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Most people, if you describe a train of events to them, will tell you what the resultwould be. They can put those events together in their minds, and argue from them thatsomething will come to pass. There are few people, however, who, if you told them aresult, would be able to evolve from their own inner consciousness what the steps werewhich led up to that result. This power is what I mean when I talk of reasoning backwards.Sherlock Holmes to Dr. Watson in: A Study in Scarlet,Sir Arthur Conan Doyle, 1887.
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AbstractThis thesis deals with the numerical solutions of linear and nonlinear inverse problems.The goal of this thesis is to review and develop new techniques for solving such problems.In so doing, the computational tools for solving inverse problems are comprehensivelystudied.The thesis can be divided into two parts. In the �rst part, linear inverse theoryis dealt with. Methods to estimate noise and e�ciently invert large and full matrixesare reviewed and developed. Emphasis is given to Generalized Cross Validation (GCV)for noise estimation, and to Krylov space methods for e�cient methods to invert largesystems. This part is summarized by applying and comparing the methods developed onlinear inverse problems which arise in gravity and tomography.In the second part of this thesis, extensive use of the linear algebra and the noiseestimation methods which were developed in the �rst part of the thesis is made. A reviewof the current methods to carry out nonlinear inverse problems is given. A test exampleis constructed to demonstrate that these methods may fail. Next, a new algorithm forsolving nonlinear inverse problems is developed. The algorithm is based on the abilityto di�erentiate between correlated errors which comes from the linearization, and non-correlated noise which comes from the measurement. Based on these two types of noise,a regularization procedure which has two parts is developed. The �rst part is made ofglobal regularization, to deal with the measurement noise, and the second part is madefrom a local regularization, to deal with the nonlinearity. The thesis demonstrates thatGCV can be used in order to determine the measurement noise, and the Dumped Gauss-Newton method can be used in order to deal with the local nonlinear terms. Anotheriii



aspect of nonlinear inverse theory which is developed in this work concerns approximatesensitivities. A new formulation is suggested for the approximate sensitivities and boundsare calculated using this formulation. This part is summarized by applying the techniquesto the nonlinear gravity problem and to the magnetotelluric problem.
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Chapter 1IntroductionThis thesis deals with the numerical treatment of ill-posed inverse problems. Such prob-lems are solved on a daily basis in many disciplines such as geophysics, medical physics,image and signal processing and astrophysics. Most inverse problems arise in the physicalworld, and their solutions are used by geologists, medical doctors and others as a study-ing tool. The �eld involves people from di�erent disciplines and it is inter-disciplinary inits nature.A simple way to visualize an inverse problem is to imagine we are given a black boxand we would like to �nd out its contents. We are allowed to carry out experiments andtry and guess the contents of this box, however we are not allowed to open it. In inverseproblems, we call the contents of the box \the model", the result of an experiment, \thedata", and the experiment itself is referred to as \the forward modeling". Usually anexperiment cannot provide su�cient information to determine a unique model, i.e., therecould be more than one model which would produce the same data. In order to select themost reasonable model, we use the process of regularization. Regularization produces amodel which satis�es some speci�c criteria. Since the person interpreting the results of aninverse problem is usually not the same one who made the computations, it is importantto integrate between the �eld of application and the computational �eld, and to let thecomputational method be as 
exible as possible. While this process works reasonablywell for small problems, large problems demand special attention and thus many of thewell-known computational techniques are not utilized. The two goals of this thesis are1



Chapter 1. Introduction 2�rst to bring existing knowledge which has been developed in numerical methods intothe �eld of applied inverse problems and secondly, to develop new methodologies andalgorithms when existing methods are insu�cient.1.1 Ill-Posed Inverse ProblemsThe concept of an ill-posed problem is not new. Hadamard [1923] de�ned a problem asbeing ill-posed if the solution was non-unique, or if the solution was not continuous withrespect to the data, i.e., a small change in the data leads to a large change in the model.Hadamard did not deal with the numerics of ill-posed problems as he believed that theill-posedness arose from an incorrect physical representation of the problem. Tichonov[1963] was the �rst to deal numerically with ill-posedness, and in so doing introduced theconcept of regularization. Tichonov wanted the model to remain stable while producinga smooth approximation to the data, even if the data changed by only a small amount. Inhis work, regularization was introduced to stabilize the problem. Parker [1977 a] changedthe way regularization is viewed, by introducing a weighted regularization in order toobtain a model which not only honours the data, but also possesses some speci�c desiredfeatures. His approach was used and extended by Twomey [1977], Oldenburg [1984],Menke [1984] and others.This thesis deals with constructing discretized regularized solutions to inverse prob-lems. This is only a part of the whole �eld of inverse theory. Other avenues availablefor obtaining information about an underlying model from observed data are appraisal(Backus and Gilbert [1968], [1970]), and inference problems. These are are not dealt within this thesis. The concept of regularization to obtain a speci�c model is often calledconstruction. Construction can be viewed in two ways: the deterministic approach, andthe probabilistic approach. While the underline philosophy of these two approaches is



Chapter 1. Introduction 3di�erent, in many cases the �nal equations which need to be solved are similar. Thisthesis, in general, does not deal with the probabilistic approach. My main focus is onnumerical methods used for solving the linear or nonlinear equations and the phrase\solving the inverse problem" relates to solving the regularized equations.While the concept of regularization is well understood today, the main problem isits implementation in large problems. In recent years signi�cant advances have beenmade in the �eld of linear inverse problems by the work of Hansen [1992 a,b], [1995],Hanke and Hansen [1993], Oldenburg et al. [1991], [1993], [1994], Scales [1987], Scaleset al. [1987], [1990], [1994], Parker [1994], Parker and Whaler [1981], Nolet and Snieder[1990], and others. However there are still a number of unanswered questions, and moreimportantly, there is insu�cient understanding as to which method should be used for aspeci�c problem. In the �eld of nonlinear inverse problems there are far more advances tobe made. Firstly there is a need to incorporate techniques from linear inverse theory andcomputational methods from optimization theory. Current algorithms for the solutionof nonlinear ill-posed problems employ parameters and use heuristics which are not wellexplained. Therefore, there is a need to add rigor to these algorithms and to suggestbetter algorithms.1.2 Motivation - Problems which are SolvedThe aim of this thesis is to present practical algorithms for the solution of inverse problemsand therefore it is tied to real world examples and real data sets. The thesis deals witha number of problems. Gravity is a commonly used technique in geophysics, and canbe viewed as an archetypal problem, since it leads to large, dense matrix system ofequations. Gravity data from a one-dimensional model is used to illustrate and comparelinear algorithms in inverse problems. Two and three-dimensional gravity problems are



Chapter 1. Introduction 4used in order to illustrate computational properties of large problems. A �eld data set isused as a test example for the three-dimensional gravity problem. The gravity problemsu�ers from non-uniqueness with respect to depth and therefore, in some cases, it can bemade nonlinear by reformulating the problem in terms of interfaces. This formulationincreases the depth resolution of the method, but compromises its linearity. The nonlineargravity problem is used to test linear imaging methods and nonlinear methods.A second type of problem which is solved in this thesis is tomography. In contrastto gravity, tomography problems lead to sparse systems with better resolution. Boreholetomography is a commonly used method in the area of geophysics and a �eld data set isused to test di�erent methods. In medical physics, a commonly used tomography experi-ment is the Single Photon Emission Computed Tomography (SPECT). This thesis showshow the inversion of SPECT data can be improved by using new techniques. These tech-niques are tested on a data set obtained from a patient at Vancouver General Hospital.Finally in order to test techniques for nonlinear inverse problems, the magnetotelluric(MT) example is used. The MT problem is an archetypal problem in electromagneticsmethods in geophysics.In the next subsection short descriptions of these inverse problems are presented.1.2.1 The Gravity Inverse ProblemA surface gravity survey is carried out to measure the anomalous gravitational accelera-tion in the vertical direction. From Newton's law we know that a unit mass positionedat (xi; yi; 0) on the surface of the earth is attracted to a mass anomaly density, ��, inposition (x; y; z) inside the earth as:�gir̂ = �g(xi; yi; 0)r̂ = 
 ��(x; y; z) dx dy dz(x� xi)2 + (y � yi)2 + z2 r̂ (1.1)



Chapter 1. Introduction 5where 
 is the gravitational constant and r̂ is a unit vector pointing from the observationlocation, (xi; yi; 0), to (x; y; z). Using this relation we can describe four inverse problems.Three-Dimensional Gravity ProblemIn three dimensions, the anomalous mass can be anywhere at the region D. The gravityanomaly at a point height h above the surface would then be:�gir̂ = �g(xi; yi; h)r̂ = 
ZD ��(x; y; z) r̂(x� xi)2 + (y � yi)2 + (z + h)2 dx dy dz (1.2)However, we usually do not measure the gravity �eld itself, but rather only its verticalcomponent. The data are therefore:bi = b(xi; yi; h) = 
ZD ��(x; y; z) z[(x� xi)2 + (y � yi)2 + (z + h)2] 32 dx dy dz (1.3)The goal of this problem is to recover ��(x; y; z) from the measured data in the x � yplane.Two-Dimensional Gravity ProblemHere it is assumed that the model is only two-dimensional, i.e., �� = ��(x; z) is inde-pendent of y. We can integrate equation 1.3 with respect to y and get:bi = b(xi; h) = 
 ZD ��(x; z) z(x� xi)2 + (z + h)2dx dz (1.4)The goal of this problem is to recover the model ��(x; z) from the measured data in thex direction.One-Dimensional Gravity ProblemNow assume that we are at the edge of a fault (x = 0) and measure the gravity data onthe surface (h = 0) as plotted in Figure 1.1. On our left there is a uniform half-space



Chapter 1. Introduction 6with a known density and on our right there is a layered density which depends only onz. In this case we can divide the integral 1.4 into two quarter spaces. The integration
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Data
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∆ρ(z)

Figure 1.1: The 1-D gravity data exampleover the �rst quarter space produces zero since its density anomaly is zero. We thereforehave to carry out the integration over x:b(xi; 0) = 
Z 1z=0Z 1x=0 ��(z) z(x� xi)2 + z2dx dz (1.5)which gives b(xi; 0) = 
Z 1z=0 (�2 � atan(xiz ))��(z) dz (1.6)The goal of this problem is to recover the one-dimensional pro�le ��(z) from the datain the x direction.



Chapter 1. Introduction 7Nonlinear Gravity ProblemIt is possible to solve the gravity inverse problem as a linear inverse problem. However,for some situations a di�erent formulation is more suitable.Assume that we measure the gravitational �eld on the earth's surface. The gravityanomaly in the z direction is related to the density of the earth according to equation 1.3.Assume now that the earth has two layers with known densities and the density contrastbetween them is ��. The �rst layer has a mean depth of h(x; y) which is assumed to beknown. Changes in the gravitational �eld are due to a change in the depth of the �rstlayer relative to h. This change is given by the function m(x; y). In this case we canwrite: bi = 
Z ZD Z h+m(x;y)h z ��[(x� xi)2 + (y � yi)2 + z2] 32 dx dy dz (1.7)Integrating the expression with respect to z gives:bi = ~
Z Z D 1rhi � 1rmi dx dy (1.8)where ~
 = ��
, r2hi = (x�xi)2+(y�yi)2+h2 and r2mi = (x�xi)2+(y�yi)2+(h+m)2.The goal of the inverse problem presented in this example is to recover the surfacem(x; y) from the given gravity anomalies bj. In order to do this we would also need theFr�echet derivatives of the operator. By di�erentiating equation 1.8 with respect to m weget: @bj@m = ~
Z Z D (h +m(x; y))[(x� xj)2 + (y � yj)2 + (h+m(x; y))2] 32 dx dy (1.9)1.2.2 The Tomography Inverse ProblemA very di�erent type of inverse problem arises in tomography. Although the physicsof geophysical borehole tomography di�ers from that of medical tomography, the equa-tions are similar. The primary di�erence between the equations is the geometry of the



Chapter 1. Introduction 8experiment. While geophysical tomography is limited in view to the boreholes and thesurface, medical tomography is unlimited in its view and can observe the object fromevery direction.Radio Imaging Borehole TomographyRadio Imaging - (RIM) is a high frequency EM survey which is used to obtain informationabout electrical conductivity. A transmitter, in this case a vertical magnetic dipole, isdeployed in one borehole and a receiver coil is in another. Ray theory is adopted andthe source signal is assumed to travel along a straight line connecting the source andreceiver. The amplitude of the EM wave at the receiver is given by(Ar)i = A0ri e�Rlim(x;z)dl(x;z) (1.10)were A0 is the amplitude at the source, ri is the distance between the transmitter andthe receiver, li is the ray path and m(x; z) is an attenuation coe�cient which dependsupon the conductivity of the medium. Taking the logarithm of equation 1.10 yields alinear relationship between the attenuation coe�cient and the data:bi = log(Ar)i � log(A0) + log(ri) = �Zlim(x; z)dl(x; z) (1.11)The goal of this experiment is to estimate the attenuation m(x; z) from the discrete databi. Note that the data do not have physical dimensions.Single Photon Emission Computed Tomography - SPECTA very di�erent experiment, which can nevertheless be described by very similar math-ematics, is SPECT. This experiment is used on a daily basis in almost any large hospital.The experiment involves administering a dose of radioactive material to the patient. Thisradioactive material is attached to a molecule which targets a speci�c functional area,



Chapter 1. Introduction 9such as the heart or the brain. Active areas will emit radiation, and thus the experimentprovides information on the biochemical activity of the body.In order to collect data, a special crystal, which detects photons, is placed in collim-ated bins in a plane around the patient. A schematic of the experiment is shown in Figure1.2. The number of photons bi which is detected at bin i, at an angle �, is proportional
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Figure 1.2: The geometry of the SPECT experiment. The data at the bin is proportionalto the amount of radioactive material which is inside the black rayto the amount of radioactive material m(x; y) which is viewed by this bin. This can bewritten as: bi(�) = Zli(�)m(x; y)dl(x; y) (1.12)The experiment is done for di�erent �'s and �nally we have the data set bi(�j).



Chapter 1. Introduction 101.2.3 One-Dimensional Magnetotellurics ProblemThe one-dimensional magnetotelluric (MT) problem is a well-studied nonlinear problemin electromagnetics, (see for example Parker [1994], Dosso [1990], Whittall and Oldenburg[1992]) and therefore it is very suitable as a test example. We start with Maxwell'sequations in the frequency domain:r�E = �i!�0H (1.13)r�H = �Ewhere E and H are the three-component electric and magnetic �eld intensities, �0 is themagnetic permeability, which is assumed to be constant, ! is the angular frequency and� is the electric conductivity.Assuming that E and H are plane waves, i.e.E = (E; 0; 0) H = (0;H; 0)and that � = �(z), we can take the curl of the �rst equation in 1.13 and get:d2Edz2 = i!�0�(z)E (1.14)The boundary conditions for this equation are (see Parker [1994]):E(1) = 0E(0) = 1This is the governing equation for the MT experiments. The data for this experimentare: c0(!; �(z)) = � E(z = 0; !)@zE(z = 0; !) = � 1@zE(z = 0; !) (1.15)Our goal is to recover the conductivity pro�le �(z) from the complex measurements c0.



Chapter 1. Introduction 11It was proved by Parker [1977 b] that the data c0 are Fr�echet di�erentiable withrespect to the conductivity �(z):J(!; �(z))(:) = (@c0(!; �(z))@� ; :) = i!�0Z 10 c2(�(z); z; !)(:)dz (1.16)where: c(�(z); z; !) = � E(z; !)@zE(z = 0; !)1.3 Overview of this ThesisAs stated earlier, the aim of this thesis is to give numerical treatment for inverse prob-lems. An overview of the basic principles and techniques in numerical methods is given,which is then used to motivate and build algorithms. The thesis is divided into threemain parts. In the �rst part (Chapters 2-6) linear inverse theory is treated. Chapters2 and 3 are a basic review of the formulation of ill-posed problems and Tichonov reg-ularization. In Chapter 3 a short review of two methods, Generalized Cross Validationand the L-curve, are provided. A new interpretation is presented for the L-curve tech-nique and a connection is established with the probabilistic approach to inverse problems.Chapter 4 discusses subspace methods. It provides an overview of the truncated singu-lar value decomposition, conjugate gradient least-squares, least-squares QR as well asan explanation for the regularization properties of Krylov space methods. As part ofthe subspace formulation, a new multilevel method to solve ill-posed problems is devel-oped. Another technique for solving linear problems which is reviewed is a gradient-basedmethod. Finally, in Chapter 4, Generalized Cross Validation is extended for subspacetype algorithms. This work is new and it is a building block of a strategy to solvenonlinear problems.Chapter 5 covers the combination of subspace methods and Tichonov regularization.



Chapter 1. Introduction 12This type of regularization is often referred to as hybrid type regularization. Two al-gorithms are developed for this purpose. First, least-squares QR is utilized for hybridregularization, and then a second new Krylov space method is developed. This techniquedeals with the loss of orthogonality which is the main problem of the Krylov spaces.The last part of Chapter 5 deals with a gradient-based method for hybrid regularizationwhich was developed by Oldenburg et al. [1993], [1994].In Chapter 6, the algorithms developed in the previous chapters are tested using theexamples presented in Section 1.2. At the end of this chapter a short discussion aboutwhich method should be used for the solution of linear ill-posed problems is presented.Chapters 7-10 cover the second part of this thesis: nonlinear inverse theory. Chapter7 serves as a review of the formulation of nonlinear inverse problems, formulation of thesolution, review of minimization techniques and a review of current algorithms for thesolution of nonlinear ill-posed problems. In this chapter an example is provided to showthat one of the most common algorithms used for nonlinear inverse problems can fail.Chapter 8 is dedicated to the development of computational techniques for nonlinearinverse problems. A new method for solving nonlinear inverse problems, based on Gen-eralized Cross Validation and Damped Gauss-Newton steps is developed, along with adiscussion on the calculations of such solutions when the problem is large.Chapter 9 reviews some of the methods to approximate sensitivities using cord up-date, Approximate Inverse Mapping (AIM) and secant update. A new global concept ofapproximate sensitivities is developed. This new concept can be used to provide a boundon the solution obtained by using approximate sensitivities.Chapter 10 is a summary of the nonlinear chapters. The algorithms developed inChapters 7-9 are tested on two nonlinear inverse problems, the nonlinear gravity and theMT problems, which were presented in Sections 1.2.2 and 1.2.3.



