and equating to zero gives:

(J(2)TJ(z) + BWIW)bz = J(2)T(b— Flz]) — pWTWe (7.36)

As explained before, the main problem is that the regularization parameter £ is not
known. The major idea of the TSM is to choose a different 3 in each iteration. The
process is divided into two stages (hence the name two-stage method). In stage one
the misfit ¢4 1s reduced to some target misfit and in stage two this target misfit is kept
constant while the model norm ¢,, is reduced. The process can be viewed as combining
two methods. Stage one is a penalty stage in which the regularization parameter takes
the role of penalizing the model norm. The second stage can be viewed as a Lagrange
process in which we try to minimize a function while staying on the constraints. Although
these two processes have similarities, they are different. While one is trying to get to the
constraint and therefore use a global objective function, the other stays on the constraint
which means that it tries to obtain a saddle point. The algorithm can be summarized as
follows:

Occam’s Method through the Two-Stage Method

Stage 1.
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e l.a. Pick a starting model z, a tolerance misfit level 7' and tol.
e 1.b. while |[|b— Flzi]||? > T

— line search:
for ¢ = 1 : number of 3’s
* Solve
(JT T + BWTW)s2) = JT (b — Flai)) — BWT Wz,
* Form the update:
wg_?_l =z + 5w§:)

x Calculate the misfit for the updated model:
640 = |Ib— Fla}2]|

— From all the steps 6z, pick the one which gives the lowest misfit,

(%)
k
or a step such that 7' = ||b — Fzy + 5w§j)]||2. Call this step 5w§:).

— Update the model:

Thy1 = g + 62

Stage 2.
e 2.a. while ||zpy1 — @] > tol

— line search

for ¢ = 1 : number of 3’s

* Solve

(JT T + BWIW)s2) = JT(b— Flai]) — BW T Wy,
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* Form the update:

wg_?_l =z + 5w§:)

* Calculate the misfit for this model:

¢a® = ||b - Flzg), ]|

— From all the steps 5w§:) pick the one which gives the misfit,

T =|b— Flzx + 5w§j)]||2 and possesses the smallest model norm.

Call this step 5w§:).

— update:

Tiyr = T + b2

Since there is no formal proof of convergence of this algorithm the question which can
be asked is: Does the algorithm reach the goal of minimizing a model objective function
subject to fitting the data to some tolerance 7'?

In our work we have found that the answer to this question can be no. In order
to demonstrate, let us construct an extremely simple problem. Suppose we measure
the gravity field next to a fault. Assume we have two thin layers with known density
anomalies p; and p, but unknown depths z;, z, (Figure 7.2). It can be shown that the
gravity field (the data) at distance d from the fault is given by:

Flz] = Flz1, 23] = p1 arctan(wil) + p2 arctan(%) +e=b (7.37)

Now suppose we have only a single datum with some noise measured at d = 1 meter
away from the fault, and we want to recover the “best” combination zi,z,. In order to

do that we define the objective function:

¢ = Blle|l* + || Flz] — bl|* =
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1 1
ﬂ(w% + wg) + (p1 arctan(—) + p2 arctan(—) — 6)2
x

1 T2

Our goal in this simple example is to minimize this function such that the misfit T =
0.01||b||?. For this simple example we let p; = ps = 0.785 and b = 1. We now apply the
TSM starting from the point zo = [3, 2].

In order to view the results we put in a table, in each iteration, the misfit as a function
of ¢ = [x1,z3]. We also plot all the possible models which are achieved by the g line
search (step 1.b). Four of the iterations are plotted in Figure 7.3 . Notice that for all of
the plots as B goes to infinity, the models go to zero as expected. In each iteration we
try to decrease the misfit as much as possible. The minimum norm solution subject to
fitting the data to the desired tolerance level is marked by a star at the point [1.2,1.2].
Note that for the four iterations plotted we did not get closer to the minimum.

It is clear that the TSM failed and did not reach the true minimum in this extremely

simple problem. We now ask the question why?

Data

1 meter

X2

I
P,

Figure 7.2: The example problem: One datum is collected near the edge of a fault. We
try to recover z; and x,.
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2 [ @ [F] =0 =P
3 2 0.14 13.0
0.91 | 1.45 0.016 2.93
1.71 | 0.83 0.011 3.61
0.82 |1 1.74 0.011 3.69

Table 7.1: Path of minimization

There are three main reasons for the failure. The first one is that while the method
takes care of the non-uniqueness by minimizing a global objective function, it does not
take into consideration the nonlinearity of the problem. The Taylor expansion is F[z +
dz] = Flz] + J(z)éz + R(z,éz). We are allowed to neglect the remainder only if it is
small. Since each step in the TSM is not constrained, it might well be that Fz|+ J(z)éz
is a very bad approximation to F'[z 4 §z]. In this case the next iterate does not have any
real connection to the function we are minimizing.

A second important aspect of the TSM is that in stage one we accept steps according
to their misfit reduction. Thus at the first stage we are really concerned only with the
misfit and therefore minimize || F[z] — b||?>. However the mathematical problem we posed
was to minimize a combination of misfit and model norm: 3||z||*+||F[z] —b||>. Therefore
it could well be that while the misfit was reduced the function we attempted to minimize
actually increased! Thus the TSM could give a totally faulty step.

The third reason the method can fail is in stage two. In stage two we are supposed
to stay on the same misfit level while reducing the model norm. This process can be

written as a constrained minimization problem:
minimize ||Wezl||?

subject to ||Flz] —d|> =T

As discussed before, the domain ||F[z] — b||> = T is non-convex and therefore even if



Chapter 7. Nonlinear Inverse Problems 160

First iteration Second iteration

Figure 7.3: Four iterations of the example problem. The contour represents the log of
the misfit, log(||F[z1, z2] — b||?). The star at [1.2,1.2] denotes the location of the true
minimum. The straight black line represents all feasible solutions to equation 7.35 with

B changing from 1E — 9 to 1E6
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||Flz] — b||* is a convex function we might not get to the true minimum due to the
non-convexity of the domain.

Although we have just shown that this algorithm might not converge to the right
result, previous experiments (see for example Parker [1994], Jingsheng and Elsworth
[1995], Smith and Booker [1991], Thompson et al., Zhang [1995], Li and Oldenburg [1996],
Farquharson [1995]) shows that it may give reasonable results. In order to understand
why the TSM seems to work in many cases we examine this algorithm with the L-curve.
The paths of minimization for a “successful” TSM and an “unsuccessful” TSM are plotted
in Figure 7.4. Since in the first stage of the TSM we are concerned only with the misfit
we can end this stage anywhere on the line ¢; = T'. If we are lucky enough, this point is
going to be close to the minimum and with some local improvement in stage two, we get

close to the minimum and the result of such minimization is considered succesful. This

log(IFbd - b 4

Stage one of TSM (1)

Stage one of TSM(2)

Stage two of TSM(2

log(T) -—
9(7) Stage two of TSM (1)

| —

»
»

log(/Wxj))

Final Model Obtain . .
. Final Model Obtain

Figure 7.4: Two possible paths for the TSM. In the first path TSM(1) we end with a
model with the right misfit but with large model norm and in the second, TSM(2), we
end with a reasonable model but, not the smallest model.
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path is plotted by the TSM(2) line. However if we are not so lucky we might end stage
one of the TSM very far from the minimum, and since stage two of TSM could not get us
all the way back to the minimum, we would end the process with an unsuccessful model.
Such a path is plotted in TSM(1). The possible failure of the TSM when decreasing
the misfit very fast is a known phenomenon, however it has not been explained so far,
and therefore different algorithms try to avoid reducing the misfit fast by setting ad hoc
parameters, which are obtained by trial and error.

Obviously the basic idea of Occam is good because it deals with the non-uniqueness
of the inverse problem, however the way it is being carried out in the TSM, can lead to
non-optimum solutions. Our goal is to present a methodology which achieves the goal of
Occam’s idea, and minimize a global objective function without ignoring the nonlinearity

of the problem. This will be done in the next chapter.



Chapter 8

Methods for Nonlinear Inversion

In the last chapter we have reviewed the current methodologies for nonlinear inversion.
This chapter is dedicated to the development of new strategies. We start with a straight-
forward improvement of the constant regularization parameter technique, then develop a
new technique based on the GCV. Finally, we discuss subspace and hybrid methods that

can reduce computations.

8.1 The Cooling Method

In the last chapter we discussed the method which uses a constant regularization para-

meter. Recall that we want to minimize:

¢ = BlWel|]* + [|Flz] — bl|* = Bdm + ¢ (8.1)

In the constant regularization method, we pick a regularization parameter and carry
the nonlinear minimization all the way through to its solution. If the result is not
satisfactory, we pick a new regularization parameter and repeat the process. We define
each minimization process for a different regularization parameter as the outer iteration,
we define every DGN or TR step as the inner iteration, and we define the linearized
system which is solved in each inner iteration as the inner-inner iteration.

The process for a constant regularization parameter, which is plotted in Figure 7.1, is
not efficient since we invest work in every outer iteration only to get to a minimum of 8.1

which is not desired and is used only as a starting point for the next outer iteration. The

163
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first improvement to be made then, is to generate a process in which we do not invest in
expensive nonlinear solutions for regularization parameters which we think will not give
the desired misfit. Another goal of this process is to generate a series of models which
gradually give a better fit to the data, and give rise to a gradually increasing model norm.
These are the major features of the cooling process which is developed next.