Chapter 2Formulation and Pre-Processing of the ProblemThis chapter contains the basic tools for the formulation of linear inverse problems whichare used later for the nonlinear case and it is mainly a review of the work of Elden [1977],[1982], [1990], Hansen [1995], Engl et al. [1996]. We review the discretization processand the transformation of inverse problems into a standard form. These two stages ofpre-processing of the problem are important because they allow similar treatment fordi�erent problems.2.1 Formulation of Linear ProblemMost inverse problems describe the continuous world, with an origin in Fredholm integralequations of the �rst kind. Let H be a Hilbert space, let m(t)2H be the model and letb = [b1:::bN]T be a vector of the measured data. This thesis deals with problems wherethe connection between m and b is:bi = ZDK(si; t)m(t)dt + �i (2.1)Where K(s; t) is a smooth kernel (i.e. the kernel does not posses singularities), �i isthe measurement noise assumed to be approximately Gaussian and D is the domain ofintegration. Our goal is to �nd the model m given the noisy data b.The �rst question which might be asked is how to discretize the system. There aretwo approaches to the problem. The �rst is to discretize it with a number of parametersM which is smaller than N . In this case problem 2.1 becomes a well-posed least-squares13



Chapter 2. Formulation and Pre-Processing of the Problem 14system. This approach is taken on a regular basis in medical physics but its majordisadvantage is that it imposes regularization on the problem by making the solution liein a small subspace which does not necessarily �t the problem. Since m2H, it is betterto discretize the system as �nely as possible such that the discrete system possesses someof the characteristics of the continuous system. In this work the system is discretizedwith a number of parameters M > N .The discretization can be carried out by two main methods. First it is possible toapproximate the integral 2.1 by some quadrature rule:ZDK(sj ; t)m(t)dt � MXi=1wiK(sj ; ti)m(ti)�ti (2.2)which leads to the rectangular system:b = A x + � (2.3)where Aji = wiK(sj ; ti)�ti and x = m(ti) is a vector in RM .A di�erent method for discretization uses Galerkin methods. Let  i(s), i = 1:::M bean orthonormal set of basis functions. If the solution m =PMi=1xi i(s) then, the integralcan be written as: ZDK(sj ; t)m(t)dt = MXi=1xiZDK(sj; t) i(t)dt (2.4)which again gives a system of equations:b = A x + � (2.5)where Aji = RDK(sj; t) i(t)dt and x is a vector of coe�cients.The choice of discretization method is problem dependent. While quadrature methodsare somewhat easier since they need only the estimate of the kernel at some points,Galerkin methods may be more accurate and require fewer unknowns to obtain the sameaccuracy.



Chapter 2. Formulation and Pre-Processing of the Problem 15In both cases the matrix A : RM!RN is typically ill-conditioned and the data containnoise, therefore regularization is needed for the solution of the problem. In this thesisthree possible types of regularization are analysed:� Tichonov regularization, which involves the de�nition of a norm or a semi-normjjWxjj and looking for a solution of a global objective function:minimize �(�; x) = jjAx� bjj2 + �jjWxjj2 (2.6)The minimization problem is equivalent to the solution of the least-squares system:24 Ap�W 35x = 24 b0 35 (2.7)This type of regularization is analysed in Chapter 3.� Subspace regularization, which involves the de�nition of a k dimensional subspaceSk, k < N and solving the minimization problem:minimize �d(x) = jjAx� bjj2 x2Sk (2.8)If we let Sk = span(Vk) then x = Vkz and the minimization problem is equivalentto the solution of the least-squares system:AVkz = b (2.9)This type of regularization is analysed in Chapter 4.� Hybrid regularization, which involves the de�nition of a norm or a semi-norm jjWxjjand a subspace Sk, k < N and solving the minimization problem:minimize �(�; x) = jjAx� bjj2 + �jjWxjj2 x2Sk (2.10)



Chapter 2. Formulation and Pre-Processing of the Problem 16If we let Sk = span(Vk) then x = Vkz and the minimization problem is equivalentto the solution of the least-squares system:24 AVkp�WVk 35 z = 24 b0 35 (2.11)This type of regularization is analysed in Chapter 5.2.2 Characteristics of Inverse ProblemsMost inverse problems have common characteristics. Perhaps the most important one isthe behaviour of the spectrum. Let A = USV T (2.12)be the singular value decomposition (SVD) of A, where V = [v1:::vM], is anM�N matrixwhich spans the active part of the model space, U = [u1:::uN] is an N�N matrix whichspans the data space and S = diag(�1:::�N) with singular values �1 > �2 > :::�N�0 is adiagonal matrix of size N�M . Although it is impossible to prove in general, the largesingular values are associated with smooth singular vectors, v, and the small singularvalues are associated with oscillatory vectors. This characteristic is of major importancewhen dealing with inverse problems. It can also be shown (Sterling and Porter [1990]) thatthe singular value decomposition is closely related to the singular function expansion ofthe operator RDK(s; t)(:)dt. In most inverse problems the model is assumed to be smooth,and this thesis deals only with this kind of model. Smooth models contain mostly vectorswhich are associated with large singular values. This characteristic of the model is alsoused extensively throughout this thesis.



Chapter 2. Formulation and Pre-Processing of the Problem 172.3 Reduction to Standard FormThe Tichonov formulation of the inverse problem discussed above is regularized with anarbitrary norm. This leads to some complications in the analysis of the methods, andlater on, to problems with implementation of the regularization especially in subspaceand hybrid methods. It was therefore suggested to transform 2.6 into the standard formwhich is: minimize �s(�; x) = jjAx� bjj2 + �jjxjj2 (2.13)This transformation is discussed by Elden [1977], [1982], [1990] and Engl et al. [1996]and we review it here with some modi�cation. There are three possible cases: W issquare and well-posed, W is rectangular and over determined and W is rectangular andunder-determined.The matrix W can represent either a priori knowledge about the problem (such asin Li and Oldenburg [1996]) or a general regularizer to get a speci�c type of solution forexample a smooth one. In this work the matrix is the discretization of the continuousoperator: W (:) = 26664�1r2(f1(t)(:))�2r(f2(t)(:))�3f3(t)(:) 37775 (2.14)where fi(t) i = 1; 2; 3, are semi-positive functions. This could lead to an over-determinedW . Another possibility is to choose W such that it corresponds to a di�erential operatorof the form: W (:) = �1r2(f1(t)(:)) + �2r(f2(t)(:)) + �3f3(t)(:) (2.15)This could lead to a square or an underdeterminedW . The underdetermined case appearsif the di�erential operators do not include boundary conditions. In this case the operatorsare calculated only for the points which are inside the domain. The discretization of the



Chapter 2. Formulation and Pre-Processing of the Problem 18di�erential operators is done using central di�erences and, in one dimension we use thestencil [�1; 1] or [�1; 0; 1] for the �rst derivative and the stencil [1;�2; 1] for the secondderivative. We now discuss the three possible situations.2.3.1 W is Square and Well-PosedFor this simple case we let ~x =Wx and rewrite 2.6 as:�(�; ~x) = jjAW�1~x� bjj2 + �jj~xjj2De�ne ~A = AW�1. The problem is now in its standard form with the operator ~A insteadof A.2.3.2 W is Over-DeterminedThe over-determined case is only slightly more complicated than the square case. In thiscase: W = 2666666666664�1W1�2W2::�pWp 3777777777775is a pM�M size matrix, and has a unique generalized inverse W y which obeys:W yW = IThis enables us to write the minimization problem as:�(�; ~x) = jjAW y~x� bjj2 + �jj~xjj2where again ~x = Wx, and the matrix A is replaced by AW y. Notice that for this case,the matrix AW y is N�pM and the transformed model ~x is of size pM .



Chapter 2. Formulation and Pre-Processing of the Problem 19Another possibility for the transformation in this case is to form the matrix Q =W TW and to use the Cholesky decomposition in order to obtain an upper triangularM�M matrix ~W such that ~W T ~W = Q. If we take this approach then we go back to thecase that W is square.The choice between the method of transformation depends on the size of the problemand the method of solution. For small and medium sized problems it might be easyto carry out the Cholesky decomposition of Q and store the matrix ~W . However forvery large scale applications where the matrix W TW could not be decomposed, we useiterative methods for the solution of the inverse problem, and need only the applicationof W y on a vector, v. In this case it might be better to calculate W yv when needed andnot compute and store ~W .2.3.3 W is Under-DeterminedThe case which is the most di�cult is the case of W under-determined. The main reasonis that if we try to set ~x = Wx then x cannot be recovered by using the generalizedinverse W y because W has a nontrivial null space, i.e. W yW 6=I.For this case let W be a P�M matrix with a pseudo-inverse W y and let W0 be anM�(M � P ) size matrix which contains the null space of W , i.e. WW0 = 0. UsuallyP is close to M and the null space, which contains only M � P independent vectors, isrelatively small. The solution x can be divided into two parts, one which is in the activespace of W , and one which is in the null space of W :x = xW + x0 = W yA~x+W0~x0where ~x is a P -vector and ~x0 is M � P vector. The matrix W yA is of size M�P whichprojects any P -vector to the active space of W . The goal of this decomposition is tochoose W yA such that the problem is transformed into the standard form. Substituting



Chapter 2. Formulation and Pre-Processing of the Problem 20this decomposition in 2.7 gives:24 Ap�W 35 [W yA~x+W0~x0] = 24 b0 35 (2.16)This is equivalent to these two systems equations:AW yA~x+AW0~x0 = b (2.17)WW yA~x+WW0~x0 =WW yA~x = 0From these two equations we can getW yA which transforms the problem into the standardform. First, WW yA should give the identity, which is similar to the over-determined andthe square case. While this character ofW yA takes care of active space ofW in the solutionit does not take care of the null space of W . Since ~x0 appears only in the �rst equationof 2.17 it could be expressed as:~x0 = (AW0)yb� (AW0)yAW yA~x (2.18)where (AW0)y is the generalized inverse of AW0. This expression has two parts: (AW0)ybwhich depends only on the data, b, and (AW0)yAW yA~x which depends on ~x. If ~x0 is notdependent on ~x then the problem is separable and we could solve for ~x0 �rst and thenget an equation for ~x which is in the standard form. This happens only if:(AW0)yAW yA = 0If W yA is equal to the generalized inverse of W , W y, then WW y = I, but (AW0)yAW y 6=0and therefore this choice is not a good one. Elden [1982] has proposed that:W yA =W y �W0(AW0)yAW y (2.19)This choice is good since:WW yA = W (W y �W0(AW0)yAW y) = WW y �WW0(AW0)yAW y = I � 0 = I



Chapter 2. Formulation and Pre-Processing of the Problem 21and (AW0)yAW yA = (AW0)yA(W y �W0(AW0)yAW y) =(AW0)yAW y � (AW0)yAW0(AW0)yAW y = (AW0)yAW y � (AW0)yAW y = 0The matrix W yA is often referred to as the A weighted generalized inverse of W . Usingthe matrix W yA, W0, x0 and ~x, the problem can be reformulated. First x0 is found:x0 = W0(AW0)yb (2.20)then we are left with the standard form for the P vector ~x:24 ~Ap�I 35 ~x = 24 b035 (2.21)where ~A = AW yA is an N�P matrix.2.3.4 Practical ImplementationFrom a practical point of view it is useful to separate iterative methods, where onlyproducts of the form ~Av and ~ATu are calculated, from direct methods where ~A is actuallycalculated.First we discuss the cases of W well-posed or over-determined. In iterative methodswe calculate products of the form AW�1u or AW yu and (W T )�1ATv = W�TATv or(W y)TATv . These operations are divided into two parts, �rst the solution of the systemWp = u is calculated, then the multiplication of Ap is calculated. The transpose is doneby �rst calculating the product p = ATv and then solving the system W Tq = p. IfW is given by an elliptic di�erential operator the solution of the systems Wp = u andW Tq = v can be done in O(M) operations using multigrid methods as suggested byDendy [1982]. The problem with multigrid solvers is that they are generally complicatedfor general purpose algorithms. In this thesis we have used a direct LU solution for small



Chapter 2. Formulation and Pre-Processing of the Problem 22scale systems and BICG, BICG-STAB or GMRES with incomplete LU preconditioning(as suggested in Saad [1996]) for the solutions of the di�erential systems. In general ifthe di�erential system is well-conditioned, the number of operations is of order M1+
(with 
�0:3) which is usually satisfactory even for large scale problems (30000-100000unknowns). Solving the inverse problem typically requires at least O(kNM) operations(where k is some integer and hopefully k�N) and therefore the reduction to standardform does not impose major di�culty.If we choose to use a direct method then the calculation of ~A is done for each rowseparately. Let aTk be the kth row of A and let ~aTk be the kth row of ~A. The matrix~A = AW�1 and therefore: ~AT =W�TATFor each vector ak and ~ak we can write:W T~ak = ak (2.22)Thus ~ak is calculated a row at a time, and the calculation of ~A takes O(M1+
N) opera-tions.When W is underdetermined, the product W yAv and (W yA)Tu is somewhat more di�-cult. First we need to obtain the null space of W . LetW = [W1;W2]where W1 is a P�P matrix and W2 is a P�(M � P ) thin matrix. The null space of Wcan be found by: W0 = 24W�11 W2�IM�P 35Using this matrix we form the N�(M � P ) matrix:A0 = AW0



Chapter 2. Formulation and Pre-Processing of the Problem 23This matrix is usually small and can be stored. Using it we calculate the component ofthe solution which is in the null space of W :x0 = (A0)yband the residual b0 = b�Ax0assuming again that the operation of the generalized inverse of W on a vector is easyto obtain, the product of W yAv and (W yA)Tu is done sequentially. First we calculate theproduct: s = W yv, then calculate s0 = W0((AW0)y(As)) and �nally subtract s � s0 toget the result. The transpose is carried out in the opposite order.If we choose to work with direct methods then again the calculation of ~A is done foreach row separately. This is done by solving the system:W T~ak = ak (2.23)with the A weighted generalized inverse.In general, in order to make the reduction to standard form e�cient, fast solvers tothe systems Wq = v and W Tp = u are needed. If such solvers are not available then thereduction to standard form should be avoided. This would make Tichonov regularizationmore expensive and it would give an advantage to full space methods.



Chapter 3Tichonov RegularizationIn 1963 Tichonov proposed that the solution x should not �t the data exactly. Theproblem of �nding a solution to 2.3 is transformed into a minimization problem:minimize �(�; x) = jjAx� bjj2 + �jjWxjj2 = �d + ��m (3.1)The function �(�; x) which is used extensively in this thesis is referred to as the globalobjective function, �d is the data mis�t function and �m is the model objective function.The parameter � is a penalty parameter which determines how well the solution should�t the data. As � becomes large the solution �ts less well to the data and as � becomesvery small, the solution starts to �t noise. � is adjusted such that the solution �ts thedata in some optimal way. This is discussed in Sections 3.2-3.4.The solution to the minimization problem 3.1 is achieved by di�erentiating withrespect to x and forcing it to zero. This gives:(ATA+ �W TW )x = ATb (3.2)The system, 3.2, is also equivalent to the least-squares system:24 Ap�W 35x = 24 b0 35 (3.3)3.1 Analysis of Tichonov RegularizationIn order to understand the basic properties of regularization it is often useful to lookat the spectrum of the operator and the way it is a�ected by the speci�c regularization24



Chapter 3. Tichonov Regularization 25method. Let: A = USV T (3.4)be the singular value decomposition (SVD) of A described in section 2.2. Using the SVDthe system 3.2 (assuming in standard form) can be written as:(ATA+ �I)x = (V S2V T + �I)x = V (S2 + �I)V Tx = V SUT bMultiplying both sides in V T gives:(S2 + �I)V Tx = SUT band x = V (S2 + �I)�1SUT b = V S�1(S2 + �I)�1S2UTbThis can also be written as: x = V S�1DTUTb (3.5)where D = (S2 + �I)�1S2. In vector format this can be written as:x = NXi=1fT (�i)bTui�i vi (3.6)where fT is the Tichonov �lter function:fT (�) = �2�2 + � (3.7)Figure 3.1 shows the Tichonov �lter for di�erent �'s. The �lter penalizes vectors which areassociated with �2��. Thus the role of Tichonov regularization is to damp the singularvectors which are associated with small singular values. This process is fundamental toregularization of inverse problems.



Chapter 3. Tichonov Regularization 263.2 Discrepancy PrincipleWhile the idea of regularization is clear, so far we have not discussed how much toregularize. In the Tichonov regularization case it is clear that if the penalty parameter � istoo small, the model �ts noise and if the regularization parameter is too large then some ofthe original signal is damped. If the noise level is known then the regularization parametercan be determined. This principle is often refered to as the discrepancy principle (Englet al. [1996]).Assume that the noise is Gaussian with mean 0 and standard deviation � i.e. �/N(0; �).The true solution xr obeys:�d = jjb�Axrjj2 = jj�jj2 = NXi=1�2i = �2 NXi=1(�i� )2The last sum is simply a sum of N squared Gaussian random variables with mean zero andunit standard deviation. This sum is another random variable which can be describedby the �2 distribution function. The expected value of this variable is simply N andtherefore the expected value of the mis�t is:�d� = �2N (3.8)
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Chapter 3. Tichonov Regularization 27According to the discrepancy principle the right � is found by solving:jjb�Ax(�)jj2 = jj(I �A(ATA+ �I)�1AT )bjj2 = N�2 (3.9)This is a nonlinear equation in one unknown � which can be solved in various ways.Techniques to solve this equation have been proposed by Parker [1994], Engl et al. [1996]and Golub and Von-Matt [1991]. The major cost of the solution of such problem is thecalculation of the function, which requires the inversion or decomposition of ATA+ �I.The discrepancy principle is also closely related to constraint minimization. In thiscase the inverse problem is formulated as:minimize jjWxjj2 (3.10)subject to jjAx� bjj2�TUsing this formulation a Lagrangian is formed:L(�; x) = ��1(jjAx� bjj2 � T ) + jjWxjj2 (3.11)The Lagrangian is then minimized over x and maximized over �, and the stationary pointwith respect to � is a saddle point. In the linear case di�erentiating the equation withrespect x and � gives exactly the same equations as Tichonov regularization 3.2. TheTichonov formulation is often referred to as a penalty formulation and although the �nalequations are identical, the philosophy of the penalty and the Lagrangian formulations aredi�erent. While the Lagrange formulation forces us to de�ne a target mis�t T the penaltyformulation is more general and allows other possibilities for the choice of regularizationparameter, such as the model norm or some relation between the mis�t and model norm.In this thesis the formulation which is used is the penalty one because it is more generaland leads to simpler algorithms from non-constrained optimization, although parallelexplanations to many of the processes can be found in constrained optimization.



Chapter 3. Tichonov Regularization 283.3 Generalized Cross ValidationWhile there is a statistical estimate of the mis�t when the noise level is known, real datararely come with standard deviations. The main reason is that geophysical experimentsare costly and rarely repeated more then once. Most applications ignore this di�cultyby guessing the noise level, which is, of course, not a very good idea. One of the moresuccessful methods to deal with this problem is the Generalized Cross Validation (GCV)and we review it in this section.The major idea of GCV is that a good model could predict new data points. Wecannot go to the �eld and measure a new datum each time we try a new regularizationparameter to verify our solution and therefore we simulate the experiment by eliminatingone datum from the data set. A good solution of the reduced data set, should predictthis datum fairly well even if it was not used when calculating the model. This idea isrepeated for each datum and therefore the model obtained in this way is the model whichcan predict most of the data points even if these data points are not used.In mathematical language, this is done by introducing the following notation. Letxk(�) minimize: �k = jjAx� bjj2 � (aTk x� bk)2 + �jjxjj2 (3.12)where aTk is the kth row of A and bk is the kth data point. Notice that �k is the sameobjective function as 3.1 but with the kth data point and equation missing. We can nowask, how well is the kth datum predicted when it is not used? This can be measured by:(aTk xk(�)� bk)2The Cross Validation function is de�ned as the sum of the squares of these di�erencesbetween a predicted datum and the actual datum, for all data points:CV (�) = NXk=1(aTk xk(�)� bk)2 (3.13)



Chapter 3. Tichonov Regularization 29The minimum of the CV function with respect to � represents the � for which the modelwould change the least if we drop one data point.The CV as it is de�ned above is not very practical to compute because it involvessolving N systems for di�erent regularization parameters. A shortcut was found byWahba [1977] who proved that:CV (�) = NXk=1(bk(�)� bk)2(1 � ckk)2 (3.14)where x(�) = (ATA + �I)�1ATb, bk(�) = aTk x(�) and ckk is the kk element of C =A(ATA+ �I)�1AT .The Cross Validation function has one unfavorable behaviour. If the matrix A andthe data b are rotated by an orthogonal transformation to form a new rotated system,the minimum of the Cross-Validation function for this new system changes. ThereforeGolub et al. [1979] suggested replacing the Cross-Validation by the Generalized CrossValidation which keeps its minimum under orthogonal transformations. The GCV isde�ned as: GCV (�) = jjb(�)� bjj2trace(I � C(�))2or explicitly GCV (�) = jj(I �A(ATA+ �I)�1AT )bjj2[trace(I �A(ATA+ �I)�1AT )]2 (3.15)The GCV function is again a function of � alone and various optimization methods can beused in order to minimize it. The major step in calculation of the GCV function involvethe inversion and calculation of (ATA+ �I)�1 and the estimation of the trace elementsof the denominator. In a recent paper Golub and Von-Matt [1996] have developed a fastmethod to compute a close approximation to the GCV function for the over-determinedcase (M < N). We will use similar methodology when using hybrid methods (Chapter5).



Chapter 3. Tichonov Regularization 303.4 The L-CurveRecently Hansen [1992 a] has developed the L-curve technique as a method to predictthe regularization parameter. Although this technique does not have a formal proof, it isoften used because of its simplicity. In this section we prove the connection between theL-curve and the probabilistic approach to inverse problems. According to this connection,a new choice of regularization parameter is proposed.3.4.1 Description of the L-CurveThe L-curve is made by plotting the log of the mis�t (log(jjAx � bjj2)) as a functionof the log of the model norm (log(jjxjj2)) which are obtained for di�erent regularizationparameters. As �!0 the model norm goes to in�nity and the mis�t is low, and as �!1the model norm goes to zero but the mis�t goes to jjbjj2. The plot has a typical L shape(Figure 3.2).
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Chapter 3. Tichonov Regularization 31derivative of the curve. While his approach was heuristic in nature we prove that ifthe place which is chosen on the curve is di�erent from the corner, the L-curve strategyagrees with the probabilistic approach.3.4.2 The Probabilistic ApproachThe probabilistic approach (Tarantola et al. [1982], Tarantola [1987]) looks at the prob-ability density function of the noise �P (� = b�Ax) = Cbexp(�jjb�Axjj22�2 ) (3.16)where Cb is a normalization constant. In the probabilistic approach we also de�ne theprobability of the model x. It is often assumed that the model x is Gaussian with 0mean and known constant standard deviation �x. The probability density function ofthe model is: P (x) = Cxexp(�jjxjj22�2x ) (3.17)The next stage is to look at the probability of the model given the data:P (xjb) = Cexp(�jjxjj22�2x � jjb�Axjj22�2 ) (3.18)where again C is a normalization constant.The main idea in the probabilistic approach is to maximize the probability of themodel given the data, which is equivalent to the minimization of:minimize � = jjb�Axjj2+ �2�2x jjxjj2 (3.19)We therefore see that if the distribution of the errors and the model parameters areGaussian with known standard deviations � and �x, then the regularization parameter� is simply: � = �2�2x (3.20)



Chapter 3. Tichonov Regularization 32This fact can be taken into consideration when searching the regularization parameterwith unknown standard deviations. One could think of the following search method:� Search Method� 1. Choose regularization parameter �.� 2. Minimize 3.19, get x(�) and �(�) = b�Ax(�)� 3. Calculate �(est)2(�(�)) = �(�)T�(�)=N and �(est)2x(x(�)) = x(�)Tx(�)=M� 4. If: �(est) = �(est)2�(est)2x��accept the regularization parameter.A similar approach was suggested by Claerbout [1985]. However he did not carry out aline search, but tried to boot-strap in order to directly estimate the standard deviations.We now show that this approach is connected to the L-curve.3.4.3 Connection Between the Probabilistic Approach and the L-CurveIn order to show the connection to the L-curve we look again at the minimization problem3.1. minimize � = �d + ��mNotice that if x�N(0; �x) then:�(est)2x(x(�)) = x(�)Tx(�)=M = �m=M (3.21)and if ��N(0; �) then �(est)2(�(�)) = �(�)T�(�)=N = �d=N (3.22)



Chapter 3. Tichonov Regularization 33If � is minimized with respect to x then at the minimum:d� = d�d(xmin(�)) + �d�m(xmin(�)) = 0Therefore: d�d(xmin)d�m(xmin) = �� (3.23)If we combine the relation 3.20 to the probabilistic relations 3.23 and the estimated� and �x from 3.22 and 3.21 we get: d�dd�m = �M�dN�mor dlog(�d)dlog(�m) = �MN (3.24)more speci�cally: d[log(jj(I �A(ATA+ �I)�1AT )bjj)]d[logjj(ATA+ �I)�1AT )bjj] = �MN (3.25)The L-curve is log(�d) as a function of log(�m). The point on the curve which is suggestedhere is the one at which the derivative satis�es 3.24. Again this equation is a nonlinearequation with one unknown parameter and can be solved by the same methods as theGCV or discrepancy principle.Let us look at this point. If the number of model parameters is close to the number ofdata, then the slope is close to �1 and the result should be close to the knee of the curve.In this case this result will be close to Hansen's criteria (Hansen [1992 a]). However asthe number of data grows, the slope should get closer to 0. This means that the pointwill lie to the right of the knee, and the regularization parameter should go to 0. In theother extreme, if the number of model parameters grows, the slope will approach in�nityand the point would lie to the left of the knee, and the regularization parameter wouldapproach 1.



Chapter 3. Tichonov Regularization 343.5 Practicalities and Limitations of Tichonov Regularization3.5.1 Advantage of Invertible Objective FunctionThe operator W can be chosen arbitrarily. After it has been chosen we transform theproblem into its standard form as discussed in Chapter 2. The only problematic caseof W under-determined has to be handled with care. In most cases W is some formof di�erential operator and the null space can be calculated analytically. In general itis useful to avoid the case of W under-determined by adding a small number � to itsdiagonal. The advantage of using W square is that we could use a canned solver such asthe black box multigrid (Dendy [1982]) for the solution of Wv = q and W Tu = p. If weadd � to the diagonal, the solution does not change signi�cantly and the change can bequanti�ed with some arithmetic. Letx1 = (ATA+ �W TW )�1ATband x2 = (ATA+ �W TW + �I)�1ATbWrite B = (ATA+ �W TW ) and s = AT b. The di�erence between the solutions is:x1 � x2 = B�1s� (B + �I)�1s = B�1(I � (I + �B�1)�1)s = (3.26)B�1(I � I + �B�1 +O(�2)B�2)s = (�B�2 +O(�2)B�3)sand therefore: jjx1 � x2jj��jjB�1x1jj+O(�2)Notice that the smallest singular value �min(B)���min(W ) = ~� and therefore:jjx1 � x2jj� �~� jjx1jj+O(�2)



Chapter 3. Tichonov Regularization 35The di�erence between the models is O(�) and from a practical point of view it issimpler to work with a well-posed system. One more reason why this change is usuallyjusti�ed is that in most cases the choice of W is somewhat arbitrary. The reason is thatW represents prior knowledge about the model which is usually not in a form of a hardconstraint and in most cases is based on interpretation. Therefore changing the objectivefunction in a slight way should not be of major concern when formulating the problem.3.5.2 Solving the EquationsIn order to practically solve the inverse problem one needs to decide on a method forthe estimation of the regularization parameter (discrepancy principle, GCV or L-curve),�nd this regularization parameter and solve the system. All three methods require thecalculation of a function of one parameter �, which involves the inversion of (ATA+�I),which requires O(M3) operations. Usually the function has to be calculated several timesand this will increase computational time even for relatively small scale problems. Forthis reason it might be better to decompose the matrix A, for example using the SVDof A which is O(12NM2). Elden [1982] has proposed a cheaper variation. He suggesteddecomposing the matrix A into: A = UBV T (3.27)where UTU = UUT = I, V TV = I and B is bidiagonal. This decomposition is onlyO(4NM23 ). Using the decomposed system the problem is transformed into:Bz = y (3.28)where z = V Tx and y = UT b. The regularized solution is then:z = (BTB + �I)�1BTy (3.29)The calculation of (BTB + �I)�1BTy requires only O(N) operations and therefore thesearch for a regularization parameter is computationally e�cient. After the regularization



Chapter 3. Tichonov Regularization 36parameter is found, and z is calculated, the solution x is calculated by projecting z intothe model space: x = V z (3.30)The two main bottle-necks in the Tichonov regularization are the computation ofthe inverse or the decomposition of A and the storage of the orthogonal matrices U andV . The solution of the system requires O(4NM23 ) operations which might be very largeeven for moderate M 's. The storage requirement for V is M�N and for U is N�N andthat could be prohibitive. In many applications such as the three dimensional gravityproblem, the matrix A itself is too large to be stored and the only things which can becalculated are products of the form Av and ATu. This type of application can not behandled with Tichonov-style regularization. We therefore turn to subspace methods.



Chapter 4Subspace MethodsMost real world problems have two or three dimensions which lead to problems with afew thousand to a few million unknowns. Tichonov regularization solutions take a longtime and considerable memory, and some shortcut is desired. The simplest shortcut isto discretize the problem with only a few parameters, which leads to an over-determinedsystem. As stated in Chapter 2, this is not a good idea since coarse discretization canbe viewed as forcing the solution to lie in a small subspace (chosen by the discretization)which might not �t the problem. Subspace methods can be viewed as a transformationof the problem into a small tractable subspace, and the major di�erence from naiveunder-parametrizing is that the subspace is an appropriate one for the problem.In a more mathematical formulation we de�ne a subspace Sk with k�N < M andsolve the minimization problem:minimize jjAx� bjj2 (4.1)subject to x2SkProblem 4.1 leads to a well-posed over-determined system for a good choice of Sk and asmall enough k. In this thesis we review and explore four methods for choosing such asubspace. The most obvious subspace is that which is spanned by the singular vectors.Other methods try to obtain cheap approximations to the singular vectors. We review andexplore the Krylov space, spaces from di�erent grids and subspaces based on gradients.We then discuss the question of how many subspace vectors should be used, which is37



Chapter 4. Subspace Methods 38equivalent to the choice of regularization parameter. We review the choice in the case ofdiscrepancy principle and in the case of the L-curve, and develop the GCV principle forthe selection of the subspace size.4.1 The Truncated Singular Value DecompositionPerhaps the most natural subspace to understand is the truncated SVD (TSVD) (Varah[1983], Van Hu�el and Vandewalle [1991]). In TSVD the matrix A is decomposed intoits singular-values and singular-vectors. The least-squares solution with zero mis�t, canbe written as: x = V S�1UT b = NXi=1uTi b�i vi (4.2)As stated before, typically, the small singular values correspond to oscillatory singularvectors and cause an increase of the norm of the solution, but they do not have a bige�ect on the mis�t. The simplest regularization is to throw away singular vectors viassociated with small singular values. This is equivalent to de�ning a �lter function ofthe form: fTSVD(�) = ( 0 ���1 � > � (4.3)The solution x can be written as:xTSVD = kXi=1uibT�i vi = NXi=1fTSVD(�)uibT�i vi (4.4)where k is the index of the last singular value which is bigger than �. The solution isspanned by [v1:::vk] which is a subspace of the whole active space of A, [v1:::vN]. It is wellknown that while this solution is mathematically di�erent from the Tichonov solution,it approximates it well.A di�erent way to look at this process is to de�ne the regularization problem as a



Chapter 4. Subspace Methods 39minimization problem in the form:minimize jjAx� bjj2 (4.5)subject to x2Skwhere Sk is a subspace spanned by Vk = [v1:::vk].The major advantage of TSVD is the separation of the problem to its eigen-modes, anddistinguishing the important modes from the minor ones. This is a very basic principle inmathematics and physics. The major problem of the TSVD is that it costs O(12M2N)operations, and therefore cannot be practically used on large scale problems. While itis expensive to calculate the whole SVD, the solution uses only k vectors and typicallyk�N . The main question is then: is it possible to calculate a cheap approximation tothese k vectors? If such approximations are found, then a cheap solution to the systemwith similar properties to the TSVD can be constructed. In the next two sections wediscuss such approximations.4.2 Approximations From Krylov SpaceSome of the most robust and successful algorithms to approximate the large singularvectors use the Krylov space (Lanczos [1961]). The Krylov space is the space:K(A;u; n) = span(ATu; (ATA)ATu:::(ATA)n�1ATu) (4.6)where u2RN .In this section we review some of the Krylov space algorithms which are useful for thesolution of ill-posed problems. We start with Lanczos bidiagonalization process whichleads to the least-squares QR (LSQR). It has been shown by Paige and Saunders [1982]that LSQR is equivalent in in�nite precision to the conjugate gradient least squares



Chapter 4. Subspace Methods 40(CGLS) method which we review next. We then analyze the regularization propertiesof Krylov space methods and discuss the situations in which Krylov space methods canfail.4.2.1 Bidiagonalization and the LSQR MethodOne way to obtain an approximation to the singular values and vectors of A is by Lanczosbidiagonalization. In this subsection we review the process as presented by Golub andVan Loan [1996] and explain its connection to the LSQR.The goal of complete bidiagonalization is to generate the N�N matrix U = [u1:::uN],and the M�N matrix V = [v1:::vN] where UTU = I and V TV = I, and an N�Nbidiagonal matrix: B = 2666666666664�1 0 ::: 0�1 �2 ::: 0:: :: ::: :::: :: ::: 00 ::: �N�1 �N 3777777777775such that: UTAV = B (4.7)or A = UBV T$ATU = V BT$AV = UBNotice that U and V are not the singular vectors discussed in the previous section.Let �1:::�N and �1:::�N�1 be the diagonal elements of B, we can write:Avk = �kuk + �kuk+1 k = 1:::N � 1and ATuk = �kvk + �k�1vk�1 k = 2:::N



Chapter 4. Subspace Methods 41De�ning: pk = Avk � �kukrk = ATuk � �k�1vk�1�0v0 = 0we can conclude from the orthonormality of the vectors of U and V that:�k = �jjrkjj; vk = rk=�k�k = �jjpkjj; uk+1 = pk=�kThese equations de�ne the bidiagonalization process, given a matrix A and a startingvector u12RN :Lanczos Bidiagonalization� Choose a vector u12RN , set v0 = 0.� �1 = jju1jj, u1 = u1=�1� for i=1:k{ r = ATui � �i�1vi�1;{ �i = jjrjj; vi = r=�i;{ p = Avi � �iui;{ �i = jjpjj; ui+1 = p=�i;If rank(A) = N , then no zero �k arise, however if �k!0, then the matrix is \almost"rank de�cient. This character of the decomposition is used in the next chapter whendiscussing hybrid methods.