In order to understand the cooling process, first note that equation 8.1 contains two
parts. The model norm ¢,, is quadratic and gives rise to a linear system of equations,
and the misfit ¢y is the nonlinear part. The function ¢ is almost quadratic if the regu-
larization parameter is large, and it is very non-quadratic if the regularization parameter
is small. It is very well known that solving a nonlinear optimization problem takes less
work if we start close to the solution, and therefore if we “jump” from one regularization
parameter to the other in very large steps, the minimum of 8.1 would change signific-
antly and the solution of one problem would not be a good starting point for the next
minimization problem. The cooling process then, is a process in which the regularization
parameter changes or cools slowly, such that the solution which was obtained using one
regularization parameter is a good starting point for the next.

The first question which can be asked then is how to choose the first regularization
parameter and the first starting model. Since we want to minimize ||Wz||, where this
norm is supposed to be based on a prior: information, we pick as a starting model, the
model zo which gives ||Wao|| = 0. Starting from other models does not make sense since
if we think that the model is similar to a model z; such that ||[Wz;||#£0, we are not
utilizing our a prior: information about the problem, and therefore miss the purpose of
regularization. In this case we should change the problem and add this information into
the inverse problem by minimizing ||W(z — z1)||.

After 2y has been chosen, we need to choose the first regularization parameter. There

are three possible options. The first is to start with a small regularization parameter
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and then to increase it slowly. This process does not seem to be reasonable since our
starting point zo is not close to the minimum of the function ¢ which possesses a small
regularization parameter, 3. Another possible option is to guess a “reasonable” (8 and
to start from there. The trouble with this option is that it is hard to have such a good
estimation, and therefore this process is not very practical. A third and reasonable
choice i1s to start with a regularization parameter § which is very large. This option
has not only the advantage of a good starting point z¢ which is close to the minimum
of that function, but also if the regularization parameter is large then the function ¢
is almost quadratic and therefore the minimum should be obtained after a few steps.
We therefore start with a large regularization parameter. One option for ensuring that
the regularization parameter is large, is to start with a regularization parameter which

ensures the condition:

BWIW + J(z0) J(zo) = BWTW

This can be done by looking at the largest singular value of J(zo) and assuming that
W = I (which can be done using the transformation to standard form), and choosing a
regularization parameter 51 = v maz(SVD(J(zo))). In this work we have found that
v = 2 was satisfactory. If the SVD of J(z¢) is not avaliable then we approximate it by

choosing a random vector v€RM and estimating the regularization parameter by:
(zo)o]
Pr=v— (8.2)

We can now start the iteration process and minimize ¢(f31, z) starting with zo. How-
ever we have a good idea that this minimization process would not yield the desired model
z* and therefore we terminate this iteration relatively fast i.e., we use the criterion for

convergence 7.24. with higher tolerance level.

lg(2)|" ||

() < b (8.3)
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where 6; is relatively large. In this work we used §; = 0.01. We found out in most
experiments that we need only one or two inner iterations to achieve this criterion in the
first outer iteration. In the next stage we have to pick a new regularization parameter
(B2 and repeat the process.

One very common demand from this regularization parameter (8 is that it would
decrease the misfit by a factor . We now present a method to guess such a regularization
parameter. Assume that we have carried out & > 1 outer iterations, thus we have

minimized (to some extent) k functions [¢(51), .., #(Bk)] and we have the quantities

[¢’m(/81)7 ) ¢’m(/8k)] = [Qé}nv ) ¢’fn]

[¢’d(/81)7 ) ¢’d(/8k)] = [¢’(117 ) ¢’Z]
and

[/817 7/8’6]

Our goal is to choose a new regularization parameter [, based on the knowledge of

these quantities. In order to do that we notice that at a stationary point of ¢(53):
Ap=A¢s+ AP, =0 (8.4)

Therefore

Ags
~ag =B (8.5)

This means that if we plot the misfit versus the model norm, the slope of the curve is

given by the regularization parameter 3. We can then write the following equations:

Pa(Pm + 66m)~Pa(Pm ) — BE¢m (8.6)

and

B+ 88m)B(m) + 5,56 (8.7
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From our experience we know that the change in 3 is usually logarithmic, while the

change in ¢,, is linear. It is therefore useful to replace 8.7 by:

Log(B(ém + 5m))log(B(dm)) + W&% (8.8)

As stated at the beginning, the goal is to find a regularization parameter which yields

a reduction of 5 in the misfit and therefore we let:

Pa(Pm + 86m) = ¢a(Pm) — BEm = NPa(Pm)

From this equation we can find that the desired change in the model norm ¢, is:

Ehm = (1_’# (8.9)

Substituting the expression for 6¢,, in the equation 8.8 we get:

(log(B)) (1 — n)¢a
5., Z (8.10)

Thus if we can approximate the derivative of log(3) with respect to ¢,, we have the

log(B(fm + 6¢m)) = log(B(4m)) +

desired approximation. The derivative 0log(3)/0¢m, is approximated by the secant ap-

proximation:

Olog(B) _log(Br) — log(Br-1)
a¢’m ~ ¢’mk . ¢’mk_1

(8.11)

which gives:

log(Bk) — log(Br—1) (1 —n)¢d"
¢’mk - ¢’mk_1 ﬂk

Using this strategy we decrease the regularization parameter 8 and the misfit until

log(Bes1) = log(Be) + (8.12)

we expect to get the target misfit 7'. At this stage we switch the tolerance level in the
convergence criterion 8.3 to our real tolerance level § which is used in Chapter 7.

Two questions which are still open are the second step of the algorithm and the
misfit reduction factor 7. Since we can start to predict Bgy1 only if we already calculated

Br k > 1, the question which needs to be answered is how to predict 35. After the first
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outer iteration we cannot have information about the derivative of 8 with respect to ¢,,
and therefore we just reduce 3 by a fixed amount. In this work we have used 8, = 0.965;.
This choice yields fast convergence of the inner iteration (usually 1-2 inner iterations).
In the next stage we continue with the § estimation 8.12. The second question is the
misfit reduction parameter n that has to be chosen for each outer iteration. Recall
that the whole process of cooling is based on relatively small variations in the different
minimization problems which are solved in the outer iteration, thus we do not want to
decrease the misfit at the expense of an abrupt increase in the model norm. We therefore
allow only an increase of a factor v in the model norm, where v = 0.5. This choice is
somewhat arbitrary and if the problem is highly nonlinear we might want to make ~
smaller. In order to predict the relation between the change of misfit to the change of
model norm we use equation 8.9. First we set = 0.5. The predicted change in model

norm for this choice is:

_ %

5= 35 (8.13)
If this choice is satisfactory, i.e., §¢m/@m < 7, We want to find 7 such that:
(1 —ﬁ")_ﬁf’d — by (8.14)
which gives:
p =1 2Bm (8.15)

Pa

Finally we summarize this algorithm as follows:

Inversion Through Cooling

e Choose a model ¢ such that ||Wz,|| = 0. Calculate the Fréchet derivatives J(o),

B1 = 2maz(SVD(J(zo))) or use 8.2.

o Outer Iteration: For kK =1,2,3...
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— Inner iteration: minimize 8.1 using DGN or TR with stopping criteria 8.3 and

61 - 10_2 .

Calculate ¢g", dm"

— k=108 =096

— Elseif & > 1, choose n = 0.5 or n = 1 — vB¢m/Pa (as explained in the above

section). Choose (3§41 using 8.12.

If the predicted misfit is achieved (using 8.5) switch é; in the stopping criteria

for the inner iteration to §6.

Finally we view the iteration on the L-curve. The curve demonstrates that this

g - 4p)
IstB
2nd B
3d p
) np

gl

Figure 8.1: The path of the cooling strategy on the L-curve.

algorithm can be cheaper and safer than the regular 3 search as suggested in the previous
chapter. It is cheaper because we do not waste expensive function evaluations on trying

to obtain the total minimum of the objective function for @ values which we are not



Chapter 8. Methods for Nonlinear Inversion 170

interested in. Also, by starting each inner iteration from a point which is close to the
minimum, we speed up the inner iteration. The method is safer since we move slowly
down the L-curve so even if we do get trapped in a local minimum, at least it would be a
local minimum with a small model norm. The main problem with this method is that in
order to use it we need to have a predicted target misfit, which is usually not avaliable.
Second, the path to the point z* is still not optimal. As stated before, if we could only

predict the right 3 the process would be shorter. This is the goal of our next section.

8.2 Nonlinear Inversion Through Generalized Cross Validation

In the last section we used a fixed regularization parameter in the outer iteration, in order
to perform a few Gauss-Newton inner iteration steps and achieve a specific target misfit.
In this section we discuss how to make only one step of the inner iteration for each outer
iteration, and to obtain a regularization parameter based on the GCV principle which

we reviewed in Chapter 3.

8.2.1 Full-Space Nonlinear Inversion

Our goal is to decide on an adaptive regularization parameter. In order to do that we

notice that at the k™ iteration we face a linearized problem of the form:
J(zp)bz = b — Flzr] + nonlinear terms + noise (8.16)

We therefore have to deal with two problems. The first is the measurement noise and the
second 1s the nonlinear terms. While the noise has to be treated through a global regular-
1zation, i.e. assessing the regularization parameter, 3, for a global objective function, the
nonlinear terms have to be treated by reducing the step size in DGN or obtaining a local
regularization parameter u for TR algorithm. These processes are not necessarily pulling

in the same direction and therefore we want to treat them separately and differently.
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First we deal with the measurement noise. Ideally, we need a method which can
differentiate between the Gaussian noise and the correlated nonlinear terms. Such a
method would provide a value of 3 for the current iteration. Then using this 3, we carry
out one step of DGN or TR iteration. The damped DGN or TR takes the nonlinearity
into consideration and makes sure that the nonlinear terms are actually small.

Applying such a process is not straight-forward. The first thing we have to remember
1s that at each linear iteration we are minimizing a different norm. The norm we want to
minimize at the k** iteration is ||W (z1+&z)|| and therefore the regularization parameters
for noise estimation and the step length should be taken with respect to this norm. Our
algorithm can be summarized as follows:

Nonlinear inverse problem through Noise Estimation

e 1. Calculate the sensitivities J(z)

o 2. Calculate the regularization parameter 3.

o 3. Use the regularization parameter to calculate éz using DGN or TR.
e 4. Update using step length strategy.

o 5. Check for convergence and go to 1

There are three important points in this algorithm which need to be explained. First
we need to explain how to pick a regularization parameter (stage 2). We delay this
explanation for now. We also need to explain how to make the update (stage 4) and how
to check for convergence (stage 5).

The main problem with the update is that the objective function changes from iter-

ation to iteration. While in the Gauss-Newton method it is clear that ¢(zx) > d(zst1),
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it 1s not clear that this is the case in this algorithm. The main reason is that

$(Brr zk) = Bel[Wael[* + || Flae] — ||

while
(Brr1s Ter1) = Brrr||[Wanga|)? + || Flzrya] — b]

Since the global objective function ¢ is changing at each iteration, the demand of de-
creasing the value of the objective function is not reasonable. We therefore replace it

with the consistent demand:

A(Brs1, zr) > H(Bry1, Thtr) (8.17)

which means that:
Brsr|[War||* + [|Flze] — bl* > Brsr[|Warsa ||? + || Fzega] — b (8.18)

Thus every step in the algorithm is also equivalent to a one-step descent from the model
zp to x4y with regularization parameter B, ;. This point is extremely important if we
want our algorithm to be consistent with the objectives of the minimization.

The second important point is convergence (stage 5). For every iteration k we need
to know whether to stop the process or to continue on. Since the objective function is
changing the question is what criterion should be used? The answer is again given by
consistency. If each iteration is a Gauss-Newton iteration with different parameter (3
then our convergence criterion is the same as for a Gauss-Newton algorithm 7.24.

The third and the last thing to explain is the method in which we choose (8 for
each iteration. As stated before we need a method which can differentiate between the
nonlinear terms and the noisy terms. Recall from Chapter 6 the experiment on the
linearized gravity problem. We found that GCV did not detect the nonlinear terms

at each iteration and hence it yielded a regularization parameter which penalizes only
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against the uncorrelated Gaussian correlated noise. Our observation is not the only one
for this behaviour. Altman [1987] and Nychka et-al. [1984] experimented with smooth
correlated errors, and noticed that the GCV did not penalize correlated smooth noise.
This observation can be used to our benefit. It means that GCV responds only to the
Gaussian noise and therefore it can be used to estimate a global regularization parameter.
The GCV does not regularize nonlinear terms, and therefore we need to add the second
regularization which ensures that the steps are small enough and that the linearization
process holds.

To summarize, our methodology is based on three main components.

e 1. A method to pick a regularization parameter (GCV)
e 2. A method to pick a step size. (DGN or TR)

e 3. A method to accept/reject a step

Step one is based on the ability of GCV to differentiate between noise and signal while
steps two and three are based simply on DGN or TR methods. In general, our method
can be simply viewed as a variation of the fixed regularization parameter method, with
a regularization parameter 8 which i1s changing at each iteration. If the regularization
parameter approaches a specific value * then our algorithm turns into a Gauss-Newton
algorithm. However if the GCV process at each iteration yields a different regularization
parameter the process might not converge. Our experience has been that this has not
happened and that the regularization parameter tends to converge quickly to its final
value. This point will be demonstrated in Chapter 10.

Finally we discuss our algorithm on the L-curve. If the regularization parameter is
correctly estimated, then it does not change very much through the process and the path
from the starting point z¢ to the final model z* is almost direct. The process is plotted

in Figure 8.2
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Figure 8.2: The path of the GCV strategy on the L-curve.

8.2.2 Subspace Methods For Nonlinear Inversion

So far we have discussed Tichonov-style regularization for nonlinear problems. These
techniques are based on the ability to estimate a regularization parameter and invert the
regularized Fréchet derivatives. The main problem is that just as for the linear case, the
inversion of the Fréchet derivatives for large scale problems is costly, and therefore some
shortcuts are needed. The obvious shortcut is to use the methodology we have developed
in the linear case and to use a cheap matrix inversion through Krylov subspace, in order to
calculate the solution of the matrix inversion. We have suggested this for the calculation
of the TR step and the calculation of the DGN step.

The second shortcut, which is more effective, is to use the properties of the subspace
in order to substitute for the regularization parameter 3, just like in the linear case. The
space size acts as a global regularization parameter which penalizes against noise, and

then we use another local regularization in order to penalize against the nonlinearity.
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The problem can be formulated as follows:
minimize ||F[z]— b||? (8.19)

subject to z € K(Jw(z),r(z),n)

where 7(z) is some right hand side (which will be define next), Jw(z) is the reduction of
the matrix J(z) to the standard form with the matrix W.

In order to work with the subspace formulation we recall from Chapter 7 that the
Gauss-Newton iteration can be formulated either for the perturbation, éz, or for the
model at the next iteration, g, ;. If we formulate the iteration using the perturbation,
then we would have terms that depend on 8 on the right hand side (see equation 7.20).

However if we formulate the problem using the next iteration then we get (7.22):

This is identical to the least squares problem:

\/BW k+1 — 0

Which is identical to the Tichonov regularization of:

(8.21)

J(wk)wk_H =b— F[mk] + J(wk)wk

As was demonstrated in Chapters 4 and 5, a similar solution to that problem can
be obtained using Krylov space regularization. Therefore if problem 8.21 is transformed

into its standard form it could be replaced with the subspace problem:
minimize ||J(zr)zri1 — b+ Flzx] — J(zr)zs||? (8.22)

subject to  zp1EK(Jw(zr),7(2k), n)
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where now we see that

r(zx) = b— Flzg] + J(zr) 2

In every step we use the Krylov space in order to regularize the problem and obtain a
suggested model z;, 1. This new model, although it solves the linearized misfit problem,
does not necessarily reduce the nonlinear misfit which we try to minimize. A simple
solution to this problem is to use a step length strategy and calculate the direction
dx = xp11 — xp and to use the same method as in the DGN method to calculate the step
length. The algorithm can be summarized as follows:

Krylov Subspace - Damped Gauss-Newton Method

e Choose an initial model zo. Calculate the misfit ¢q4 = ||b — F[zo]||?
o Fork=1,2...

— 1. Calculate J(z)

— 2. Solve:
J(zr)zh,, = b— Flzi] + J(z1)ze

using CGLS and GCV stopping criterion.

— 3. Calculate the perturbation éz =z, —

and the new misfit ¢4 = ||b — F[$i+1]||2

4. If ¢4" < ¢a, set xpy1 = 2, g0 to 1.

5. Elseif ¢4 > ¢q set
Thyr =2 +wz 0.1 <w <05

go to 3.
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— 6. If
|Zhs1 — 2|

<6
maz(||Tesl], [|ze]])

terminate the process

In the implementation of this process we chose w = 0.5 and the stopping criterion
was § = 1073, Notice that this algorithm does not get to a minimum of a functional like
the Tichonov regularization and in principle, the solution of this method is different from
Tichonov solution. However as we saw in the linear case, the solutions are very similar
to the full space regularization and the cost of this solution is substantially less than a

full space solution.

8.2.3 Hybrid Methods For Nonlinear Inversion

The subspace implementation which we discussed in the last subsection might give solu-
tions which are different from the Tichonov solution. One way to obtain a more Tichonov-
like solution is to use a hybrid method. Again, the main purpose is to avoid inverting

directly the matrix J(z)TJ(z) + BWTW. The problem can be presented as:
minimize ||F[z]—b|]* + B||Wz||? (8.23)

subject to z€ K (Jw(z),r(z),n)

where r(z), Jw(z) are the same as in 8.19. Linearizing and formulating the objective

function we get:
minimize ||J(zr)zrir — b+ Flzw] — J(z)zs||> + B[ We||? (8.24)

subject to  zpr1 €KX (Jw(zr), r(zr),n)

Again this is equivalent to the solution of the system:

J(wk)wk_H =b— F[mk] + J(wk)wk
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using hybrid Krylov space methods. The algorithm can be summarize as follows:

Krylov Hybrid Subspace - Damped Gauss-Newton Method

e Choose an initial model zo. Calculate the misfit ¢g = ||b — F[zo]||*.
o Fork=1,2...