Chapter 4. Subspace Methods 42Now assume that only k steps of the bidiagonalization are carried out with a startingvector b. We have the N�(k + 1) matrix Uk+1 = [u1:::uk+1], where u1 = b, the M�kmatrix Vk = [v1:::vk] and the (k + 1)�k bidiagonal matrix Bk . The matrices obey therelation: AVk = Uk+1Bk (4.8)It has been shown by Parlett [1980] and Golub and Van Loan [1996], that if the startingvector u contains the singular vectors which are associated with the large singular values,then the space spanned by the vectors in U and V contains good approximations to thespace spanned by the k singular vectors of A. More over, the singular values of Bk, whichare called the Ritz values, are good approximations to the singular values of A. Usingthis partial decomposition we can get a cheap approximate solution to the system.Let xk lie in the space which is spanned by Vk, thenxk = VkzSubstituting for x in 4.8 we can write:Axk = AVkz = Uk+1Bkz = bMultiplying both sides by UTk+1 and remembering that u1 = b is orthogonal to the rest ofthe ui's we obtain: UTk+1b = �1e1 with e1 = [1; 0:::0]T . This gives the system:Bkz = �1e1 (4.9)Bk is only a (k + 1)�k matrix and therefore the solution for z is straight forward.This type of solution requires storing the M�k matrix Vk, which for very large scaleapplications might be very large. Paige and Saunders [1982] found an iterative way toupdate the solution for every new vector vk and a bidiagonal elements �k and �k which arefound in each iteration. Their algorithm is called LSQR and it is one of the more stable



Chapter 4. Subspace Methods 43algorithms for the solutions of least-squares problems (Bj�ork and Strakos [1995], Bj�ork[1990], [1996]). Each step of the LSQR contains two parts. In the �rst part the vectorsvk, uk are found through Lanczos bidiagonalization. In the second part an orthogonaltransformation is used in order to update the solution xk. The vectors uk and vk do nothave to be stored in each iteration and therefore the storage requirements are minimal.For some uses the vectors might need to be stored (see Chapter 5) and then the algorithmis similar to the bidiagonalization algorithm.In their paper, Paige and Saunders have shown that the LSQR is equivalent to theconjugate gradient least-squares (CGLS), which we analyze in the next section.4.2.2 The Conjugate Gradient Least Squares MethodConjugate gradient least-squares (CGLS) is an iterative method to solve linear equations.There are several ways to view this method. We take the approach of Golub and VanLoan [1996], and look at CGLS from a minimization point of view.According to this approach at each iteration we try to minimize:minimize �d = 12 jjAx� bjj2Let us assume we are at iteration k, with a solution xk and an A weighted residual:sk+1 = AT (b�Axk)The main idea of CGLS is to update the model in the next iteration by a vector dk+1multiplied by a scalar �k+1: xk+1 = xk + �k+1dk+1The special property of this dk+1 is that it is ATA conjugate to all previous dj; (j = 1:::k),and therefore to xk. By ATA conjugate we mean that:dTi ATAdj = 0 i6=j



Chapter 4. Subspace Methods 44The special property of �k+1 is that it minimizes �d in the dk+1 direction:minimize 12 jjA(xk + �k+1dk+1)� bjj2It can be shown that the new direction dk+1 is a linear combination of the last directiondk and the A weighted residual sk+1. The algorithm can be written as follows:CGLS Algorithm� Initialize: x = 0 , d1 = ATb , r0 = b , s1 = d1� for k=1,2...{ �k = jjskjj2=jjAdkjj2{ x = x+ �kdk{ rk = rk�1 � �kAdk{ sk+1 = ATrk{ �k = jjsk+1jj2=jjskjj2{ dk+1 = sk+1 + �kdkThe algorithm does not calculate the product ATA and the only things needed forthe implementation are the calculation of the product of the matrix A with a vector andthe product of the matrix AT with a vector. After k iterations are performed the solutionxk2K(A; b; k).4.2.3 The Krylov Space Filter FunctionThe regularizing e�ects of Krylov space methods are well known in practice, but theproperties of the Krylov �lter are not well studied. In this subsection we �nd an expression



Chapter 4. Subspace Methods 45for the Krylov �lter. First we notice that the Krylov solution is in the space K(A; b; k),which means that Krylov space solution is a solution to the problem:minimize jjAx� bjj2 (4.10)subject to x2K(A; b; k)where k is the number of steps taken in the algorithm. The �lter function can be derivedfrom the de�nition of Krylov space. Since the Krylov solution is obtained from the Krylovspace, the solution xk can be written as:xk = z1ATb+ z2(ATA)ATb+ :::+ zk(ATA)(k�1)ATb (4.11)where the coe�cients z minimize 4.10. Using the SVD of A and the identity:(ATA)j = V S2jV Tthe solution can be written as:xk = z1V SUT b+ z2V S3UTb+ :::+ zkV S2k�1UT b = (4.12)V (z1S + z2S3 + :::+ zkS2k�1)UT b =V (z1S2 + z2S4 + :::+ zkS2k)S�1UTb = V DkS�1UT bThe matrix Dk is a diagonal matrix and its diagonal elements are:Dii = �2i (z1 + z2�2i + :::+ zk�2k�2i ) = �2iPk�1(�i2) (4.13)where Pk�1 is a polynomial of degree k � 1 in �2. Using this polynomial we can writethe solution as: xk = NXi=1�2iPk�1(�i2)bTui�i vi (4.14)



Chapter 4. Subspace Methods 46This means that the Krylov �lter is:fK(�) = �2Pk�1(�2) (4.15)The polynomial Pk�1 is also known as the Ritz polynomial. The coe�cients of Pk�1 andtheir character can be found from the minimization problem 4.10. Substituting in 4.10the solution xk from 4.13 gives:minjjAx� bjj2 = minjjUS(z1S2 + z2S4 + :::+ zkS2k)S�1UT b� bjj2The minimization does not change under orthogonal transformation and therefore:= minjj(z1S2 + z2S4 + :::+ zkS2k)UT b� UTbjj2= minjj(z1S2 + z2S4 + :::+ zkS2k � I)UTbjj2This minimization problem can be represented also as:minjj2666666666664 bTu1(z1�21 + :::+ zk�2k1 � 1)bTu2(z1�22 + :::+ zk�2k2 � 1)::::::bTuN (z1�2N + :::+ zk�2kN � 1) 3777777777775 jj2which is equivalent to: minjj�(S2�kz � e)jj2 (4.16)where � = diag(UT b), e = [1; 1; :::1]T and �k is the N�k Van dermonde matrix:�k = 26666666666666664 1 �21 ::: �12(k�1)1 �22 ::: �22(k�1):: :: ::: :::: :: ::: :::: :: ::: ::1 �2N ::: �N 2(k�1) 37777777777777775



Chapter 4. Subspace Methods 47Thus, the coe�cients z are the solution of the least-squares problem:�S2�kz = �e (4.17)with the solution: z = (�S2�k)y�e (4.18)and the Krylov �lter function is given by:fK(�i) = �i2Pk�1(�i2) = (S2�kz)i = (S2�k(�S2�k)y�e)i (4.19)We now examine this �lter more closely.4.2.4 Properties of Krylov Space Filter FunctionWe are interested in the properties of the Krylov �lter. We take a step back and lookhow this �lter would be obtained under very di�erent circumstances.A very common problem is polynomial �tting (Saad [1987]). Assume we have theconstant function  (�) = 1 sampled at the points �21:::�2N and we want to �t a polynomialin �2 of degree k < N of the form: z1�2 + :::+ zk�2kto that function. This would lead to the following system:S2�k(�2)z = ewhere z is a vector of size k which holds the coe�cients of the polynomial and e =[1; 1:::1]T .If all the equations in this least-squares problem have the same importance then wewould use the generalized inverse of S2�k, however if we want to �t some equations better



Chapter 4. Subspace Methods 48then others then we weight the equations by multiplying them by a diagonal matrix �and solve: �S2�k(�2)z = �eAt this stage � is a diagonal matrix which states how much weight we put on eachequation. If we let � = diag(UTb), then the solution z of this interpolation problem isequivalent to 4.18. The problem is over-determined so the constant function  (�) = 1does not equal its polynomial approximation at the points �2i . Instead at points �2i wehave: 1 =  (�i)�(S2�k(S2��k)y�e)iwhich is equivalent to the Krylov �lter function 4.19. We therefore view the product uTi bas the singular value weighting.The Krylov �lter depends on three things:� The spectral content of the right hand side, b.� The distribution of the singular values, �.� The iteration number, k.Observing the spectral content of the right hand side, we can give an intuitive idea ofhow the Krylov �lter works. Since the singular value weighting is uTi b, the approximationfor the constant function 1 at points �i which are associated with small uTi b is bad, butwhen a singular value has large weighting uTi b, it approximates the constant function 1better. This means that the �lter does not a�ect in a signi�cant way vectors with largeuTi b but �lters vectors which are associated with small uTi b. If the data is not noisy itcontain large quantities of uTi b for large singular values and small quantities of uTi b forsmall singular values. Therefore the convergence is achieved �rst for the large vectors.When the data are noisy, one would still hope that the noise level is low enough so that



Chapter 4. Subspace Methods 49the amount of uTi b for small i is still relatively larger than the amount of uTi b for large i.However in cases that the data are noisy some of the noisy components could convergebefore the vectors which are associated with large singular values have converged. Insuch cases Krylov space methods might fail.The dependence of the �lter on the distribution of the singular values and on theiteration number is harder to explain. The Krylov �lter cannot be calculated analyticallyfor an arbitrary distribution of singular values and spectral content of the right handside; however, we can take typical examples and look at the �lter coe�cients for theseexamples. We could then use these examples to identify which types of problems Krylovmethods solve well and in which problems it might fail. In order to construct the exampleswe need to assume something about the spectral content of our right hand side. To makethe analysis simple, we take a \worst case scenario" and assume that the spectral contentis: UTb = [1; 1:::1]T = ewhich means that we have as much noisy components as we have signal. We now observethe �lter for di�erent distributions of the singular values and di�erent iteration numbers.E�ect of Clustered Singular ValuesThe �rst example is a very common one. We assume that the singular values 1:::j are ofthe order of one and the rest are a few orders of magnitude lower. In order to analyse thiscase we build such an arti�cial distribution, then, calculate the corresponding Krylov �lterfor an arti�cial spectrum. The results are shown in Figure 4.1. The results demonstratethat this type of singular value distribution is very stable for the Krylov method. It isalso possible to give some theoretical justi�cation for the reasons that Krylov methodswork so well when the singular values are clustered. Assume that the eigenvalues 1:::j
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Singular Value IndexFigure 4.1: CGLS �lter for step-like spectrum for 2,4,6,8 and 10 iterationsare of order of 1 and the rest are of order �. We can then partition the matrix �k into:�k = 24�1�2 35where �1 contains the singular values 1:::j and �2 contains the rest which are O(�), TheKrylov �lter then is the solution to the problem:24�12 00 �2�22 3524�1�2 35 z = ewhere �1 contains the large singular-values and �2 contains the small singular-values.This problem is solved by:24 �12�1�2�22�2 35T 24 �12�1�2�22�2 35 z = 24 �12�1�2�22�2 35T eIn order to calculate z we need to invert the square matrix on the left hand side whichis: �1T�14�1 + �4�2T�24�2Assuming that �1T�14�1 is invertible:(�1T�14�1 + �4�2T�24�2)�1 = (�1T�14�1)�1(I + �4(�1T�14�1)�1�2T�24�2)�1�



Chapter 4. Subspace Methods 51(�1T�14�1)�1(I � �4(�1T�14�1)�1�2T�24�2) = (�1T�14�1)�1 +O(�4)The solution z can then be written as:z = z(�1) +O(�4)where z(�1) is the solution which is achieved only with the large singular values. Thesolution in this case depends strongly on the large singular values and only to a verysmall extent on the small singular values.E�ect of Continuous Decay of the Singular ValuesIn some cases the singular values decay slowly. These cases are not as stable as theclustered one. In Figures 4.2 and 4.3 we observe the behavior for � = e�s and for� = s�1. Notice that for the exponential decay the �lter is still stable, however for� = s�1, the �lter does not weed out the small singular values and therefore Krylovspace methods might break down for this case especially if the data are very noisy.
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Singular Value IndexFigure 4.3: CGLS �lter for very slowly decaying spectrum for 2,4,6,8 and 10 iterations.4.2.5 Some other Properties of Krylov Space SolutionsOne more aspect of the regularization is the fact that the norm of the solution increases aswe solve the system to a lower mis�t. This is evidently the case in Tichonov regularizationand TSVD. It can be shown (Hestenes and Stiefel [1952], Hestenes [1980]), that this isalso the case in Krylov space methods. This means that in every iteration we reduce themis�t at the expense of increasing the model norm.Another important property of Krylov spaces is the loss of orthogonality. The �lteringdiscussed earlier assumes that the Krylov vectors keep their orthogonality. In mostcases the orthogonality breaks down and therefore the analysis is only approximate. Inorder to keep orthogonality the vectors could be re-orthogonalized at each iteration orpartially orthogonalized as suggested in Golub and Van Loan [1996]. This can increasethe cost of Krylov space algorithms. However in most straight-forward applications suchorthogonalization is not needed, since the vectors are not stored for further use. In casesthat the vectors are needed for further use we might use an orthogonalization procedure.We will return to this problem when using hybrid methods in Chapter 5.



Chapter 4. Subspace Methods 53We stated before that Tichonov regularization is achieved in O(4M2N=3) operations.Krylov type regularization is much more e�cient. In the worst case, when A is notsparse, and we have to perform almost N iterations in order to get a very low mis�t, thenumber of operations is of the order of O(2MN2). However if the matrix is sparse orthe desired mis�t is relatively high, then the number of operations is O(kMN), where kis the number of steps taken. In many applications k�N and therefore the solution ismuch more e�cient than Tichonov regularization.Finally we noticed in the last section that in some situations Krylov space methodsmight fail. The main problem of Krylov space methods is the dependence of the solutionon the right hand side, which might be very noisy. It is therefore desired to develop amethod which does not use the right hand side and the solution does not depend on thenoisy data. This is the goal of the next sections.



Chapter 4. Subspace Methods 544.3 Multilevel AlgorithmsMultilevel algorithms are widely studied in the context of di�erential equations (Briggs[1987], Hackbusch [1985]), however application of the same methods to ill-posed integralequations is not straight-forward. The main reason is the di�erent behaviour of thespectrum of the equations. While integral equations have smooth vectors which corre-spond to the large singular values, di�erential equations possess smooth vectors whichcorrespond to small eigenvalues. Our goal here is to develop a multilevel method for theapproximation of the TSVD solution.In order to obtain a cheap approximation for the solution, we turn to a solution from asubspace. We want our solution to be composed of the smooth singular vectors. We seeka method to approximate these smooth vectors. One of the possibilities is to introducea coarse grid and to approximate these smooth vectors on it. In order to demonstrate,we look at the 1-D example in 1.2.1. Equation 1.6 is discretized with 129; 17 and 5 gridpoints. The discretization is done by the midpoint rule. We then decompose the matricesinto their singular values and singular vectors, and view the �rst and the fourth singularvectors of this system on the di�erent grids (Figure 4.4).The fourth singular vector is recovered reasonably well on 17 grid points but not sowell on the 5 grid points. The �rst singular vector is approximated well even on the 5point grid. This means that we could approximate the �rst vector reasonably well on alower 5 point grid and save computations. We would like to use the vector which wascalculated on the 5 point grid and transfer it on to the 129 point grid. This cannot bedone by regular interpolation because if we naively interpolate from the coarse grid tothe �ne grid we would introduce elements from the null space. We therefore choose tointerpolate in the following way. Let Ah be the discretized system on the �ne grid andAH be the system on the coarse grid. Any vector from the active set of AH can be written
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Figure 4.4: First and fourth singular vectors on 129, 17 and 5 grid pointsas a linear combination of the kernels of the coarse grid:vH = NXj=1zHj aHj = ATHzH (4.20)where H notes the coarse grid. The same applies for the �ne grid:vh = NXj=1zhj ahj = ATh zh (4.21)The N vectors zH and zh are the coe�cients of the kernel functions on the coarse and�ne grids. If the vectors vH and vh describe the same function on di�erent grids thentheir coe�cients zH and zh should be similar. We therefore interpolate from the coarse



Chapter 4. Subspace Methods 56grid to the �ne grid by: vhH = NXj=1zHj ahj = ATh zH (4.22)In this way no elements from the null space of Ah are introduced to the approximation ofvh. This means that in order to interpolate a vector vH to vhH, we need to �nd its decom-position into the kernel functions (4.20) and use these coe�cients for the interpolation.If the vector v is well represented on both grids then the approximation would bevalid. However if v is not well represented on the coarse grid then the approximation ispoor. Since we are not interested in very oscillatory solutions we could use a solutionwhich is a subspace solution from the coarse grid. Each vector in this subspace would be avector which is made from the �ne grid kernels, but with coe�cients from the coarse grid.We postpone the selection of the coarse grid, and explore two di�erent methodologies touse multilevel algorithms, the approximated TSVD and the Landweber iteration.4.3.1 The Multilevel TSVDOne way to obtain the coe�cient vector z is using the SVD. Our goal is to approximatethe singular vectors vhi on the coarse grid. We recall that the singular vectors vi and uihave the following relations: �hi vhi = AThuhiand �Hi vHi = ATHuHiThis means that the coe�cients of the kernels for generating the singular vectors vhi arejust uhi . We therefore approximate the singular vectors as:vhi� (AThuHi )jj(AThuHi )jj = vhi;H (4.23)In order to demonstrate the e�ciency of such an approximation we look at the norm ofthe di�erence between vhi and vhi;H, jjvhi �vhi;Hjj, for i = 1:::17 where h is the 129 point grid



Chapter 4. Subspace Methods 57and H is the 17 point grid. This di�erence is plotted in Figure 4.5. We see that while
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Figure 4.5: The norm of the di�erence between the approximated and the true singularvectors (jjvh � vhHjj).the di�erence is small in the �rst vectors, it increases as i > 6. In this case solutionswhich are built mainly from the �rst �ve vectors could be approximated well.The solution which is achieved by the multilevel TSVD (M-TSVD) can be written as:xMTSVD = kXi=1zivhi;H (4.24)We now describe an algorithm to obtain the coe�cients zi. First we have to decide onthe coarse level H and the �ne level h. If we use some quadrature rule for the integrationthen the matrix AH can be obtain by simply projecting Ah into H. In 1-D this is simple:AH(i; j) = Ah(i; lj)�H�h (4.25)where �H is the coarse grid discretization interval, �h is the �ne grid discretizationinterval and l is the ratio of the number of points. The SVD of the coarse grid system



Chapter 4. Subspace Methods 58can be obtained at the low cost of O(12M2HN) where MH is the number of grid pointsused in the coarse grid and usually (but not necessarily) MH < N . This gives thedecomposition: AH = UHSHV THThe diagonal matrix SH has at most MH singular values which are di�erent than zero.The singular vectors uH which are associated with these singular values are then usedto approximate the singular vectors vhi using equation 4.23. In most cases some of thesingular values of the coarse grid are very small. As seen in the example, when a singularvalue is very small, we do not expect to have a good approximation to the singular vector.Therefore, we choose the singular value number k < MH , �Hk , where its associatedsingular value is small enough, and work only with the singular vectors of the coarsesystem which are associated with singular values larger than �Hk . Let the matrixQ = [vh1;H; :::vhk;H]be the M�k matrix which spans the model subspace. The solution x can be written as:x = Qz (4.26)and the inverse problem is transformed into:min jj(AhQ)z � bjj2 = min jjAqz � bjj2 (4.27)where Aq = AhQ is an N�k matrix. While in principle the problem is over-determined,practically it could be rank de�cient. In order to solve this problem we use again theSVD but this time apply it to the matrix Aq and write the solution z as:zMTSVD = lXi=1bTuqi�qi vqi (4.28)



Chapter 4. Subspace Methods 59where the subscript q relates to the singular values and vectors of Aq and with l < k.After z is found we calculate the solution x using 4.26. The algorithm can be summarizedas follows:Multilevel TSVD� Discretize the system and calculate Ah and AH� Find the SVD of AH� Calculate the matrix Q = [vh1;H; :::vhk;H]� Calculate Aq = AhQ� Solve Aqz = b using TSVD� set x = QzThe cost of this algorithm is as follows: the SVD of the coarse grid system is obtainedat O(12M2HN). Calculating the matrix Q requires the multiplication of AThuHi i = 1:::k,which is O(kNM), where M is the number of �ne grid points. The calculation of Aqrequires the multiplication of a matrix size N�M and a matrix of size M�k whichrequires O(kNM) operations. Finally we solve Aqz = b using SVD, which requiresO(12k2N). The total complexity of the algorithm is then:CMG = O(12M2HN) +O(2kNM) +O(12k2N) (4.29)If M > N�MH > k, then the algorithm is e�cient and the dominant term is orderO(kNM). However if the required mis�t is low and many vectors are needed, then thecoarse grid MH would not be so coarse and the dominant term in the cost of the problemis O(12M2HN). In these cases the multilevel method suggested here is not going to bee�cient.