— 1. Calculate J(z)

— 2. Solve:
J(zr)ahy, = b— Flag] + J(zr)ze
using hybrid LSQR with weighting matrix W and GCV criterion for the reg-

ularization parameter G.

— 3. Calculate the perturbation éz = 27, — z,
the new misfit ¢4" = ||b — F[z},,]||?

and the new model norm ¢, = ||Wzf,||?

— 4. If 3" + Brddm ™ <q + PrPm, set Ty = wi_l_l go to 1.

5. Elseif ¢3™" + Brdm”™ > g + Brdm, set
Thyr =2 +wz 0.1 <w <05

go to 3.

— 6. If
|Zhs1 — 2|

<é
maz(||zes1], ||2x]])

terminate the process

In the implementation of this process we chose w = 0.5 and the stopping criterion

was § = 1073, This algorithm, although it does not get to a minimum of a functional
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like the Tichonov regularization, gives a very similar solution especially if the subspace is
chosen such that most of the vectors which are associated with the large singular values

have converged.

8.3 Summary

In this chapter we developed two algorithms for solving nonlinear ill-posed problems.
Both algorithms are based on understanding the two different processes which we face
when solving a nonlinear ill-posed problem. The first process is noise estimation. This
process is global in nature, and therefore one has to look for global type techniques in
order to estimate the regularization method. Here we suggested the cooling strategy,
which 1s a “safe” method to descend from an estimate of high noise level to low noise
level. Cooling does not use the characteristics of random uncorrelated noise and therefore
1s not very efficient. We therefore suggested the use of GCV as a method to estimate the
global noise. We use three variants of the GCV which have been developed in Chapters
3, 4 and 5.

The second process which has to be addressed is the estimation of the step length. If
the step length is too large then the linearization does not hold and the iteration might
not converge. This process is local in its nature and therefore needs a different type of
regularization than the noise estimation process. We have suggested to use two common
methods for this process, the damped Gauss-Newton or trust regions. In this way we
ensure that the step which we choose is not only regularized against the non-uniqueness

of the problem, but we also make sure we descend in each nonlinear step.



Chapter 9

Approximate Fréchet Kernels

In the last chapter we presented a methodology for large scale nonlinear inverse problems.
While this methodology deals with the choice of regularization parameter and the matrix
inversion, there are still two other bottle-necks for the inversion. The first bottle-neck
1s the forward modelling, which has to be calculated for each proposed model, and the
second is the calculation of the Fréchet derivatives, that is, the sensitivities. While the
forward modelling has to be accurate in order to estimate the data misfit, the sensitiv-
ities are needed in order to calculate the next step and to check for convergence. It was
therefore suggested by Farquharson [1995], Farquharson and Oldenburg [1996], Li [1992],
Ellis et al. [1993], to approximate the sensitivities. In this section we discuss some of the
methods to approximate the sensitivities and the problems which rise from such approx-
imations. We step through two common strategies - the cord or AIM update, (Kelley
[1995]) and the Shamanskii update (Shamanskii [1967]). We propose a new methodology
for the implementation of these strategies when applied to ill-posed problems. We then

propose a secant type update for the nonlinear problem.

9.1 The Concept of Approximate Sensitivities

The concept of approximate sensitivities is not new. Newton suggested approximating the
first derivative of a nonlinear minimization problem in one dimension by using information
from previous iterations. His approach was extended to systems of equations by Broyden

[1965]. Other simple approximations such as the cord and Shamanskii methods also were

180
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suggested for nonlinear equations (see review by Kelly [1995]). However the application
of these techniques to nonlinear ill-posed problems is not straight-forward. An ill-posed
problem does not have a unique solution and therefore the solution is defined by some
minimization problem where the desired model yields the smallest norm ||Wz||* subject
to fitting the data. This model minimizes the nonlinear objective function ¢ = ¢4+ Bdm

and solves the nonlinear system of equations for the gradients:
g(z) = J(2)T(Flz] = b) + pW Wz =0 (9.1)

This system involves the sensitivities J(z) and therefore if the sensitivities are approxi-
mated by a matrix B and are not calculated, we cannot check for convergence, or even
solve the correct system of equations, i.e., the gradient system. It is therefore suggested
by some authors (Dennis and Schnabel [1996]), to calculate the sensitivities and not
to use such approximations. Although they are right if the exact Tichonov solution is
needed, just like in the linear problem, we do not have to restrict ourselves to Tichonov
solutions only, and we could obtain other reasonable solutions which fit the data using
approximate sensitivities. However we should be aware that the solution is different than
the Tichonov solution.

The common approach to the approximated sensitivities is local. This approach looks

at the linearized approximation problem:
g(z + b2)=J(z)T (Flze] + J(z)bz — b) + BWTW (x + 6z) = 0 (9.2)

and suggests to use approximate sensitivities in order to solve 9.2. While this approach
is valid for linear problems it is not necessarily valid for nonlinear problems. The reason
is that in the linear case the local (linearized) problem and the global (not linearized)
problems are identical. In the nonlinear case if we do not estimate the function g(z) there

is no way to know if the model z;, which was obtained by a series of k£ steps actually
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minimizes the objective function. Furthermore, even if the iteration converges to some
model z! there is no way to know (without calculating sensitivities) how close it is to
the Tichonov solution. But the worst thing is that since we solve a sequence of linear
problems without defining a global function, we cannot be sure that the model obtained
is not a product of the minimization process, i.e., if we start from different points or
carry out the iterations using different strategies (DGN versus TR for example) we get
to the same solution.

We therefore suggest a new and different formulation for approximate sensitivities
which is global in nature. Our goal in this section is to quantify this approximation. In
order to do that we define the Jacobian H(z) = ¢'(z) and assume that it is bounded.

Given the Jacobian the Newton iteration for the solution of the system 9.1 is:
bz = —H(z) 'g(z) (9.3)

We now review a theorem from non-exact minimization which discusses the relation
between convergence and errors in the Jacobian of a nonlinear system of equations and
errors in the function evaluation

Theorem 9.1: Error in Jacobian and function evaluation (Kelly [1995])

Let g(z) be continuously differentiable and let H(z) = ¢'(z). Let e(z) be the error
in the evaluation of g(z). Then there are K > 0, § > 0 and §; > 0 such that given the
exact solution z* to the system g(z) = 0, if ||z — 2*|| < § and the perturbation, A(z),

to H, such that ||A(z)|| < é; then the update:

i1 = o — (H(z) + Azi)) 7 (g(2n) + (k) (9-4)

satisfies:
|k — &7 [[<K(|Jex — 27[] + ||A(2p)[] [|lzx — 27| + [|e(z)]]) (9-5)
This theorem shows that while the minimization process is forgiving to inaccurate

Jacobians H(z), it is not very forgiving to inaccurate calculations of the function g(z).
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We have used this characteristic before without noticing. The Gauss-Newton formulation
is such that the Jacobian is approximated such that the second derivatives of F[z] with
respect to = are not calculated. If we start from a point zo such that ||zo — z*|| is small
enough, then using the wrong Jacobian would slow down the convergence rate, however
errors in the function g(z) would cause an error in the final result. Thus approximate
sensitivities cannot give the solution of the Tichonov problem but rather solve a close
problem to the gradients. We define the “near-by problem” to 9.1 as the following system
of equations:

f(z) = BWTWe + BT(Flz] — b) = 0 (9.6)

where the matrix B is hopefully close to the sensitivities J(z).

We define the solution of 9.6 as zf. The Jacobian of the system 9.6 is given by:
G(z) = BWTW + BT J(z) (9.7)
The Newton step, zp,,, for the solution of the system 9.6 is then:
zyy = —G(z) 7 f(zr) = —(BWTW + BT J (i) (BW T Way, + BT (Flzx] — b)) (9.8)

The Newton step, although it converges quickly, contains the term J(z) which we try to
avoid calculating. This is not a problem since the theorem of errors in the Jacobian and
in function evaluations states that a small error in the Jacobian just slows the process

and therefore we replace 9.8 by an approximate sensitivities step:
zri1 = (BWIW + BTB)Y (BT (b — Fx)) — BW Way) (9.9)

If the difference between the approximate Jacobian and the Jacobian of the Newton

iteration of 9.8 is small enough, i.e., if:

(BWTW + BTB) — (BW'W + B J(z1))|| = ||BY(B — J(z2))|| < 6 (9.10)
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then theorem 9.1 about errors in the Jacobian holds and the iteration will converge to
zt

Now assume that we have found the solution of the near-by problem 9.6, zf. It is
important to know how close this solution is to the real solution z*. In order to determine

this we notice that:
g(a') — g(e) = g(z") = BW W' + J(2")T (F[2"] - b) (9.11)
Adding and subtracting BT(F|[z!] — b) gives:
BWIWat + BY(Flz'] — b) + (J("T — BT)(F[z'] — b) = (9.12)
(J(z"T — BT)(F[2] - b)
Using the fundamental theorem of calculus we can also write:
g(a') —g(z) = H()(a" —z7) (9.13)

where ¢ is a point between z* and zf, and H(¢) is the Jacobian. Assuming that the

Jacobian H(z) is invertible we can write:

H() T (g(z") —g(2")) = &' — & (9.14)

For simplicity assume that W = I. Differentiating 9.1, the Jacobian can be written as:

H(z) = g—z =BI+ J(z)"J(z) + g—i(F[w] —b) (9.15)

For the analysis we assume that terms in the Jacobian which come from the misfit term,

are positive (not necessary definite) and therefore its minimum eigenvalue is 3 (and

[|H(€)7Y|| < B71). If this is the case, we can substitute 9.12 in 9.14 and obtain:

1H(&) 7 (g(=") — g(=))I| = [[H(E) (I (=)' = BY)(Flz'] - b)[| = |]z" — 27| (9.16)
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and therefore:

le! —27|| < B7I(J(=")" = B I(F[z"] - b)]] (9.17)

This equation shows how bad the approximation can be. The approximation depends on
two parts. First it depends on how well the matrix B approximates the sensitivities J(z)
and second it depends on the misfit and . While the misfit is dictated from the problem,
the approximation of B to J(z) is in our control. In the next sections we discuss some
of the possible approximations to the sensitivities.

The formulation of the near-by problem is satisfactory if the gradient direction is
close to the near-by direction. In this case an actual reduction in the real nonlinear
minimization function ¢ = B¢,, + ¢4 can be obtained. However if these directions are
not close then the direction of the near-by problem might not be a descent direction. In
this case we know that the near-by problem is not so near-by, and it should be replaced

by another problem or terminated. This is demonstrated in Figure 9.1.
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Figure 9.1: The real problem, the near-by problem, the starting point and the place that
the near-by problem is not near-by any more.
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Therefore after obtaining a direction dz we suggest to check if this direction actually
decreases the value of the original objective function. If we start far from the solution,
then at some stage, the update direction é= would not be satisfactory and even for a very
small step length, a reduction in the function ¢ cannot be obtained. At this stage the
near-by direction is not acceptable and the problem should be terminated.

Finally we write a general description of the approximate sensitivities algorithm:

Nonlinear Inversion Using Approximate Sensitivities
e Choose an initial model zy and approximate sensitivities B.
e Calculate ¢°'¢ = B||Wzo||? + || F[z0] — b]|?

o For k=1,2... do:

Calculate a near-by step using 9.9.
— Calculate ¢ = B||W(z + éz)||® + || F|z + =] — b||?

— If p™v<gld set z =z + b=

Elseif ||6z|| < § terminate process.

Else §z—bz /2

Check for convergence of the near-by problem.

Using the formulation of the near-by problem, we can use algorithms which were
developed for nonlinear equations in order to solve 9.6. In the next sections we explore

some of these methodologies.

9.2 The Cord and Shamanskii Updates

Maybe the most simple update is the cord method. For this method we assume that we

can calculate J(zo) analytically or numerically. We therefore set B = J(zo) and solve
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the system
fo(x) = BWITWe + J(z0)T (Flz] —b) =0 (9.18)

using the cord method, which means that the sensitivities in this case are kept constant.
Trir = (BWTW + J(20)T I (20)) ' (J(20)T (b — Flzi)) — BW W) (9.19)

Such an iteration was used by Li [1992] for the DC resistivity problem and Routh and
Oldenburg [1996] for the nonlinear tomography problem. The difference between the
application of the iteration suggested here and their work is that while their criterion for
termination was based on the misfit, the criterion suggested here is based on the value
of the global objective function.

The main problem of the cord method is that if we do not start very close to the
solution, then the near-by problem is not so similar to the real problem and therefore
after a few iterations the objective function, ¢, can no longer be minimized. At this
stage we face two options. If we are satisfied with the model and the misfit, we might
terminate the iteration, however if we are not satisfied with the model, i.e., the misfit is
too large or does not satisfy some criteria of convergence, then we can restart the process
once again, and calculate a new matrix B based on the model which is obtained at the
current iteration. This approach was first suggested by Shamanskii [1967] for the solution
of nonlinear systems of equations. A similar strategy was proposed by Dosso [1990] for
the solution of the MT problem. Thus, the cord process is repeated again, and therefore,
the Shamanskii method could be viewed as a sequence of near-by problems such that
each near-by problem is utilized to its full capacity. It is also possible to obtain the exact
Tichonov solution using the Shamanskii method. In this case we continue the process
until the function f(z) is actually the gradient g(z).

So far, the algorithms deal with the case of a constant regularization parameter.

However in most cases we need an adaptive regularization parameter. Just like when the
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sensitivities are known exactly, we suggest two methods to choose such a regularization
parameter. The first method is the cooling method. In this case we follow the cooling
algorithm in Chapter 8, however we substitute the approximate sensitivities in the place of
the exact sensitivities. The second possibility is to use the GCV to find the regularization
parameter. In this case we substitute the approximate sensitivities in place of the exact

sensitivities in the nonlinear GCV algorithm.

9.3 Secant-Type Update

In the last section we discussed a constant near-by problem, i.e., the approximate sensit-
ivities B are kept constant and the function f(z) does not change until we cannot carry
the nonlinear iteration any longer. However the near-by problem is not really the problem
of interest and therefore, given new information, we might want to update the near-by
problem. This is the idea behind the secant update for nonlinear ill-posed problems.
The application of secant updates to nonlinear systems of equations is not new (Dennis
et al. [1989], Kelley [1995], Dennis and Schnabel [1996]). However applying secant
updates to nonlinear inverse problems has been done only in a few cases (Zhang et al.
[1995]). The main idea of the secant method is to obtain a better estimate for the
sensitivities J(z) by looking at the models which were calculated in the iteration process.
In order to explain the basic idea we first consider the one-dimensional case. Assume
we have a function of one unknown s(z) and we want to find the solution of s(z) = 0.
In the first iteration we choose zo and calculate s(zo) and s'(#o). Then using Newton
or some other iteration we calculate a point z; and the function at that point s(z;). In
order to continue the iteration we would need the derivative s'(z1). Newton suggested

approximating the derivative by:

s'(z1) ~ §'(z) = M (9.20)
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Thus the approximate derivatives obey the secant equation
§'(z)(z1 — @) = §'(z)dz = s(z1) — s(mo) = 8 (9.21)

In the one-dimensional case, it has been proved that this iteration converges to the
solution of s(z) = 0.

The extension of this iteration to more than one dimension is not straight-forward.
Assume that we start with a model z¢. For this point we calculate the forward modelling
F[zo] and the exact sensitivity J(zo). Using this sensitivity we proceed and calculate z;
and F(z;). Our goal is to find an approximation to J(z;), call this approximation Bj.
In parallel to the one-dimensional case we want the new sensitivity to obey the secant
equation:

Bi(z1 — @) = Flz1] — F[z] (9.22)

The matrix B; is of size N x M, however we have only one vector equation to satisfy and
therefore we have another N — 1 degrees of freedom. It was suggested by Broyden [1965]
to choose a matrix B; such that it is as close as possible to the current sensitivities,

J(zo). i.e. By should minimize:
1By — J(z0)l[5 = [JAJ]]; (9.23)
subject to  Bi(z1 — xo) = Flz1] — Flzo)

Adding and subtracting J(zo)(z1 — o) from the equation and substituting AJ = B; —

J(zo), the constraints with AJ can be written as:
AJ(:Bl — :B()) — F[:Bl] + F[:B()] + J(wo)(wl — :BO) =0

In order to find B; we take the route of constrained minimization which is different

from Broyden’s paper. We define the Lagrangian:

L= %IIAJHE + MT(AJ (21 — @o) — Fla1) + Flao] + J(wo)(21 — o)) (9.24)
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In order to find AJ we differentiate the Lagrangian and equate to zero. This yields:
AJ + MNzy —z9)T =0 (9.25)
AJ(zy — z0) — Fla1] + Flzo) + J(zo)(z1 — o) = 0
Multiplying the first equation by (z; — zo) gives:
0= AJ(z1—20)+ M (z1—20)T (21—20) = Fla1]—F o] —J(20)(z1—20)+ M (21 —20)T (21 —20)

where the last equality due to the second equation in 9.25. From this equation we can

find that:
Flz1] — Flzo] — J(zo)(z1 — o)

(21— z0) (21 — o)

A=

Substituting back in the first equation of 9.25 gives:

Flz1] — Flzo] — J(zo)(z1 — o)

(21 — 20)T (21 — o)

AJ = (21 — z0)T (9.26)

Equation 9.26 is the famous Broyden’s update to the sensitivities.

We can now combine this methodology with the near-by problem methodology which
we introduced in the previous section. Using this update, at each iteration we can have
an estimate of the sensitivities J(z;) and thus we define in each iteration a different
near-by problem. We then carry one iteration of this near-by problem to obtain a new
near-by problem.

There are a few potential problems with this method. First, since we do not have a
global function to solve, because the near-by problem is constantly changing, we cannot
say a priort to which solution the procedure will converge and to what distance from
the Tichonov model. Hopefully the secant approximation yields a better approximation
to the sensitivities at * than J(zo) and therefore the solution is a better one. Second,

there is a potential danger of not converging at all. In this work, termination of the
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secant iteration occurred if it had not converged to some model after a fixed number of
iterations. These two problems emphasise the third problem which is in my opinion the
biggest problem when using such algorithm. The end result depends on the minimization
process itself, since there is no global objective function to minimize or an equation which
we solve, the end solution is based on the path of minimization. It is therefore impossible
to compare results of two secant algorithms, and it is hard to conclude if some features in
the model are there due to the data and the objective function, or due to the minimization
process.