Chapter 4. Subspace Methods 604.3.2 The Multilevel Landweber IterationAnother possible implementation of a multilevel algorithm is as a preconditioner to othermethods. The most simple is the Landweber iteration (Landweber [1951]) which is:xk+1 = xk +ATh (b�Ahxk) (4.30)This iteration may converge slowly; however, it can be accelerated by the GeneralizedLandweber iteration, which is given by:xk+1 = xk + �AThD�1(b�Ahxk) (4.31)where D is a preconditioning matrix, and � ensures that the norm of the residual isdecreasing. The optimal D is of course: D = (AhATh ) because the iteration then convergesin one step. We now show that the multilevel iteration could be used as a GeneralizedLandweber iteration with D = (AHATH).As stated before any vector in the active space can be written as: x = ATh z. TheLandweber iteration can be written as:xk+1 = ATh zk+1 = xk + �AThD�1(b�Ahxk) = ATh zk + �AThD�1(b�AhATh zk)This can be rewritten as a Richardson iteration for zzk+1 = zk + �D�1(b�AhATh zk) (4.32)This Landweber-Richardson iteration can be divided into two parts. The �rst is thepreconditioning, i.e to apply D�1 and get pk = D�1(b�AhATh zk) and the second to �nd� such that the residual rk+1 = jjb � Ah(xk + �ATpk)jj2 is minimized. We now look atthe �rst step. We want to calculate the vector pk:pk = D�1(b�AhATh zk) = (AHATH)�1rk



Chapter 4. Subspace Methods 61which is equivalent to the solution of:AHATHpk = rkThis problem is equivalent to the inverse problem on the coarse grid:AHsH = rkwhere sH = ATHpk. This means that the vector pk contains the coe�cients of the kernelfunctions which span the solution on the coarse grid. When these coe�cients are found,they could be used on the �ne grid. In order to use them we need to �nd the number �.We choose � such that the residual rk+1 = rk � �AhAThpk is reduced as much as possible,i.e we look for � that will minimize jjrk+1jj2 = jjrk � �AhAThpkjj2. By di�erentiating withrespect to � and setting to zero we get:�k = rTkAhAThpkjjAhAThpkjj2 (4.33)Thus the algorithm for the multilevel Landweber iteration goes as follows:Multilevel Landweber iteration� r1 = b; x = 0� for k = 1; 2:::{ Solve AHATHpk = rk{ Calculate � using 4.33{ xk+1 = xk + �AThpk{ rk+1 = rk �Ah(AThpk)The matrixAHATH could be rank de�cient and therefore solving the problemAHATHpk =rk might not be possible. This problem can be solved again by the TSVD. Let:AH = UHSHV TH



Chapter 4. Subspace Methods 62then a regularized pk can be found by:pTSVD = kXi=1 bTuHi�Hi vHi (4.34)The cost of the multilevel Landweber iteration is as follows. Decomposing AH into itssingular values and vectors is O(12M2HN). The update of the solution takesO(NM), andthe calculation of the residual is another O(NM). Thus the total cost of the multileveliteration is: CML = O(12M2HN) +O(2kNM) (4.35)This cost is dominated by the O(2kNM) term if the coarse level is coarse enough.4.3.3 Coarse Level SelectionThe multilevel algorithms presented here used only two grids. The question is then,\how coarse should the coarse grid be"? Since it is not known a-priori how many vectorsare going to be used we suggest to solve the problem iteratively starting with a verycoarse grid and progressing to a �ner grid if we cannot satisfy our stopping criteria. Thealgorithm is as follows:Multilevel Algorithm� Decide on a coarsest level H1� x = 0, r = b� For i = 1; 2; ::{ Use the M-TSVD or Landweber (Sections 4.3.1-2) to convergence on Hi tosolve Ahwi = ri



Chapter 4. Subspace Methods 63{ Calculate the optimal step size obtained by this grid:� = rTi AThwijjAThwijj2{ Update: xi = xi + �wi{ Calculate the residual ri+1 = b�AhxhHi{ If the residual satis�es stopping criterion stop.{ Re�ne grid to Hi+1This algorithm becomes expensive as the coarse grid becomes �ne. The hope is that thestopping criterion is achieved long before this happens. In numerical experiments withthe method (Chapter 6) we observed that when the noise level is about 10% or higher,the coarse grid is \coarse enough" and does not impose a real problem, however forrelatively low noise levels, the multilevel algorithm becomes computationally intensiveand not very useful.



Chapter 4. Subspace Methods 644.4 Gradient VectorsIn this section we review the subspace method based on gradients which was developedby Parker et al [1987] for the analysis of magnetic data. The method is based on pickinga space size k and generating k vectors which are made from gradients. The gradient ofthe jth equation is: gj = aj(aTj x� bj) (4.36)Assuming x = 0, we generate k subspace vectors from a linear combination of the kernels:vnj = j2Xi=j1gi = j2Xi=j1biai (4.37)where j1 and j2 are some indices of the rows of A. The vectors are put in a matrix Qkwhich spans the subspace: Qk = [v1:::vk] (4.38)We now look for a solution xk which is spanned by Qk. The solution can then be writtenas: xk = Qkz (4.39)Substituting Qkz instead of x in the equation leads to the least-squares problem:minimize jjAQkz � bjj2 (4.40)Typically this problem can be ill-posed and the solution z is obtained through regular-ization. Let Aq = AQk be an N�k matrix. There are a few ways to carry out theregularization process. The Tichonov regularization is one and we will look at the im-plementation of such regularization method in the next chapter. If we want to workwith a subspace formulation then we could use the SVD. These two alternatives are alsoproposed by Parker [1994]. In this section we stick to the subspace formulation. The



Chapter 4. Subspace Methods 65matrix Aq is decomposed into its singular vectors:Aq = UqSqV Tqand the solution is written as: zGTSV D = lXi=1bTuqi�qi vqi (4.41)with l < k. Substituting back for xk = Qkz we get:xk = QkVqTlS�1q UTq z (4.42)where Tl is a diagonal matrix which holds the TSVD �lter function, i.e. one for thesingular vectors which are larger than some � and 0 for singular vectors which are smallerthan �. The algorithm can be summarized as follows:Gradient Subspace Method� Choose a space size k and a starting vector.� Calculate k subspace vectors using gradients 4.37, (j2 � j1�N=k).� Calculate the matrix Aq = AQk� Calculate the SVD of Aq; Aq = UqSqV Tq� Solve Aqz = b using TSVD� set xk = QkzThe complexity of the algorithm is as follows: Calculating the subspace vectors isonly O(kM) operations. The calculation of the matrix Aq is O(kNM) operations. Thecalculation of the SVD of Aq is O(12k2N) operations. The total cost of the algorithm is:CG = O(kM) +O(kNM) +O(12k2N) (4.43)This complexity is dominated by the O(kNM) term. The storage requirement of thisalgorithm is the storage of the matrix Qk and the matrix Aq and its decomposition.



Chapter 4. Subspace Methods 664.5 The Discrepancy Principle for Subspace FormulationIn the last sections we were concerned with the choice of the subspace. The questionwhich is now asked is: how many subspace vectors should be used in order to obtain thesolution? The number of vectors yields the number of subspace vectors needed in theTSVD, a stopping rule for the Krylov space methods, the coarsest level in the multilevelalgorithms and the number of gradient vectors which should be used. If the number ofvectors is too large, then the solution might �t the noise, and if the number of vectorsis too small, then the solution might not �t the data. The problem is similar to theone we have when we solve for a regularization parameter �, however this problem isdiscrete and replaced with �nding the integer k� for the number of vectors. In parallelwith Tichonov regularization, we review and develop methods to estimate the size of thesubspace. We start with the discrepancy principle.One simple stopping criterion is to stop when the mis�t is lower than the tolerancelevel. Let T be the tolerance level. Let the mis�t of �dk > T be the mis�t whichis achieved when using k subspace vectors and let �dk+1�T be the mis�t using k + 1vectors. Then we could set k� = k + 1 as the subspace size.This choice might not be satisfactory because, in some cases it could happen that themis�t at iteration k is �kd�T and in the following iteration k+1 we could have �k+1d �T ,however from statistical point of view, we are interested in a solution which �d�T .This problem can be easily overcome. By looking at any subspace algorithm we seethat: xk+1 = xk + �kpkThe result �(k+1)d < T means that if take a step size �k in the direction pk the step is toolarge. A reasonable thing to do then is to go in the same direction, but not take a full



Chapter 4. Subspace Methods 67step �k, but rather �nd �0k such that:jjA(xk + �0kpk)� bjj2 = T (4.44)this gives �0k as the solution of:jjApkjj2�2 + 2(rTkApk)�+ (jjrkjj2 � T ) = 0 (4.45)This quadratic equation for �0k gives two �0ks that produce the same target mis�t. Theway to choose between them is simply to take the one which gives smaller solution norm(jjxjj). The algorithm can be summarized as follows:Discrepancy Principle In Subspaces� Choose a desired mis�t level T� For k = 1; 2:::{ Form the solution xk and calculate the new subspace vector pk and the solutionxk+1.{ If jjAxk+1 � bjj2 < T , solve 4.45. where pk is the last direction.{ Given �1 and �2 which solves 4.45, choose �1 such that:jjxk + �1pkjj < jjxk + �2pkjj� Set xk+1 = xk + �1pk; return.4.6 Generalized Cross Validation For Subspace SelectionThe GCV principle is well developed to deal with Tichonov style regularization and itwas reviewed in Section 3.3. Although Golub et al. [1979] suggested to use it for TSVD



Chapter 4. Subspace Methods 68subspace selection, it is not well developed for subspace type regularization. In thissection we develop such a methodology.Let xn2Sn be the minimum of 4.1. Now assume we deleted the kth data point, bkfrom the system 4.1 and repeat the minimization without it. This can be written as:�ks = jjAx� bjj2 � (aTk x� bk)2 x2Sn (4.46)where aTk is the kth row of A. Let x[k]n be the minimum of 4.46. We might ask the question:How well does the solution without the kth data point reproduce that data point? Theanswer to this question is given by measuring the di�erence between the predicted datapoint without using it, and the actual kth datum:(aTk x[k]n � bk)2If this di�erence is small, then the kth data point is reproduced well even when it is notused. This is of course a good property since the solution does not depend on this datapoint in a strong way.For a �xed subspace size n this estimate can be calculated for every k. By summingall these di�erences together we get the Cross Validation function:CV (n) = NXk=1(aTk x[k]n � bk)2 (4.47)Notice that the CV depends only on n, and therefore for every n we have a measure ofhow well the data would be reproduced without using one datum. Since we want oursolution to be independent of one datum as much as possible we want to choose n whichminimizes the CV function.The main problem with the formulation we have presented so far is that calculatingthe CV function looks practically impossible. In order to practically calculate the CVwe have to �nd another expression for it. This is done next.



Chapter 4. Subspace Methods 694.6.1 Calculating the Cross Validation FunctionIn this subsection we follow Wahba [1990] in order to derive an expression for the CV.We de�ne hn(k; z) as the minimizer of: n(k; z; x) = jjAx� bjj2 � (aTk x� bk)2 + (aTk x� z)2 x2Sn (4.48)for a constant k and z. The function  is the same as the subspace function �s but withthe data point bk replaced with an arbitrary data point z. Let us �nd an expression forhn. We de�ne bk(z) = [b1:::bk�1; z; bk+1:::bN]T . Then hn is the minimizer of:jjAx� bk(z)jj2 x2SnLet Sn = span(Vn) = span([v1:::vn]). Then any vector x2Sn can be written as:x = Vnqnwhere qn is an n-length vector. Instead of �nding hn we �nd qn which minimizes:jjAVnqn � bk(z)jj2By taking the derivative with respect to qn and setting the result to zero, it is easy toshow that: hn(k; z) = Vnqn = Vn(V Tn ATAVn)�1V Tn ATbk(z) (4.49)If we note the matrix Cn = Vn(V Tn ATAVn)�1V Tn AT and bk(z) = bk(0) + zek where ek =[0; :::1; ::0]T then: hn(k; z) = Cnbk(0) + zCnek = Cnbk(0) + zc[k]n (4.50)where c[k]n is the kth column in the matrix Cn.We are now ready for \the leaving out one" lemma which was proved in Wahba [1990]for the Tichonov regularization case:



Chapter 4. Subspace Methods 70Let x[k]n be the minimizer of 4.46. Then:hn(k; aTk x[k]n ) = x[k]nThe \leaving out one" lemma means that if we replace the kth data point by itspredicted data point when it is not used, then the minimizer of the subspace objectivefunction would be identical to the one without that point.The proof is straight-forward. Let v2Sn be any vector di�erent than x[k]n . Then: n(k; aTk x[k]n ; x[k]n ) = jjAx[k]n � bjj2 � (aTk x[k]n � bk)2 + (aTk x[k]n � aTk x[k]n )2 == jjAx[k]n � bjj2 � (aTk x[k]n � bk)2 = �s(x[k]n )Since x[k]n is de�ned as the minimizer of �s then:jjAx[k]n � bjj2 � (aTk x[k]n � bk)2�jjAv� bjj2 � (aTk v � bk)2�jjAv� bjj2 � (aTk v � bk)2 + (aTk v � aTk x[k]n )2Thus x[k]n is the minimizer of  n(k; aTk x[k]n ; x[k]n ) and therefore it is equal to hn(k; aTk x[k]n ).In order to get an expression for the CV we use the property above. First we look atthe following identity: bk � aTk x[k]n = bk � aTk xn1 � ckk (4.51)where ckk = aTk xn � aTk x[k]nbk � aTk x[k]n (4.52)Noting ~bk = aTk x[k]n and using the minimizer hn we rewrite ckk as:ckk = aTk hn(k; bk)� aTk hn(k;~bk)bk � ~bk (4.53)In order to get an analytical expression for ckk we use the expression for hn.ckk = aTk (Cnbk(0) + bkc[k]n � Cnbk(0) � ~bkc[k]n )bk � ~bk = aTk (bkc[k]n � ~bkc[k]n )bk � ~bk = (4.54)



Chapter 4. Subspace Methods 71= (bk � ~bk)aTk c[k]nbk � ~bk = aTk c[k]nIf we denote ACn = ~C(n) then we see that ckk is merely the k; k element of this matrixand therefore: bk � aTk x[k]n = bk � aTk xn1� ~C(n)kk (4.55)Using this identity, the CV function can be written as:CV (n) = NXk=1(aTk x[k]n � bk)2 = NXk=1 (bk � aTk xn)2(1� ~C(n)kk)2 (4.56)We therefore have an expression for the CV as a function of the subspace n, thematrix A and the right hand side b. This expression is parallel to the one which wasdeveloped by Golub et al. [1979] for Tichonov regularization.The CV function in the Tichonov regularization is replaced by the GCV function,which is a weighted version of the CV function. The reason is that the CV function doesnot keep its minimum under orthogonal transformation of A. In our case we do exactlythe same and replace the CV by the GCV which is:GCV (n) = jjb�AVn(V Tn ATAVn)�1V Tn ATbjj2trace(I �AVn(V Tn ATAVn)�1V Tn AT )2 (4.57)The GCV function for subspaces possesses similar characteristics to the regular GCVfunction. We use this function for the choice of the number of subspace vectors n.The GCV expression can be further reduced. Assume that AVn = Qn and assumethat Qn has full rank. The dimension of Qn is N�n. The GCV with is rewritten as:GCV (n) = jjb�Qn(QTnQn)�1QTnbjj2trace(I �Qn(QTnQn)�1QTn )2The numerator is just the mis�t. Let us take a closer look and the denominator. Let:Q = UQSQV TQ



Chapter 4. Subspace Methods 72be the singular value decomposition of Qn. We can then write:Qn(QTnQn)�1QTn = UQSQV TQ (V TQ STQSQVQ)�1VQSTQUTQ == UQSQ(STQSQ)�1STQUTQ = UQUTQand the trace in the denominator can be written as:trace(I �Qn(QTnQn)�1QTn ) = trace(I � UQUTQ) == trace(I)� trace(UQUTQ) = N � trace(UTQUQ) = N � nwhere the last equality is due to the identity:trace(AB) = trace(BA)Therefore we rewrite the GCV function as:GCV (n) = jjb�AVn(V Tn ATAVn)�1V Tn ATbjj2(N � n)2 (4.58)4.7 The L-curve and Subspace FormulationWhile the L-curve formulation is clear when we work with continuous quantities, it canalso be used to estimate the size of the subspace. The basic idea is that if while expandingthe subspace, we plot a discrete curve of the log of the mis�t as the number of vectors ofthe subspace as a function of the log of the model objective function, we get a discreteL-curve. Since there is no real \corner" to a discrete curve, Hansen [1995] suggested tointerpolate between the discrete points and then to �nd the corner of the interpolation.The size of the subspace is then set as the point which is closest to that corner. Possibleproblems could arise when trying to estimate the corner of the curve. In some cases thecorner of the curve is not so sharp and its choice can be unambiguous.