Although the above problems are definitely significant, secant updates could still
achieve a model which makes the objective function small and fits the data. The secant
method may still give reasonable results where the constant approximate sensitivities

may fail.



Chapter 10

Applications of Nonlinear Inverse Problems

In Chapters 7-9 we discussed the formulation and strategies for the solution of nonlinear
inverse problems. In this chapter we compare the different strategies when applied to two
generic type of problems, the nonlinear gravity problem and the magnetotellurics inverse
problem. Unlike the linear case our measure of efficiency is not based on the number of
floating point operations. Different problems have very different characteristics, while in
one problem calculating the forward modelling is not a problem, in the other forward
modelling is the most expensive part. We therefore compare between the efficiency of
the methods by counting the number of forward modellings, sensitivity calculations and
matrix inversions which needed in order to obtain convergence. The quality of the solution
is judged by the model norm and the misfit (just like in the linear case).

Each example is tested using eight different algorithms with various noise levels. The

methods we are going to use are:

o CGLS+GCV - Solving each linearized system for #p;; using the CGLS and the

GCV as a stopping criterion (Section 8.2.2).

o Hybrid+GCV - Solving each linearized system for x,; using hybrid Krylov method
with GCV criterion (Section 8.2.3).

o Full-Space+GCV - Solving each linearized system for ;1 using Tichonov regular-

ization with GCV criterion (Section 8.2.1).

192
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o Cooling - Starting with large regularization parameter and decreasing it slowly.

Recall that this method must have a target misfit (Section 8.1).

e TSM - Using the two stage method for regularization parameter. Recall that this

method must have a target misfit (section 7.4.2).

o Cord+GCV+Hybrid - Fixing the sensitivities and using the GCV+Hybrid method

on each linearized iteration (Section 9.2).

o Shamanskii+GCV+Hybrid - Fixing the sensitivities for a number of iterations, and

using the GCV+Hybrid method on each linearized iteration (Section 9.2).

o Secant+GCV+Hybrid - Updating the sensitivities using Broyden’s method, and

using the GCV+Hybrid method on each linearized iteration (Section 9.2).

Trust region methods are not explored here since, as explained in Section 7.3.3, the
special structure of the problem is such that TR methods does not give substantial

advantage on the DGN.

10.1 The Gravity Interface Problem

The gravity interface problem was described in Chapters 1 and 6, and we use the same
discretization and linearization procedures which we described in Chapter 6. Recall that

the forward modeling is given by:

1 1
o] :
’ D Th(wvyvh(wvy);wjv yj) Tm(wvyvm(wvy);wjvyj)

dzdy (10.1)

with:

(2, y, h(z,y);25,95) = /(2 — 2))2 + (y — 9)? + h?

and

P2y, m(2,9); 25,95) = /(& — 25)2 + (y — 95)? + (b +m)?
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and the sensitivities are:

() — (h(z,y) + m(z,y))(.)dedy
Tt //7’ (& — z;)? + (y — 9;)* + (hle,y) + m(z,))?)?

(10.2)

The integrals are discretized using the midpoint rule. The 100m x100m square domain
1s divided into 49x49 grid points and we assume we have 30x30 data points. We add

5% and 10% Gaussian noise to the data. The model and the data are plotted in Figure

10.1.
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Figure 10.1: The model and data used for nonlinear inversion

Our goal is to test the different algorithms using different conditions. We therefore
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Method ||Flz] —b|| | ¢m | FM | Sens | Matrix Inversions
CGLS+GCV 6.47E-2 | 3443 | 8 5 5
Hybrid+GCV 6.611-2 3299 | 8 4 4

Full-space+GCV 6.75E-2 | 3145 | 7 4 4

Cooling 6.73E-2 | 3148 | 72 | 63 63

TSM 6.73E-2 | 32.21 | 20 5 5
Cord4+GCV+Hybrid 6.53E-2 3545 | 11 1 7
Shamanskii+GCV+Hybrid 6.65-2 32.87 | 13 3 9
Secant+GCV+Hybrid 6.69E-3 35.21 | 13 1 8

Table 10.1: Experiment one: Comparison between different methods for 5% noise. True
misfit i1s 6.72F — 2, real model norm 36.87.
design three tests. In the first test we use as a background model a half space which
has the value of the true background (20 meters). This choice gives an initial misfit of
1.41 when the final misfit is 0.067 in the 5% noise case. In this case the initial model
is relatively close to the end result. In the second case we assume we have a wrong
background and therefore start with a half-space which is far from the initial model
(30 meters instead of the 20). In this case the initial misfit is 9.56, which is obviously
far from the end result. In the third experiment we use the correct reference model,
but start with a far starting model which is a flat half-space at depth 10 meters lower
than the true reference. In order to carry the inversion we choose a weighting function
W = —0.01V?2 + I, where the V? operator does not contain boundary conditions.
We start with the first experiment and use the different methods to invert the system.
A comparison of these methods is in Table 10.1 and 10.2. The final models which were
obtained using these methods in the 10% noise case are plotted in Figures 10.2 and 10.3.
In Figures 10.4, 10.5 and 10.6 we view the iteration progress for the GCV+CGLS case,
the GCV+full space case and the TSM. Note that in the different variants of the GCV,

the model norm is monotonically increasing and the misfit is monotonically decreasing
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Method ||Flz] —b|| | ¢m | FM | Sens | Matrix Inversions
CGLS+GCV 1.38E-1 |36.43 | 15 | 10 10
Hybrid+GCV 1.55E-1 | 3145 | 8 6 6

Full-space+GCV 1.55E-1 | 31.44 | 7 6 6

Cooling 1.55E-1 | 31.44 | 69 | 58 58

TSM 1.55E-1 | 32.31 | 20 5 5
Cord+GCV+Hybrid 1.54E-1 32.29 | 13 1 5
Shamanskii+GCV+Hybrid 1.55E-1 31.46 | 17 3 17
Secant+GCV+Hybrid 1.55E-1 31.46 | 17 5 17

Table 10.2: Experiment one: Comparison between different methods for 10% noise. True

misfit is 1.53F — 1, real model norm 36.87.

GCV+Full Space m GCV + Shamanskii m

Y (m)

GCV+HYBRID Cooling

Y (m)

0

50 100 50 100
X (m) X (m)

o

Figure 10.2: Experiment one: results of Full-space+GCV, Hybrid+GCV, Cooling and

Shamanskii inversions. Noise level 10%.
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to the final value while in the TSM the model norm first increased above its final value
and then decreased back to its final value. This behaviour of the TSM is predicted
when looking in Figure 7.3. Note also that hybrid GCV, full-space GCV, cooling and
Shamanskii methods give basically the same results (Figures 10.3 and 10.3. This result
is expected since the same quantity is minimized. The results of the GCV+CGLS, TSM,
cord and secant methods are somewhat different. This result is also expected since the
minimization problem is different for each of these problems.

In comparing the different inversions we notice the following observations from this

first experiment:

e Noise was estimated quite accurately using the three variants of GCV (full, hybrid

GCV+CGLS m TSM m

0 50 100

Secant+GCV

=)

~

)

o

0 50 100 0 50 100
X (m) X (m)

Figure 10.3: Experiment one: results of TSM, CGLS+GCV, Cord+GCV+Hybrid,
Cord+GCV+Hybrid inversions. Noise level 10%.
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and subspace).

Noise was estimated quite accurately using approximate sensitivities. Basically the

approximate sensitivities did not influence noise estimation.

The quality of the solution in terms of model norm versus misfit is similar in the
cooling and the GCV algorithms and the Shamanskii method. However the models
which are obtained using cord and secant methods are somewhat different and have

higher model norm.

Although the cord and secant methods give different results, the models can be

considered to be reasonable.

TSM gives reasonable models but with model norm slightly higher than cooling or
GCV for the same misfit.

The results emphasise that the use of global algorithms which minimize a Tichonov
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Figure 10.4: Model norm and misfit as a function of iteration in the CGLS+GCV
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objective function, have an advantage over the inexact algorithms such as the cord

and secant, where the minimization result depends on the path of minimization.

In the first experiment we have performed, most methods did well. The experiment is
somewhat easy since the initial model is close to the final model. In order to demonstrate,
we calculate the difference between the final sensitivities of the full space GCV model

and the initial model is:

17 (o) — J(z*)||2 = 0.0098

Therefore it is not a surprise that all the methods did so well. In the next experiment
we take the wrong base model and try to recover the model using this reference model.

The base model is a model which has a mean depth of 30 meters instead of 20 meters.
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For this case:

1 (20) — J(27)[|2 = 0.8

The experiment is done for the 5% noise and the results are shown in Table 10.3, and
the models obtained using different methods are plotted in Figures 10.7 and 10.8.

All the algorithms have converged, and the models are satisfactory from an inter-
pretation point of view. From a mathematical point of view, this example shows that
the algorithms proposed in Chapter 8 and 9 are robust and work well even when the
reference model is notoriously bad.