Chapter 5Hybrid MethodsIterative subspace methods may well be the best way to solve a standard inverse problem.However as was demonstrated before, subspace methods could fail, the main reasons beingthe convergence of small singular values in the case of Krylov vectors, or the increase ofthe size of the subspace in multilevel and gradient methods. In these cases, we need adi�erent approach. Hybrid methods can successfully deal with these problems. Thesemethods use a subspace �rst to reduce the size of the problem while capturing the largesingular vectors, and then use Tichonov style regularization inside that subspace. Ageneral hybrid solution is the solution to the problem:minimize � = jjAx� bjj2 + �jjWxjj2 (5.1)subject to x2SkIn this section we review and develop such approaches. We �rst review the Krylov hybridmethod and develop a new iterative approach to deal with the storage requirements andthe loss of orthogonality. We then review the hybrid method based on subspaces whichare spanned by gradients. This method was developed by Oldenburg et al. [1993], [1994].Finally we review and develop criteria for parameter selection for hybrid methods.5.1 Hybrid Krylov MethodsHybrid Krylov methods can be viewed as a variation of the LSQR algorithm. Recall thatthe LSQR algorithm uses the Lanczos bidiagonalization to solve the system in the Krylov73



Chapter 5. Hybrid Methods 74subspace. The problem of the convergence of small singular values before the large ones isaddressed by continuing the bidiagonalization process. In this case one hopes that largersingular values would converge if we continue the iteration enough. After k iterations,just like in the LSQR, we have a partial decomposition:A�Uk+1BkV Tkand we solve the problem (see Section 4.2.1):Bkz = �1e1 = ~e1 (5.2)This equation looks identical to equation 4.9, however this is not the case. The maindi�erence between the problem (5.2) and 4.9 in Chapter 4 is that the matrix Bk inthis case is practically ill-conditioned because some of its singular values are numericallyclose to zero. In this case one cannot simply invert the matrix, and some regularizationis needed. This gives extra degrees of freedom which we can use by choosing the rightregularization method. O'Leary and Simmons [1981] suggested using the TSVD to solve5.2, however Tichonov regularization could be used as well. The hybrid solution in thiscase, is a solution to the problem:minimize � = jjAx� bjj2 + �jjWxjj2 (5.3)subject to x2K(A; b; k)The solution is given by: x(k; �) = Vk(BTk Bk + �I)�1BTk ~e1 (5.4)Notice that the hybrid solution depends on the iteration as well as the regularizationparameter. For this type of hybrid method it is important to have the space size, k,capture some of the singular vectors which are associated with the small singular values.



Chapter 5. Hybrid Methods 75We propose two ways for ensuring that this happens. The �rst option is through theLSQR algorithm. Recall (Section 4.2.1) that each iteration of the LSQR contains twosteps. In the �rst step we calculate the Krylov vectors which bidiagonalize the matrix,and in the second step of each iteration we use these vectors to update the solution. Thedi�erence between the hybrid implementation of the LSQR and the regular implementa-tion in Chapter 4 is that in the hybrid case while carrying each LSQR iteration we savethe Krylov vectors Vk and the bidiagonal elements of Bk. The calculation of the solutionfor each iteration is just a simple rotation (second stage of each LSQR iteration) andtherefore does not add to the cost. In a regular implementation of LSQR we would havestopped after some convergence criteria such as GCV, L-curve or discrepancy principlehad been achieved. In this case we would achieve that criterion and continue iteratingfurther. Only after we iterated enough (to capture some of the zero singular values) wewould stop. Since we stored the Krylov vectors in the LSQR process, we now have thematrices Vk, Uk+1 and Bk and we can choose the regularization parameter � which solves5.4. This algorithm goes as follows:Hybrid LSQR� Begin LSQR process{ Carry out LSQR iteration (Chapter 4 section 4.2.1){ Save the Lanczos vectors Vk and the bidiagonal elements of Bk{ Check convergence{ If converged continue iterating to iteration n = (1 + 
)k� Use the Lanczos vectors Vn and Bn to solve for x using equation 5.4In most cases we found that the choice 
�0:2 is satisfactory, which means that mostof the vectors which are associated with the large singular values have converged.



Chapter 5. Hybrid Methods 76Another approach to the same problem is to use the Lanczos bidiagonalization processdirectly (as was described in Chapter 4 section 4.2.1). In each step of the bidiagonalizationprocess we obtain a bidiagonal matrix Bk which contains an approximation to the singularvalues of the system. To ensure that we capture some of the small singular values we carryout the SVD of the small sparse matrix Bk. In this case we continue the decompositionuntil we have a matrix Bn with n1 singular values which are greater than a small number� and n�n1 singular values which are smaller than �. After the decomposition has beenobtained it is used in equation 5.4 in order to calculate the solution. In most cases wefound that if the number of almost zero singular values is roughly 10 � 20% from theoverall singular values of Bn the results are satisfactory.The main problems of Krylov spaces as presented above is �rst the storage require-ment. We need to store a matrix which holds the Lanczos vectors. This is a full matrixof size k�M . In some sparse problems like tomography, the storage of these vectors canbe larger than the storage of the whole system! In very large scale problems, althoughthe system is full, it might not be stored and only the multiplication process of a matrixtimes a vector is stored. In this case the storage of the Lanczos vectors can become aproblem. The second problem is the loss of orthogonality. It is very well known thatKrylov methods in �nite precession lose orthogonality. After a relatively low number ofiterations the vectors in Vk are not orthogonal any longer and as a result, we cannot use5.4 in order to solve the system. The solution to this problem is to re-orthogonalize theLanczos vectors which can be done fully or partially (Golub and Van Loan [1996]). Inthis thesis we implement the re-orthogonalization with a modi�ed Gram-Schmidt process,however one could use Givens rotations for the same purpose as was suggested in Kelly[1995]. To fully re-orthogonalize the Lanczos vectors at iteration k costs O((k � 1)M)operations, which for large k might be very computationally burdensome. In practicemost problems we handle in this thesis needed to be re-orthogonalized for k > 15. It is



Chapter 5. Hybrid Methods 77therefore desirable to develop a di�erent methodology.5.2 Iterated Hybrid Krylov MethodOptimally we would like to use Lanczos bidiagonalization as presented in the last sectionto solve any inverse problem, however we might have two main problems. First, we needto store k vectors of lengthM . This may be a problem when the system is very large. Thesecond di�culty is that the Lanczos vectors lose orthogonality, and the bidiagonalizationprocess has to be carried out with a re-orthogonalization procedure. This procedurebecomes computationally intensive as the problem starts to grow. To calculate thate�ect, assume we calculate n orthogonal vectors. Since in each iteration we orthogonalizethe new vectors with respect to all previous vectors, the number of vectors to be re-orthogonalized would be one in the second iteration, two in the third iteration up to n�1in the nth iteration. The total number of vectors which needs to be re-orthogonalized isthen: 1 + 2 + :::+ (n � 1) = 12n(n� 1)This process makes the decomposition slow. In order to avoid these di�culties, we developthe iterated Krylov method. The idea is a combination of two techniques, the gradientsubspace method developed by Oldenburg et al. [1993], [1994] and the GeneralizedMinimum Residual method with restarts (GMRES) (Saad [1996]).The GMRES is a method for the solution of square non-symmetric well-posed prob-lems. At the kth iteration of the GMRES the vector pk solves the least-squares problem:minimizejjApk � rkjj pk2K(A; b�Axk; l) (5.5)where rk = b � Axk. In the GMRES method the number of vectors l which is used isrelatively small especially when the system is large. In this section we adopt this idea



Chapter 5. Hybrid Methods 78from the GMRES method. However we do not adopt the GMRES procedure exactly.Since the problem we solve is ill-posed in nature, we solve the least-squares problem5.5 using Tichonov regularization, similar to the subspace method which was used byOldenburg et al. [1993], [1994].The major idea of the iterated Krylov method then is to use only a small number, l,of orthogonal Lanczos vectors to obtain an update to the solution x and a new residualr. This means that we need to store only an l�M size matrix and we need only 12l(l� 1)orthogonalization steps in each iteration of this process. The solution using only l vectorsis probably not satisfactory, i.e. the solution does not satisfy some stopping criterion suchas the GCV, and therefore we repeat the process. This process is similar to the restarts ofthe GMRES. In our case it means that we repeat the Lanczos bidiagonalization processbut this time with the right hand side vector r. The iteration is done until convergence(to some kind of criterion) is achieved. If we carry out k iterations of this procedure thenthe total number of re-orthogonalization steps is12kl(l� 1)which is hopefully smaller than 12n(n�1). The number of vectors l is chosen according tothe size of the problem and the size of the available memory. Another option is to avoidthe re-orthogonalization process totally and to iterate only a small number of iterationsl in the bidiagonalization process, hoping that the orthogonality is not violated seriously.In this case the solution of Blz = r does not necessarily yield an optimal vector p = Vlzwhich minimizes jjA(x+ p) � bjj2 and therefore the solution is updated similarily to theCGLS, by solving for a real number � which minimizes jjA(x+ �p) � bjj2. The solutionfor � is simply: � = rTApjjApjj2In this thesis we use l�5� 10 for problems with 4000� 30000 unknowns. The algorithm



Chapter 5. Hybrid Methods 79is as follows:Iterated Hybrid Krylov Method� Choose a number of vectors per iteration l� r = b, x = 0� For k = 1; 2:::{ Carry out l steps of the bidiagonalization process with starting vector r:A�Ul+1BlV Tl{ Solve Blzk = ~e1 using hybrid methods:zi = (BTl Bl + �kI)�1BTl ~e1where the regularization parameter �k is chosen according to the stoppingcriterion method.{ pk = Vlzk, sk = Apk{ � = (rT sk)=jjskjj2{ x = x+ �pk ; r = r � �skOne of the most important steps in this algorithm is the solution of the system Blzi = ~e1.Since we regularize the solution, the choice of regularization yields the type of solutionachieved. Typically at starting iterations no regularization is needed (i.e. � = 0 issatisfactory), since the subspace Vl contains mainly vectors which are associated withlarge singular values. However as the iterations proceed the right hand side r containsmore noise and the Lanczos vectors which are associated with it could consist of somevectors which are associated with the small singular values. In this case, regularization is



Chapter 5. Hybrid Methods 80needed and the regularization parameter � grows. Finally as the right hand side containsonly noise, the regularization parameter � approaches in�nity which means that theperturbation p goes to 0 and the process is terminated. This solution converges moreslowly than CGLS or LSQR processes however, it tends to converge to smoother typesof solutions.The total cost of the algorithm is as follows. The bidiagonalization process is O(lMN)and we carry out k such processes. The solution of the reduced linear system of theprocess is only O(l) and the calculation of the update and the residual is O(2MN).Therefore the total cost of this procedure isCIK = O(k(l + 2)MN)where k is the number of iterations. Usually the number k(l+2) is larger than the numberof vectors needed for Lanczos bidiagonalization with no restarts, therefore this methodis usually more expensive than the implementation of hybrid Lanczos bidiagonalizationwhich was discussed in section 5.1. However since the method takes less storage spaceand still allows convergence of the vectors which are associated with the large singularvalues, in some problems where storage is a problem, this method may be the only wayto obtain a reasonable solution.5.3 Hybrid Methods Based On GradientsIn this section we review the subspace method which is based on gradients. This methodwas developed by Oldenburg et al [1993], [1994]. Similar method was suggested by Kennetand Williamson [1988]. The method is based on an iterative regularized solution of theleast-squares problem, just as in the last section. The di�erence between this methodand the previous one is that the vectors here are taken from gradients and not from a



Chapter 5. Hybrid Methods 81Krylov space. The method can be viewed as an iterated version of the gradient subspacemethod which was discussed in Chapter 4.Just like in the last section, this method is based on picking a space size l andgenerating l vectors which are made from gradients. The gradient for the jth equation is:gj = aj(aTj x� bj) (5.6)Now assume we are in iteration k with a solution vector xk and we want to calculate anupdate pk to the solution vector. The gradient with respect to pk can now be written as:gkj = 12( @@pk (aTj (xk + pk)� bj)2)pk=0 = aj(aTj xk � bj) = �rkj aj (5.7)We generate l � 1 subspace vectors from a linear combination of these gradients:vkj = j2Xi=j1gki = j2Xi=j1 � rki ai (5.8)where j1 and j2 are some indexes of the rows of A. Note that if we generate only one suchvector then this vector is simply the steepest descent vector. We keep one last vector vklas a vector which is a descent direction to the function jjx+ pjj2 and therefore vkl = xk.The vectors can be put in a matrix Ql which spans the space:Ql = [vk1:::vkl ] (5.9)The subspace vectors can be linearly dependent and in this case the matrix Ql can beill-posed. This could lead to later complications and therefore the vectors in Ql are re-orthogonalized using the SVD. We now look for a direction pl which is spanned by Qland decreases the mis�t by some amount �, 0 < � < 1. Writepk = Qlz (5.10)Substituting the subspace decomposition into the equation gives the least squareproblem: minimize jjrk+1jj2 = jjAQlz � rkjj2 (5.11)



Chapter 5. Hybrid Methods 82subject to jjrk+1jj2��jjrkjj2for the coe�cients z. This problem can be also written as:AQlz = rkwhere the solution z is regularized such that jjrk+1jj2��jjrkjj2. In order to solve thisproblem let Aq = AQl be an N�l matrix. The system can still be ill-posed and thereforeregularization is needed. Again the choice of regularization yields the type of solution.Since the �nal goal is to decrease jjxjj Oldenburg et al. suggested regularizing the systemwith respect to jjx+ pjj = jjx+Qlzjj. This leads to the minimization problem:minimize �jjxk +Qlzjj2 + jjAqz � rkjj2 (5.12)with the solution: z = (ATqAq + �I)�1(ATq r � �QTl xk) (5.13)The regularization parameter � is adjusted such that the mis�t would be reduced by aconstant factor �.After the solution z is found we calculate pk = Qlz and update the model:xk+1 = xk + pkThe algorithm can be summarized as follows:Gradient Subspace Method� Choose a subspace of size k and a starting vector x0, r1 = b�Ax0� For k = 1; 2:::{ Calculate subspace vectors using 5.8 and re-orthogonalize them.{ Calculate the matrix Aq = AQl



Chapter 5. Hybrid Methods 83{ Solve: z = (ATqAq + �I)�1(ATq rk � �QTl xk){ set p = Qlz{ Update the model xk+1 = xk + p and residual rk+1 = b�Axk+1The number of subspace vectors l is chosen according to the size of the problem and theavailable memory. Since the subspace Ql is made of gradients and is not guaranteed tobe smooth it is advantageous to use a large subspace. Oldenburg et al. used l�10 to 100vectors for the solution.The complexity of the algorithm is as follows: Calculating a subspace vector is onlyO(M) operations. The calculation of the matrix Aq is O(lNM) operations. The calcu-lation of the solution of the system 5.13 is O(l2N) operations. If this process is repeatedfor k iterations and the total cost of the algorithm is:CG = O(lM) +O(lkNM) +O(l2N) (5.14)This complexity is dominated by the O(lkNM) term.5.4 Parameter Selection and Space SizeIn previous chapters we had to estimate the regularization parameter (for Tichonov reg-ularization) or the space size (for subspace methods). When using hybrid type methodswe have to estimate both space size and regularization parameter. In this section wediscuss some of the heuristics which we develop for this choice.We start with the choice of the subspace size. In order to understand our motivationwe recall the reasons which motivated us to work with hybrid methods. In general, hybridmethods require more storage than subspace methods and they converge slower. Thereasons for the use of such methods is to let the singular vectors which are associated withlarge singular values converge, and to regularize the convergence of the singular vectors



Chapter 5. Hybrid Methods 84which are associated with small singular values. Keeping this in mind, we di�erentiatebetween two types of subspace methods. The �rst type is the hybrid Krylov method. Inthis method we are not concerned with storage and therefore we can increase the size ofthe subspace as we wish. On the other hand, with iterated Krylov methods and gradientsubspace methods, we are limited by storage. We therefore describe the heuristics foreach of the criteria we have and adjust them to the method used.5.4.1 Discrepancy PrincipleRecall that the discrepancy principle is based on a target mis�t. Our goal is to �nd aregularized model x such that jjb � Axjj2 = N�2. When storage is not a problem, theprocess is divided into two steps. In the �rst step we estimate the space size. Since wewant to capture most of the large singular values and use Tichonov regularization onthe reduced system, we make sure we capture some of the small singular values. Thiscan be done in two ways as explained in Section 5.1. First through LSQR we can checkthe mis�t at each iteration, and only after the mis�t is reduced further than the targetmis�t do we stop. Alternatively we can use the bidiagonalization process and calculate,in each step, the SVD of the small bidiagonal matrix Bk. Our experience shows thatwhen 10 � 20% of the singular values of Bk are small enough (smaller than � = 10�6,assuming �1 = 1), then most of the large singular values have converged. We then usethe bidiagonal system Bk to solve the nonlinear equation for �:jj~e1 �Bkz(�)jj2 = jj(I �Bk(BTk Bk + �I)�1BTk )~e1jj2 = N�2 (5.15)This nonlinear equation can be solved quickly since Bk is of small size and bidiagonal.When the space is limited we carry out the process above iteratively. In each step wereduce the mis�t in half until we get to the target mis�t. In the nth iteration we solve:jj~e1 �Bk;nzn(�)jj2 = jj(I �Bk;n(BTk;nBk;n + �nI)�1BTk;n)~e1jj2 = (5.16)



Chapter 5. Hybrid Methods 8512 jj~e1 �Bk;n�1zn�1(�n�1)jj2The same process is done with the gradient subspace method. However when usingthis method we cannot bene�t from a bidiagonal system and we have to solve the N�kproblem 5.13 for di�erent �'s in order to solve the nonlinear equation:jjAq(ATqAq + �I)�1(ATq r � �QTl xk)� bjj2 = 12 jjAxk � bjj2 (5.17)Although the solution of this problem is not as fast as for the bidiagonal system, it isrelatively fast since ATqAq is only l�l in size.5.4.2 Implementation of the GCVThe application of the GCV criterion in the case of the Krylov method is straight-forward.After the space is calculated with the bidiagonalization process, and the almost singularmatrix Bk is calculated, we use the GCV principle and �nd the minimum of the GCVfunction in the subspace. This is done by minimizing:GCV (k; �) = jj(I �Bk(BTk Bk + �I)�1BTk )~e1jj2[trace(I �Bk(BTk Bk + �I)�1BTk )]2 (5.18)The evaluation of the GCV function in this case is very cheap and the minimization canbe carried out easily.When storage is a problem we can still use 5.18 in the small subspace of k vectors.The major problem in this case is that if the subspace is too small, no regularization isneeded and �!0. This kind of behaviour is observed in the �rst few iterations. Howeveras the process proceeds, the vectors which are associated with large singular values haveconverged and even small problems need to be regularized. The regularization parameterthen is increasing, until the residual contains mainly noise and the regularization para-meter �!1. Practically the values 0 and 1 are determined versus the singular values



Chapter 5. Hybrid Methods 86of Bk. If the value of ��min(�(Bk)) then we consider the regularization parameter as0 and if ��max(�(Bk)) we consider the regularization parameter as in�nity. Thereforethe iterative hybrid process is terminated when ��max(�(Bk)).When working with gradients, the implementation of GCV is exactly the same, how-ever in this case we have to minimize:GCV (l; �) = jj(I �Aq(ATqAq + �I)�1ATq )bjj2[trace(I �Aq(ATqAq + �I)�1ATq )]2 (5.19)Minimizing this equation is a bit more expensive because we cannot bene�t from thebidiagonal structure, however since the space size l is small we only need to invert an l�lmatrix in each evaluation of the GCV function.Implementation of the L-Curve TechniqueImplementation of the L-curve technique is very similar to the implementation of theGCV when working with the bidiagonalization process. After the bidiagonalization isperformed we use it to calculate the corner of the L-curve of the small bidiagonal systemBkz = ~e1. The implementation of the L-curve in the case of limited space is di�erent.If the space size is small, then the shape of the graph log(�d) as a function of log(�m)does not necessarily have the L-shape. In this case we might get into trouble if we simplytry to use the L-curve criterion. In general I would try to avoid using the L-curve forthis type of regularization. One possible implementation is to calculate a regularizationparameter, exactly like in the discrepancy principle, and reduce the mis�t by a certainamount. At some stage the mis�t is not reduced but the model norm starts to increase.This is somewhat parallel to process in CGLS and we therefore suggest to stop at thispoint.



Chapter 6ApplicationsThe methods and heuristics developed in previous chapters were motivated through work-ing on speci�c applications. The goal of this thesis is to develop methods that are genericin nature. The problems presented here are often solved in geophysics and medical phys-ics. In some of these applications such as 3-D gravity and medical tomography, the sizeof the problem can prevent an attempt to invert the real problem and to deal with thenon-uniqueness. In many of these cases the problem is simply under-parametrized, andthe inverted image might be distorted. Another goal of this thesis is to compare the va-riety of methods, test their strengths and weaknesses such that given a speci�c problem,we can �nd computationally feasible method for carrying out the inversion.This chapter is built as follows: We use the test problems to test di�erent aspectsof the inversion process. We start with gravity and use the 1-D problem to comparemethods to estimate noise levels. The goal here is to test which of the methods is moregeneric in nature. The small size of the problem enables us to work with all methodsand compare solutions. The 2-D gravity problem is then used to compare the numberof 
oating points operations (
ops) and the e�ciency of the di�erent methods. It isvery common to use linear solvers as imaging operators for a crude approximation ofa nonlinear problem, we therefore test our methods on the linearized nonlinear gravityproblem. In the �nal test of the gravity problems, we use the most e�cient methodon a large 3-D gravity problem and apply our methodology to �eld data. We then dothe same process for the tomography inverse problem and consider borehole tomography87



Chapter 6. Applications 88and SPECT imaging. We apply the methods on �eld data sets in order to demonstraterobustness.6.1 The Gravity ProblemThe gravity inverse problem is a generic type of problem. As with many other geophysicalproblems the kernels are concentrated close to the surface and therefore it is hard toobtain good depth resolution. The physics of gravity is well explained and it is a commontool in geophysical prospecting. Numerous papers and books are written on modellingand inversion of gravity data (see for example Blakely [1995], Li [1996], Mirzaei [1996]),and the main di�culty in applying an inversion scheme is the size of the problem. In thissection we test our algorithms on the one and two-dimension gravity problem, experimentwith the linearized nonlinear gravity problem and �nally apply the best strategy to a threedimension �eld example.6.1.1 The 1-D Gravity ProblemThe goal of this section is to compare di�erent methods for estimating noise. We havefour such methods: GCV in the full space (GCV-F), GCV in subspace (GCV-S), L-curvein full space (L-F) and L-curve in subspace (L-S). We are going to test these methodson di�erent gravity problems. The tests are made from synthetic data sets for each ofthese problems. In the �rst stage we add di�erent amounts of Gaussian noise to the data,varying from 0:1� 30% i.e.:bi!bi +Ni(0; �bi) � = 0:001:::0:3 (6.1)where Ni(0; �bi) is a Gaussian random variable with zero mean and �bi standard de-viation. Real world data are seldom strictly Gaussian and therefore we test our noise



Chapter 6. Applications 89estimation methods with a combination of Gaussians:bi!bi +Ni(0; �bi) +Ni(0; �jjbjj) (6.2)where � = 0:01:::0:3 and � = 0:01:::0:2. We then test the methods for two extreme cases.We generate Gaussian correlated noise and test the case:b!b+R N(0; �jjE(b)jj) (6.3)where N(0; �jjE(b)jj) is a vector of random numbers, each number is generated from aGaussian distribution which has a zero mean and �jjE(b)jj standard deviation. RTR = C,and C is a data correlation matrix. Finally, we add this correlated noise to Gaussiannon-correlated noise and test the case where the noise is:b!b+R N(0; �jjbjj) +N(0; �jjbjj) (6.4)Recall from Chapter 1 Section 2 that the integral equation in the 1-D gravity case is:bi = 
Z 10 (�2 � arctan(xiz ))��(z)dz (6.5)where xi is the position of the measurement and ��(z) is the anomaly density model,and 
 is the gravitation constant.In order to carry out the synthetic experiment, we assume that we measure 32 datapoints at distances 0 to 70 meters from the fault. We choose a smooth model andcalculate the data by discretizing the integral equation 6.5 into 129 grid points using thetrapezoidal rule as explained in Chapter 2. The kernels are plotted in Figure 6.1. Thekernels decay rapidly with depth and therefore we do not expect to obtain good depthresolution. The important role which the spectrum plays in the problem was emphasizedin Chapter 4 . Since this problem is small, we calculate the SVD of the discrete systemand plot the singular values (Figure 6.2). The singular values decay rapidly and we plot



Chapter 6. Applications 90the function e�n (where n is the singular value index) to demonstrate that. The problemis very ill-conditioned as the condition number is 1E17. The model and the data usedfor this example are plotted in Figure 6.3 As a �nal stage of the forward modelling weadd noise to the data. To summarize the process of the forward modeling we have:� Choose 32 measurement points equally spaced from 0� 70 meters.� Pick a model.� Discretize the system using 129 grid points and calculate the integral using themidpoint rule.� Add noise to the data.In order to carry out the inversion we need to choose an objective function. Forthis example, we chose an objective function which is a discrete representation of thecontinuous operator: [0:1r2; f(z)I]TWhen discretizing the operator r2 we do not use boundary conditions. The functionf(z) is plotted in Figure 6.4. The function penalizes the amplitude of the model at thesurface and at great depth.
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Figure 6.3: 1-D Gravity model and dataWe then invert the system using di�erent noise levels in the right hand side. Table6.1 shows the mis�t which was produced with di�erent methods in the case of Gaussiannoise. The curves of the GCV-F and L-F are plotted for high level noise (20%) and forlow level noise 0:1% in Figure 6.5.Secondly we carry out the same experiment but with the right hand side contaminatedby noise from two Gaussian distributions. The �rst component of the noise is proportionalto each datum and the second is proportional to the norm of the data. In Table 6.2 wesummarize the results of the predicted mis�t for this case.



Chapter 6. Applications 92Noise GCV-F GCV-S L-F L-S True jj�jj30% 3.2E-1 3.3E-1 3.4E-1 3.3E-1 3.4E-120% 1.6E-1 1.5E-1 1.6E-1 1.6E-1 1.8E-110% 1.1E-1 1.1E-1 1.1E-1 1.1E-1 1.1E-15% 6.1E-2 6.3E-2 6.3E-2 6.8E-2 6.5E-21% 8.4E-3 8.2E-3 9.1E-3 8.2E-3 9.3E-30:1% 9.2E-4 9.1E-4 9.6E-4 9.6E-4 0.10E-3Table 6.1: Predicted square root of the mis�t using the di�erent methods versus the truesquare root of the mis�t jj�jj. The noise is Gaussian �i = Ni(0; �bi)
Noise GCV-F GCV-S L-F L-S True jj�jj0:3N1 + 0:1N2 2.7E-1 2.7E-1 2.8E-1 2.7E-1 2.9E-10:2N1 + 0:1N2 1.9E-1 1.9E-1 1.9E-1 1.8E-1 1.9E-10:1N1 + 0:1N2 1.2E-1 1.1E-1 1.2E-1 1.2E-1 1.2E-10:05N1 + 0:05N2 6.7E-2 6.6E-2 7.1E-2 5.6E-2 7.1E-20:01N1 + 0:01N2 1.3E-2 1.1E-2 1.3E-2 1.3E-2 1.3E-20:001N1 + 0:001N2 1.5E-3 1.5E-3 1.6E-3 1.5E-3 1.5E-3Table 6.2: Predicted square root of the mis�t using the di�erent method versus the truesquare root of the mis�t jj�jj. The noise in the �rst column is made from a combination of�1N1+�2N2. N1 is Gaussian with 0 mean and standard deviation which is proportionalto the datum. N2 is Gaussian with 0 mean and standard deviation which is proportionalto the norm of the data.



Chapter 6. Applications 93Noise GCV-F GCV-S L-F L-S True jj�jj30% 1.9E-1 1.9E-1 3.3E-1 2.4E-1 3.0E-120% 1.2E-1 1.3E-1 1.3E-1 1.3E-1 2.1E-110% 5.3E-2 4.3E-2 6.2E-2 7.2E-2 9.6E-25% 2.3E-2 2.1E-2 4.9E-2 3.1E-2 5.1E-21% 1.0E-2 1.1E-2 1.3E-2 1.0E-2 1.9E-20:1% 8.6E-4 9.5E-4 1.0E-3 1.0E-3 1.7E-3Table 6.3: Predicted square root of the mis�t using the di�erent methods versus the truesquare root of the mis�t jj�jj. The errors are correlated.In the next stage we add correlated noise to the data. Table 6.3 summarized thisexperiment. The covariance matrix is plotted in Figure 6.6. The covariance for a datumbi measured at location Li and a datum bj measured at location Lj is assumed to be:COV (bi(Li); bj(Lj)) = ce� jLi�Lj jLwhere L is a characteristic distance and c is a constant. For this example we use L = 10m.Finally in Table 6.4 we combine our correlated noise with Gaussian uncorrelated noisewith a uniform standard deviation proportional to the norm of the data. We use thesame covariance matrix. Table 6.4 which contains the combinations of the correlated
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Chapter 6. Applications 95Noise GCV-F GCV-S L-F L-S True jj�ncjj True jj�cjj0:1N + 0:2C 1.2E-1 1.3E-1 1.4E-1 1.4E-1 1.0E-1 2.1E-10:05N + 0:2C 1.1E-1 1.4E-1 1.5E-1 1.4E-1 7.3E-2 2.4E-10:1N + 0:1C 1.1E-1 1.E-1 1.7E-1 1.1E-1 1.0E-1 1.0E-10:01N + 0:1C 9.1E-1 8.7E-1 7.8E-1 5.1E-1 7.2E-1 9.9E-10:05N + 0:05C 5.0E-2 4.7E-2 5.3E-2 5.2E-2 4.3E-2 4.8E-20:1N + 0:05C 9.3E-2 9.4E-2 9.8E-2 9.8E-2 1.0E-1 4.8E-20:05N + 0:01C 5.5E-2 5.4E-2 5.6E-2 5.4E-2 5.8E-2 1.0E-2Table 6.4: Predicted square root of the mis�t using the di�erent method versus the truecorrelated noise jj�jjc and the non-correlated noise jj�jjnc.and non-correlated noise is interesting. It shows that our methods tend to detect thenon-correlated noise and ignore the correlated noise. This observation for the GCV isnot new and Wahba [1990] refers to other such observations. One last aspect which doesnot appear in the tables is the behaviour of the model norm. The model norm of allthe techniques above was equivalent and therefore at least from an interpretation pointof view the results obtained from di�erent methods are comparable. This can be seengraphically in Figure 6.7, where we plot the di�erent models which are obtained in the1% case. Further examination of the model norm with di�erent methods is discussed inthe 2-D case.As a summary for the 1-D example, from the Tables and Figures we conclude:� When the noise is Gaussian with range 1� 20% all methods did well.� When the noise level was very low GCV methods could have problems. The min-imum of the GCV function was 
at and the regularization parameter was notwell-determined. This occurred when noise levels were lower than 0:1%. However,all GCV methods preformed well and detected the noise level quite accurately.� When the noise level was very low L-curve methods were well-de�ned.
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Chapter 6. Applications 97The above experiments demonstrate the robustness of the techniques we have inestimating noise levels in di�erent scenarios. The experiments also show that subspacemethods are not only computationally e�cient, but they are robust for noise estimationand give practically the same results as full-space methods. In the next examples thesize of the problem solved is larger and Tichonov regularization in the full space is veryexpensive. We therefore use mainly subspace and hybrid methods.



Chapter 6. Applications 986.1.2 The 2-D Gravity ProblemIn this section we concentrate on the amount of computation needed for the solutionof a problem. We test subspace methods: CGLS with GCV, CGLS with the L-curve,multilevel iteration with GCV and gradients with GCV. We compare the number of
oating points operations (
ops) which are needed to solve the problem for noise levelsof 5; 10 and 20%. We then carry out the same comparison between hybrid methods:hybrid LSQR, iterated Krylov and iterated gradient.Recall that the gravity data in two dimensions is given by the integral equation:bi = b(xi; h) = 
 ZD ��(x; z) z(x� xi)2 + (z + h)2dx dz (6.6)We assume we measure 200 data, bi = b(xi; h) i = 1::200. The data are assumed to bemeasured at height h = 0:5 meters above the surface, at equally spaced intervals from0 to 100 meters. In order to calculate the data we pick a model made of two positiveanomalies. The model is plotted in Figure 6.9 (bottom). In order to calculate the data,the integral 6.6 is discretized into 50�30 = 1500 cells and the integral is approximatedusing the midpoint rule as explained in Chapter 2. As in the 1-D case, the kernels decayrapidly with depth. Although the number of cells used for the problem is large, wehave data only above the surface and therefore the number of data is not large. We cantherefore calculate the eigenvalues of AAT which is an N�N matrix. The eigenvaluesof this system are the squared singular values of the system. The square root of theeigenvalues of AAT (which are the singular values of the discrete 2-D gravity system) areplotted in Figure 6.8. This time the singular values decay in steps. This is an importantobservation for the implementation of iterative methods. Recall from Chapter 4 thatKrylov space methods work well on such problems. The problem is ill-conditioned as thecondition number is 3:6E8.To summarize the process of calculating the data and discretizing the system we have:



Chapter 6. Applications 99� Measured 200 data points 0:5 meters above the ground.� The data are evenly spaced over the interval 0� 100.� The model is made of two smooth anomalies.� The model space is discretized into 50�30 points.� The data are calculated using the midpoint rule.Since the model is smooth and the kernels are localized near the surface, we chose anobjective function which minimizes roughness and penalizes structure close to the surfaceand at in�nity. We discretize the Laplacian operator in 2-D without using boundaryconditions. Depth penalization is obtained by a weighting function f(x; y) which isplotted in Figure 6.10. The function is assumed to represent a priori information. Thus,the �nal weighting operator is: W = �r2 + f(x; y)IThis problem is of a large scale and we cannot easily calculate the product ATA,store it, and invert ATA + �W TW for di�erent �'s. We therefore use this problem to
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Chapter 6. Applications 101test subspace methods, i.e. CGLS-LSQR, multilevel and gradients. We also test hybridmethods, i.e. Lanczos, iterated Krylov and iterated gradients. While the main goal of thelast section was to test di�erent noise estimation methods, the emphasis of this sectionis on computational properties. Our goal is to compare the amount of computationsneeded in order to solve the system using a speci�c regularization method and a speci�cmethod for noise estimation. We test the di�erence between the solutions by looking atthe model norm of each of the solutions and we compare the predicted and real mis�t.The results are in Tables 6.5-7.Method Pred jjAx� bjj �m 
opsCGLS+GCV 973.2 0.173 6.3E7CGLS+L 973.2 0.173 7.8E7Multilevel+GCV 971.2 0.171 19E7Gradients+GCV 973.9 0.175 13E7Table 6.5: Comparison between Subspace Methods for the solution of the 2-D gravityproblem. Noise level is 20%, real square root of the mis�t is 978:45.Method Pred jjAx� bjj �m 
opsCGLS+GCV 513.4 0.166 6.3E7CGLS+L 513.4 0.166 8.4E7Multilevel+GCV 515.2 0.165 20E7Gradients+GCV 513.9 0.164 14E7Table 6.6: Comparison between Subspace Methods for the solution of the 2-D gravityproblem. Noise level is 10%, real square root of the mis�t is 515:57.The inverted models using CGLS+GCV, hybrid LSQR and using gradients with GCVfor the case of 10% are plotted in Figure 6.11.From the above Tables we conclude the following:� All methods are comparable in terms of predicting the mis�t.