As alast example we try a more difficult test. We start from a model which is not the

reference model. The model is a surface at depth 10 meters lower than the real reference,
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Method ||Flz] —b|| | ¢m | FM | Sens | Matrix Inversions
CGLS+GCV 3.6E-1 1183 | 6 4 4
Hybrid+GCV 3.8E-1 1085 | 5 3 3

Full space+GCV 3.8E-1 108.0 | 6 4 4

Cooling 3.8E-1 108.0 | 38 | 31 31

TSM 3.8E-1 108.6 | 20 4 4
Cord+GCV+Hybrid 3.8E-1 110.1 | 12 1 5
Shamanskii+GCV+Hybrid 3.8E-1 108.0 | 9 2 7
Secant+GCV+Hybrid 3.8E-1 1084 | 8 1 5

Table 10.3: Experiment two: Comparison between different methods for 5% noise. Ref-
erence model is far from the real model. True misfit is 3.7F — 1, true model norm 113.5.
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Figure 10.7: Experiment two: 2-D Nonlinear Gravity Inversion. The reference model is
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i.e., ¢g = 10. The noise level is 3%. In this case the difference between the sensitivity of

the true model and the starting model is:
I (20) — J(2)|| = 0.3

This experiment has no geophysical meaning, since, as stated in Chapter 7, if the a prior:
information states that the model is similar to a model z; other than the reference model
zo, we should reset the reference model zg to x;, which means, in our example, to set the
reference depth to 30 meters instead of the original 20 (just as in the experiment two).
However from a mathematical prespective it is a good example to test the stability of
the algorithms. The results are shown in Table 10.4 and in Figures 10.9 and 10.10.

We summarize the results of the last two experiments:
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Figure 10.8: Experiment two: 2-D Nonlinear Gravity Inversion. The reference model is
far from the true reference.
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Method ||Flz] = b|| | ¢m | FM | Sens | Matrix Inversions
CGLS+GCV 5.0E-2 33.3 | 21 16 16
Hybrid+GCV 5.6E-2 31.1| 10 8 8

Full space+GCV 5.6E-2 31.0 | 9 7 7

Cooling 5.6E-2 31.0 | 41 | 35 35

TSM 5.6E-2 314 | 29 9 9
Cord+GCV+Hybrid 9.3E-2 30.8 | 15 1 10
Shamanskii+GCV+Hybrid 5.7E-2 31.1 | 14 3 10
Secant+GCV+Hybrid 9.1E-2 31.1 | 12 1 9

Table 10.4: Experiment three: Comparison between different methods for 3% noise.
Starting model is far from the real model. True misfit is 5.5E — 2, true model norm

36.87.
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Figure 10.9: Experiment three: 2-D Nonlinear Gravity Inversion, starting model is far
from the reference model
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o All methods did well when the reference model is far from the true reference.

e Cooling, GCV in full space, hybrid GCV, TSM and Shamanskii methods did well

even when starting model is not reasonable.

e Cooling, GCV in full space, hybrid GCV and Shamanskii methods produce very

similar results.

e Methods which depend on the path of minimization such as cord, secant and
CGLS+GCV, obtained a reasonable model but did not predict the misfit very

well.

We summarize the nonlinear gravity problem with a discussion about the efficiency

Full-Space + GCV m Shamanskii + GCV m

Y (m)

Cooling

Y (m)

0 50 100 0 50 100

Figure 10.10: Experiment three: 2-D Nonlinear Gravity Inversion, starting model is far
from the reference model
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of the different methods. In order to determine which of the algorithms is the most
efficient for this problem a comparison of the different possible bottle-necks is needed.
For this size of problem, the forward modeling takes around 50 seconds (using SPARC 10
workstation), the sensitivities take around 180 seconds and inverting a matrix of that size
using CGLS takes around 700 seconds. It is clear from this rough count that we would
prefer an algorithm which performs fewer matrix inversions and sensitivities and does
more forward modeling. In this case the GCV with CGLS is significantly more efficient,
since for every direction only one matrix inversion is performed and only one sensitivity

matrix is calculated.
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10.2 The Magnetotelluric Problem

10.2.1 Equations and Synthetic Example

A very different and generic type of electromagnetic inverse problem arises from the
magnetotelluric (MT) experiments. In this experiment we measure the response of the
earth due to a plane wave impinging upon the earth’s surface. Recall from Chapter 1

that assuming that the earth is layered, the electric field, E, is given by the equations:

d’E .
e twpeo(z)E (10.3)
With boundary conditions:
E(o0) =
E(0)=1

Where w is the angular frequency, o(z) is the one-dimensional conductivity structure and
o 1s the magnetic permeability, which is assumed to be constant. Equation 10.3 is the

governing equation for the MT experiment. The data for this experiment are given by:

E(z=0,w)
=7’ 10.4
CO(wv O'(Z)) 6ZE(Z — 0,(.0) ( )
Our goal is to recover the conductivity profile o(z) from the complex measurements

co. It is common to present the complex data, c(w), by its phase and by the apparent

conductivity which is defined as:
5uft0) = powle(w) (10.5)

Although the sensitivities for this problem can be found analytically (Oldenburg
[1979]), in this work we have used numerical differentiation in order to obtain the sensit-
ivities. Thus the only thing needed for the solution of this problem is a robust forward

modelling program. The forward modelling is performed through the propagator matrix
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formulation (Ward and Hohmann [1988]). The one-dimensional earth is divided into M
layers with constant conductivity in each layer. The differential equation 10.3 is solved
in each layer, with the conditions of continuity of the field £ and its derivative E’ at
each layer interface. This leads to the recursive relation for C(z,w) = —E(z,w)/E'(z,w)
which constitutes the forward modelling:

B i tanh(kjhj) —|— ij(zj,w)
N kj 1 —|— ij(zj,w)tanh(kjhj)

C(zj-1,w) j=M..1 (10.6)

where

1 :
ki = 75(1 +1)\/Who0;

h; is the thickness of the j** layer and o; is the conductivity of the j%* layer. The data
are given simply by co(w) = C(0,w).

In order to carry out forward modelling and inversion we pick a model made from 64
layers. The thickness of the layers increases quadratically with depth such that z; = (?
and ( is linearly spaced. The conductivity model is taken from the book by Whittall and
Oldenburg [1992]. The model is plotted in Figure 10.11. The data in terms of phase and
apparent conductivity are plotted in Figure 10.12. In the first stage we add 5% noise to

the data. In order to carry out the inversion we need to pick a reference model and

Conductiviy (Sim)

107 —

10" 107 10° 10"
Depth (m)

Figure 10.11: The conductivity model used for the MT experiment
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a weighting matrix. In this work we use the operator 0.0017 — V2 where V? does not
contain boundary conditions, and we set the reference model to have the value of the
background, zo = 0.04 S/m. The model tend to span many order of magnitude and
therefore we do not invert for the conductivity but rather for the log of the conductivity.
The results of this inversion are summarized in Table 10.5. In order to demonstrate
robustness of our algorithm we repeat the same experiment, but this time with noise
level set to 0.5%. The results of this experiment are shown in Table 10.6 and plotted in
Figures 10.13 and 10.14.

From these two experiments we conclude:

e All the methods which do not use approximate sensitivities predict the misfit and

obtained reasonable models.

e All the methods which do not use approximate sensitivities work well even for very
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Figure 10.12: The MT data for the given conductivity model.
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Method ||Flz] = b|| | ém | FM | Sens | Matrix Inversions
Full space+GCV 3.0E-1 6.7E-1 | 6 4 22
CGLS+GCV 2.9E-1 74E-1 | 9 7 7
Hybrid+GCV 3.3E-1 59e-1 | 6 4 4
Cooling 2.9E-1 7.2E-1| 17 | 13 13
TSM 3.2E-1 6.0E-1 | 20 4 4
Cord+GCV+Full-space 6.3E-1 1.4 25 1 19
Shamanskii+GCV+Full-Space 3.0E-1 6.7E-1 | 10 3 7
Secant+GCV+Hybrid 9.1E-1 1.3 8 1 5

Table 10.5: Inversion of MT data for the 5% noise case. True misfit is 3.2F — 1, true
model norm is 1.58.

Method ||Flz] = b|| | ém | FM | Sens | Matrix Inversions
Full space+GCV 4.2E-2 9.3E-1 | 10 6 76
CGLS+GCV 3.9E-2 1.01 | 10 8 8
Hybrid+GCV 4.1E-2 9.3E-1| 9 5 5
Cooling 4.3E-2 9.2E-1 | 63 45 45
TSM 4.2E-2 1.1 35 9 9
Cord+GCV 3.1E-1 2.1 9 1 6
Shamanskii+GCV 4.1E-2 9.3E-1 | 19 3 10
Secant+GCV 4.1E-1 1.8 6 1 4

Table 10.6: Inversion of MT data for the 0.5% noise case. The true misfit was 0.04 and
the true model norm is 1.58.
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Figure 10.13: Result of full-space GCV, Shamanskii, hybrid GCV and cooling MT inver-

sions.
low noise levels, where the nonlinear part of the objective function is dominant.
e Models obtained by approximate sensitivities did not fit the data to the right extent

and have a larger model norm. However the inverted models have the “right flavour”

to them, and they simulate the correctly inverted models.

Notice that the approximate sensitivities fail to find a model which predict the data.
The main reason is revealed when observing the norm of the difference between the

sensitivities of the half-space and the sensitivities of the final model. For this case:
17(20) — J(&")]| = 1.13

therefore we cannot expect the models from the approximate sensitivities to converge to

the true model.
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Figure 10.14: Result of secant GCV, cord GCV, TSM and CGLS GCV MT inversions.

As a last experiment with the synthetic data, we pick a starting model which has

sensitivities which are close to the final ones:
|[J(zo) — J(=")|| = 0.12

The model is plotted in Figure 10.15 (top left). We now carry out three inversions. Two
using the cord and the secant method and one with the full-space GCV for comparison.
The results of the inversions are plotted in Figure 10.15 and the numbers are in Table
10.7. The results emphasize the importance of a good starting point for the use of

approximate sensitivities.
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Method ||Flz] = b|| | ém | FM | Sens | Matrix Inversions
Full space+GCV 2.7TE-1 1.7E-1 | 6 3 3
Cord+GCV+Full-Space 2.5E-1 3.1E-1 8 1 6
Secant+GCV+Full-Space 2.7E-1 2.6E-1 8 1 5

Table 10.7: Inversion of MT data with approximate sensitivities. The starting model is
close to the final model. The true misfit is 0.27.
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Figure 10.15: Result of approximate sensitivities MT inversions when starting model is
close to the final model.
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10.2.2 Field Example and Conclusions

As a final experiment, we invert field data taken from Young et al [1988]. The data are
plotted in Figure 10.16.
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Figure 10.16: Field MT data.

Although the standard deviations of the data are given, we ignore them for the mo-
ment and invert these data using the GCV first. We use the same discretization, objective
function and reference model as the synthetic example. We repeat the inversion of the
same data using the cooling method (the target misfit is calculated using the standard
deviations) and the TSM, and compare between the results. The results of the inversion
are plotted in Figure 10.17 and summarized in Table 10.8. Again we see that GCV
predicted the right misfit well and produced reasonable models which matched the cool-
ing method and the TSM. The TSM gave a model with a slightly higher model norm
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Method ||Flz] = b]| | ém | FM | Sens | Matrix Inversions
Full space+GCV 3.8E-1 5.5E-1 | 12 10 85
CGLS+GCV 3.9E-1 5.9E-1 | 10 8 8
TSM 3.8E-1 5.9E-1 | 40 10 10
Cooling 3.7E-1 5.6E-1 | 26 19 19

Table 10.8: Inversion of MT field data. Predicted misfit is 3.8 £ — 1.
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Figure 10.17: Inversion of the MT field data.

than the GCV for the same misfit, however the models look almost identical and from

an interpretation point of view they are similar.

Finally in order to decide which method is the most efficient for the inversion, we

checked the computational time of each of the stages in the inversion. For the 64 model

parameters and 16 data points, it takes about 0.01 seconds to carry out full matrix
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inversion or the SVD, 0.9 seconds for the forward modelling and 61 seconds for the
calculation of the sensitivities. It is therefore clear that subspace and hybrid methods play
no role in the improvement of computational time. The main hurdles are the sensitivities
and the forward modelling. If approximate sensitivities yield good results then they
would give the shortest computational time. However the problem is fairly nonlinear,
and as shown before, in order to make the approximate sensitivities approach successful,
we need a fairly good starting model. If such a starting model is not avaliable we need to
take a method which yields good descent directions. The GCV based methods and the
TSM seem to have such descent vectors. The advantage of the GCV methods is that they
do not need a target misfit. When using the GCV, all three variants, full-space, hybrid
and subspace, give good results. In numerical testing we found that in general the hybrid
GCV i1s the most stable variant. I believe that the main reason is that when using the
full-space GCV, it could happen that the “black box” minimization for the GCV function
might fail in one specific iteration. In this case the model for this iteration might build
structure which i1s hard to get rid of in later iterations. Hybrid methods, restrict the
model to a “nicer” space and therefore even if in one iteration the GCV function is not

fully minimized, the result of this iteration is still reasonable.

10.3 Summary

In this chapter we investigated nonlinear inversion methods for two types of problems,
nonlinear gravity and magnetotellurics. As a conclusion to this section we summarize
the selection of an inversion method for a nonlinear inverse problem, based on these two
results. First for a new problem, where the behaviour of the nonlinearity is not known,
I would start with the cooling method. The main reason is that the cooling method is a

“safe”. It 1s important to note once again that the starting model and the reference model
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should be identical. If this is done then the starting model norm is zero and the problem
1s almost quadratic in the first iterations, which makes convergence easy. Observing the
cooling method, we could learn something about the nonlinearity of the problem, the
reference model that we picked, and the computational time. If the problem is highly
nonlinear, I would work with the GCV and a hybrid method, limiting the space size and
ensuring to work only with “nice” vectors. In cases that the computational time of the
cooling method is not satisfactory, or when the noise level is not known, we should use
one of the GCV variants. The variant depends on the computational time of each of the
three bottle necks, i.e., the sensitivities, forward modelling and matrix inversion. In cases
where the matrix inversion is the biggest problem, the combination of GCV and CGLS is
the most efficient. If the forward modelling is the main problem then hybrid or full space
GCV are the best options, since they obtain a better direction. Finally if the sensitivities
impose great difficulty, then the Shamanskii method performs better. Using approximate
sensitivities such as the cord and secant methods are possible in certain cases. Special
care should be taken in these cases to start from a relatively near-by point. If such a
point is not avaliable, then it is possible that the reconstructed model does not fit the

data but hopefully has the “flavour” of the exact inverted model.



Chapter 11

Summary and Future Work

The goal of this thesis was to review and develop new techniques for solving linear and
nonlinear inverse problems. In so doing, the computational tools for solving inverse
problems have been comprehensively studied.

First, in Chapters 2-6, linear inverse theory was dealt with. Linear inverse theory was
formulated in Chapter 2. Chapter 3 reviewed the commonly-used Tichonov regularization
as well as providing noise estimation techniques and, a new explanation for the L-curve
technique. This explanation suggests a new choice for the point on the L-curve required
to solve a linear inverse problem. Tichonov regularization, although commonly used,
cannot handle large scale applications within a reasonable amount of time and mem-
ory. Chapters 4 and 5 presented methods to obtain solutions, similar to the Tichonov
solution, using subspace and hybrid techniques. These techniques require substantially
less computing time and memory than Tichonov regularization. Chapter 4 reviewed
Krylov space methods, Lanczos bidiagonalization, least-squares QR and conjugate gradi-
ent least-squares, and studied the behaviour of the Krylov filter. Other subspaces which
were analysed in this chapter are a new multilevel formulation and a subspace formed
from gradients. Finally, the chapter reviewed noise estimation criteria and extended the
generalized cross validation criterion so it can be used effectively in subspace regulariza-
tion. Chapter 5 introduced hybrid regularization methods. It further developed existing
hybrid Krylov methods, reviewed gradient hybrid methods and developed a new iterated

Krylov space method. Chapter 6 summarized Chapters 2-5 by using and testing the
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techniques which were developed in these chapters on examples from gravity and tomog-
raphy. This chapter showed that all variants of GCV (full-space, subspace and hybrid)
are very robust and stable as noise estimation techniques. It is demonstrated that the
GCV methods tend to detect uncorrelated noise and to ignore correlated noise. Chapter
6 also compared the different methods for solving linear inverse problems. Krylov space
methods were the most efficient methods (for most cases), while multilevel methods were
the slowest. The experiment with the nonlinear gravity problem demonstrated the ability
to carry out one iteration in a nonlinear process. This experiment also showed that the
different variants of the GCV tend to ignore the nonlinear terms in the right hand side,
and produce a model which fits the linear iteration to within the predicted noise level.
Chapters 7-10 comprise the second part of this thesis, and made extensive use of the
linear algebra and the noise estimation methods which were developed in the first part of
the thesis. Chapter 7 reviewed the major aspects of the formulation of nonlinear inverse
problems, nonlinear minimization techniques and other commonly used algorithms for
the solution of nonlinear inverse problems. This chapter also reviewed the commonly used
two stage method and demonstrated that this method might fail. A new explanation is
suggested for this failure. Chapter 8 discusses new techniques for solving nonlinear in-
verse problems. First the cooling method was developed. This method is an improvement
of a method presented in Chapter 7. Then a new method for solving nonlinear inverse
problems was developed. This method is based on separation of the regularization into
local regularization (to overcome the nonlinearity of the problem) and global regulariza-
tion (to overcome the non-uniqueness of the problem). The method uses the GCV for
the global regularization and damped Gauss-Newton for the local regularization. In this
chapter it was also shown how to calculate an approximation to the solution for large
scale problems using Krylov spaces and hybrid methods. Chapter 9 discussed approxi-

mate sensitivities. The chapter presented a new formulation of approximate sensitivities
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and reviewed a few of the common methods to obtain them. The new formulation allows
one to compute a bound on the distance between the approximate sensitivities solutions
and the Tichonov solution. Chapter 10 summarized the ideas and concepts of Chapters
7-9 by applying them to two generic examples: the gravity interface problem and the
magnetotelluric problem. Experiments with both examples showed that the techniques
can estimate the noise accurately and obtain satisfactory solutions. In the comparison
of the methods, hybrid solutions tend to be the most stable.

Future work to be done is to tackle other computational challenges which evolve from
inverse problems. These includes: combining the methods presented here with other
constraints such as bounds on the unknowns, using differential equations in order to
solve ill-posed problems, estimating resolution and inference of a nonlinear problem and

general improvement of the algorithms by parallelizing them.
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