Chapter 6. Applications 102� All methods are comparable in terms of the model norm.� CGLS is the most computationally e�ective. The gradients and multilevel methodsare two to three times more expensive.Our next experiment is the comparison of hybrid methods. Here we compare Lanczosbidiagonalization, iterated Krylov and iterated gradients. We use the GCV as a stoppingcriterion. Results for 5; 10 and 20% noise levels are in Tables 6.8-10.The result of the inversion of hybrid LSQR is in Figure 6.11. From the Tables weconclude that:� All methods are comparable in terms of predicting the mis�t.� All methods are comparable in terms of the model norm.� Hybrid LSQR is the most computationally e�ective. Iterated Krylov and iteratedgradients are more or less equivalent and are 1:5 � 2 times more expensive thanhybrid LSQR.We end this subsection with a comparison of the most e�ective subspace, which is theKrylov subspace (CGLS and LSQR) and hybrid methods. Notice that the di�erence inmodel norm is small and from an interpretation point of view, the models are equivalent.However from the number of computations point of view, Krylov subspace methods needMethod Pred jjAx� bjj �m 
opsCGLS+GCV 270.3 0.148 6.3E7CGLS+L 279.2 0.142 9.5E7Multilevel+GCV 275.2 0.144 20E7Gradients+GCV 270.4 0.150 14E7Table 6.7: Comparison between Subspace Methods for the solution of the 2-D gravityproblem. Noise level is 5%, real square root of the mis�t is 273:4.



Chapter 6. Applications 103Method Pred jjAx� bjj �m 
opsH-LSQR 269.7 0.143 1.3E8I-KRY 269.7 0.144 2.1E8I-GRAD 270.3 0.148 2.7E8Table 6.8: Comparison between Hybrid Methods for the solution of the 2-D gravityproblem. Noise level is 5%. H-LSQR - hybrid LSQR, I-KRY - iterated Krylov, I-GRAD- iterated gradients. True square root of the mis�t was 273:4.Method Pred jjAx� bjj �m 
opsH-LSQR 510.8 0.160 1.3E8I-KRY 512.4 0.1603 2.1E8I-GRAD 511.7 0.158 2.7E8Table 6.9: Comparison between Hybrid Methods for the solution of the 2-D gravityproblem. Noise level is 10%. H-LSQR - hybrid LSQR, I-KRY - iterated Krylov, I-GRAD- iterated gradients. True square root of the mis�t was 515:5.only half of the amount of 
ops and are substantially more e�cient. In terms of storage,subspace methods need to store only three vectors which belong to the model space whilehybrid methods need to store more. We therefore conclude that unless there is no otheroption, it is better to use Krylov subspace methods over hybrid methods.



Chapter 6. Applications 104Method Pred jjAx� bjj �m 
opsH-LSQR 973.7 0.173 1.3E8I-KRY 970.4 0.175 2.0E8I-GRAD 974.1 0.171 2.6E8Table 6.10: Comparison between Hybrid Methods for the solution of the 2-D gravityproblem. Noise level is 20%. H-LSQR - hybrid LSQR, I-KRY - iterated Krylov, I-GRAD- iterated gradients. True square root of the mis�t was 983:3
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Figure 6.11: 2-D Gravity Inversion



Chapter 6. Applications 1056.1.3 Imaging of Nonlinear GravityAnother important type of problem is imaging. This type of problem arises, in general,when a nonlinear problem is linearized. Assume that we have a nonlinear problem:F [x] + � = b (6.7)The operator F can be very complicated and we might not know how to calculate it.However for some situations we could write F as:F [x0+ (x� x0)] = F [x0] +A(x0)(x� x0) +R(x0; x) (6.8)where we know how to calculate the linear operator A(x0) analytically. Such examplesare the Born and Rytov approximations (Born [1975]). In this case we can solve thelinear problem for x: A(x0)x+R(x0; x) + � = b� F [x0] +A(x0)x0 (6.9)It is of great interest to check how our linear inversion algorithms work for this case,�rst, because this type of approximation is very common in industrial settings (Claerbout[1985]) but more importantly, the \noise" for the linear operator is made of a Gaussianrandom noise and the nonlinear part R(x0; x) that is not necessarily small and is obviouslycorrelated. It is interesting to observe the result of an imaging algorithm for this verydi�erent type of noise. This is the goal of this test example. In parallel with the Bornapproximation, we use the Fr�echet derivative operator derived from a half space as theoperator A(x0).Recall from Chapter 1 that the gravity measurement bj due to a change in the sub-surface topography m(x; y) from the assumed subsurface topography h(x; y) is given by(setting 
�� = 1):bj = Z ZD 1rh(x; y; h(x; y);xj; yj) � 1rm(x; y;m(x; y);xj; yj)dxdy (6.10)



Chapter 6. Applications 106with: rh(x; y; h(x; y);xj; yj) = q(x� xj)2 + (y � yj)2 + h2and rm(x; y;m(x; y);xj; yj) = q(x� xj)2 + (y � yj)2 + (h+m)2In order to experiment with this type of problem we assume that 30�30 gravity dataare measured on the surface. The data are equally gridded in the interval [0; 100]�[0; 100]meters. In order to calculate the data we pick a model with average depth of 20m. Wetherefore set the reference height h(x; y) = 20 meters in equation 6.10. The model,m(x; y), has zero mean about this surface. The integral 6.10 is calculated with themidpoint rule. The 100m�100m square domain is divided into 49�49 grid points. Themodel and the data are plotted in Figure 6.12.
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Chapter 6. Applications 107In order to calculate A(0) = A(m = 0) we set m0(x; y) = 0. Recall from Chapter 1that the Fr�echet derivative operator in this case is given by:A(0)(:) = Z ZD h(x; y)(:)dxdy[(x� xj)2 + (y � yj)2 + h(x; y)2] 32 (6.11)Using the same discretization, the operator is discretized into a matrix A. We used 2401model parameters and we have 900 data and therefore the size of A is 900�2401. Thisleads to the linear system: Ax = b� F0 (6.12)where: F0 = F [m = 0] (6.13)Again A is large and full and again direct methods cannot be applied. We therefore solvethis problem using subspace and hybrid methods. This example is used to test noiseestimation techniques and the computational properties of the di�erent methods. Thesingular values which are larger than 1E � 9 are plotted in Figure 6.13, and a typicalkernel is plotted in �gure 6.14. Note that the kernel is very di�erent from the ones we
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Figure 6.14: A nonlinear gravity kernel for the data point measured at point [50; 50]of kernel is ill-posed, and with a spectrum which decays slowly. This is demonstrated inFigure 6.13 where we can see that the functions a=n and a2=n2 (a is used for scaling),decay faster than the spectrum of this problem at least for the �rst 40 singular values.We therefore anticipate slow convergence when the CGLS algorithm is used.In order to test our algorithms we add random Gaussian noise to the data and invertthe system using the di�erent methods. We compare the prediction of noise (the randomand the nonlinear) by the di�erent methods and their computational properties. Wecompare the square root of the linear mis�t, p�dlin = jjAx� (b� F0)jj, the square rootof the nonlinear mis�t, p�dnonlin = jjb � F [x]jj, the model norm and the number of
ops needed for the inversion. While the linear mis�t represents how well the systemwas inverted, the nonlinear mis�t provides information about the nonlinearity of theproblem. If the linear mis�t and the nonlinear mis�t are similar then the nonlinearoperator is approximated well by the linear one and the term R(x0; x) is small. Howeverif the linear mis�t is signi�cantly di�erent than the nonlinear one then the nonlinearterm R(x0; x) is large and the linear approximation breaks down. Our goal is to testour methods exactly under this di�erent condition. This test would serve us later when



Chapter 6. Applications 109Method jjAx� b+ F0jj jjF [x]� bjj �m 
opsCGLS+GCV 0.27 3.71 9.47 4.4E8CGLS+L 0.27 3.71 9.47 6.3E8LSQR+GCV 0.26 4.10 9.60 5.6E8LSQR+L 0.26 4.10 9.60 6.6E8GRAD+GCV 0.28 3.62 9.31 25E8ML+G 0.31 3.51 8.99 31E8H-LSQR 0.33 3.72 9.23 14E8I-KRY 0.31 3.41 9.31 42E8I-GRAD 0.35 3.23 9.11 44E8Table 6.11: Comparison between all methods for 1% noise. True square root of the mis�tis 0:25. Method jjAx� b+ F0jj jjF [x]� bjj �m 
opsCGLS+GCV 1.25 4.31 9.23 3.6E8CGLS+L 1.25 4.31 9.23 5.2E8LSQR+GCV 1.23 4.32 9.26 4.7E8LSQR+L 1.23 4.32 9.26 5.4E8GRAD+GCV 1.53 4.67 8.77 22E8ML+G 1.29 4.39 9.20 26E8H-LSQR 1.31 4.21 9.15 12E8I-KRY 1.36 4.18 9.10 35E8I-GRAD 1.33 4.15 9.06 36E8Table 6.12: Comparison between all methods for 5% noise. True square root of the mis�tis 1:23.solving the nonlinear problem. Results of the di�erent experiments are in Tables 6.11-13.In Figure 6.15 we plot the models which were obtained using the di�erent methodsfor the 10% noise level. From the Figure and Tables we conclude that:� Predicted linear mis�t is approximately equal to the random noise. This is observedboth for the case of large nonlinear terms versus random noise and for the case that



Chapter 6. Applications 110Method jjAx� b+ F0jj jjF [x]� bjj �m 
opsCGLS+GCV 2.50 4.81 8.97 1.1E8CGLS+L 2.50 4.81 8.97 1.1E8LSQR+GCV 2.53 4.79 8.9 2.0E8LSQR+L 2.53 4.79 8.9 2.0E8GRAD+GCV 2.98 4.11 7.9 2.0E8ML+G 3.29 3.91 6.88 22E8H-LSQR 2.66 4.06 6.95 9.2E8I-KRY 2.73 3.92 6.81 27E8I-GRAD 2.79 3.81 6.75 29E8Table 6.13: Comparison between all methods for 10% noise. True square root of themis�t is 2:50.
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Figure 6.15: 2-D Nonlinear Gravity Imaging.



Chapter 6. Applications 111the random noise is of the scale of the nonlinear terms.� All methods predict random errors but do not predict nonlinear terms. The meth-ods tend to see the nonlinear terms as a part of the signal.� The models obtained using di�erent methods are comparable. This can be seen bylooking at the model norm and Figure 6.15. However hybrid solutions tend to besmoother.� From a computational point of view, CGLS and LSQR with a combination of GCVare the most e�cient methods.



Chapter 6. Applications 1126.1.4 3-D Gravity ProblemThe last of the gravity problems tackled in this thesis is a large 3-D gravity problem.Three-dimensional gravity is a common measurement in geophysics however the shearsize of the problem often prevents any attempt to invert it, and usually conclusions arebased solely on interpreting the data. The goal of this subsection is to apply the methodsdeveloped previously to a real �eld data example. In order to do this we �rst test ouralgorithm on a synthetic example. Recall from Chapter 1 that the gravity data is givenby (setting 
 = 1): b(xi; yi) = Z Z Z D z ��(x; y; z) dx dy dz[(x� xi)2 + (y � yi)2 + z2] 32 (6.14)In order to make the test as close as possible to the real data example, we assumewe measure 982 data on the surface, located at the same place as the real data. Themeasurement points are plotted in Figure 6.16. We divide the earth into 40�40�20 =
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Figure 6.16: Measurement points in the �eld data set.32000 cells, and carried out the integration using an analytic expression for each cell (Nagi[1966]). The synthetic experiment emulates the �eld data set and therefore, the kernels



Chapter 6. Applications 113of the synthetic example are the same as the �eld data example which will be testedlater. This discretization leads to a full system of size 982�32000. The system cannotbe stored and therefore we never compute the system directly. Since we use iterativemethods which need only the calculation of the product of a matrix and a vector andthe product of the matrix transpose and a vector, we calculate these products as follows:First we calculate the forward product of the matrix A and an arbitrary vector v bycalculating each datum separately using the midpoint rule on the integral equation 6.14.In this way we avoid storing the matrix, however this means that we have to calculate theelements of the matrix A for each matrix-vector product. The transpose product is givenby reciprocity. Noticing that the operation of row i of AT on a vector u (u2RN describesthe gravity measurement on the surface) is equivalent to the gravity measurement in celli due to a density which is distributed on the surface and given by the vector u. We cantherefore calculate Av and ATu and we are ready to carry out the inversion.We have developed a variety of methods for doing the inversion but, since the problemis so large, we want to use the most e�cient one. The obvious choice is the combinationof CGLS and GCV, however in order to be certain that this choice is justi�ed we need toknow something about the spectrum of our problem. Since the problem is so large, thereis no chance to calculate the SVD directly. However we do not need to know the exactSVD of the problem, and it would be su�cient to know the behaviour of the spectrum.We therefore discretize the problem using 11�11�8 grid points and check the spectrumof this system. The spectrum is plotted in Figure 6.17. The spectrum is of the stepstype and therefore we feel safe with the choice of CGLS+GCV. We proceed by picking amodel and calculating the data. The model and the data are plotted in Figure 6.18.In order to invert the system we need to choose a weighting matrix and we choose thediscrete version of W = �r2+ �I. The operator r2 does not have boundary conditionsand therefore is singular. We use � = 0:01 to ensure that the operator is positive de�nite.
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Chapter 6. Applications 115Noise Level Number of Iterations jjAx� bjj jj�jj 
ops5% 18 1.357E4 1.346E4 1.9E910% 16 2.745E4 2.853E4 1.7E920% 12 5.341E8 5.431E4 1.4E9Table 6.14: Performance of the CGLS+GCV algorithm for the inversion of 3-D gravity
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Figure 6.19: Results of 3-D gravity inversion.The results of the inversion are summarized in Table 6.14 and plotted in Figure 6.19.From the table we see that the methods we developed could predict the noise levels forthis problem and produced reasonable models.Next we use the same procedure to invert the �eld data from Heath-Steel-Stratmat.The data are plotted in Figure 6.20. The results of the inversion are plotted in Figure6.21. The result of this inversion agrees well with other inversions of the same data set(Li [1996]) which were obtained using gradient subspace methods and �ts to the geologyof the area.As a conclusion to this section we see that the methodologies which where developedallow us to work with large problems, calculate solutions and predict noise. Again theconjugate gradient type algorithm has been found to be robust and easy to implement.
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Chapter 6. Applications 1176.2 The Tomography ProblemA very di�erent type of problem arises in tomography where the kernels describe rays andthe matrix is sparse rather than full. In this section we test our algorithms on di�erentproblems which arise in tomography and use the di�erent methods on two �eld data sets.6.2.1 Borehole TomographyThe �rst geometry we deal with is borehole tomography. In this case transmitters areput on one side of the area we want to image and receivers are put on the other. Recallfrom Chapter 1 that the governing equation for the tomography experiment is:b(li) = Zli(�;�)m(�; �)dli(�; �) (6.15)where l(�; �) describes the ray path.In order to solve the problem we discretize the integral equation into M cells. As-suming that m(x; y) can be written as piecewise constant functions  i(�; �) in these cells,the model is: m(�; �) = MXj=1xj j(�; �) (6.16)and the integral is transformed into:b(li) = MXj=1xjZli(�;�) j(�; �)dli(�; �) (6.17)which gives the system of equations: Ax = bwhere: Aij = Zli(�;�) j(�; �)dli(�; �) (6.18)The calculation of Aij is straight-forward. It is the length of the ith ray in the jth cell.



Chapter 6. Applications 118In order to test our algorithms, we use radio imaging (RIM) �eld data. Exactly likein the three dimension gravity example, we would like to build a synthetic example withthe same geometry of the �eld data set. We therefore use the location of the transmittersand the receivers as was given in the data set and generate the tomography matrix. Wehave 51 sources and 41 receivers. Not all sources interact with the receivers and we havea total number of 1153 rays which cover the area. In order to show the ray coverage, weplot the geometry of the boreholes and the vector:cj = NXi=1AijThe vector c represents the ray coverage of each cell since it shows the total length ofrays which pass through the jth cell. The vector c is plotted in Figure 6.22.
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Chapter 6. Applications 119The ray coverage of the model is not uniform and therefore we would like to testthe ability of this experiment to predict the true model. First we carry out a syntheticexperiment and pick a smooth model and generate data for it. The model is plotted inFigure 6.23 (A), and is assumed to be an absorption anomaly above a baseline of 6m�1.The data anomalies are plotted in Figure 6.24. The model is made from 64�128 = 8192
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Chapter 6. Applications 120Method jjAx� bjj �m 
opsCGLS+GCV 161.4 2.53 1.0E8CGLS+L 161.4 2.53 1.3E8LSQR+GCV 161.6 2.53 1.2E8LSQR+L 161.6 2.53 1.6E8ML+G 168.2 2.50 5.9E8H-LSQR 163.2 2.52 3.1E8I-KRY 169.7 2.49 4.1E8I-GRAD 170.3 2.49 4.6E8Table 6.15: Comparison between all methods for 5% noise. True square root of the mis�tis 164:2.Krylov methods, iterated gradients and multilevel methods. A comparison between themethods is given in Tables 6.15-17.From the tables we conclude once again that the combination of conjugate gradient
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Figure 6.24: Synthetic Borehole Tomography Data. The data is plotted as a function ofthe z position of the transmitter and the receiver. Notice that the data have no physicaldimensions.



Chapter 6. Applications 121Method Ax� bjj �m 
opsCGLS+GCV 323.3 2.42 8.1E7CGLS+L 326.2 2.41 1.1E8LSQR+GCV 321.7 2.40 1.0E8LSQR+L 321.7 2.40 1.3E8ML+G 331.2 2.36 9.2E8H-LSQR 322.7 2.40 2.8E8I-KRY 330.1 2.36 3.9E8I-GRAD 329.5 2.37 4.1E8Table 6.16: Comparison between all methods for 10% noise. True square root of themis�t is 324:2.
Method jjAx� bjj �m 
opsCGLS+GCV 638.1 2.52 8.1E7CGLS+L 638.1 2.52 1.2E8LSQR+GCV 638.2 2.52 9.8E8LSQR+L 638.2 2.52 1.3E8ML+G 644.7 2.49 8.9E8H-LSQR 640.1 2.52 2.8E8I-KRY 647.9 2.49 3.8E8I-GRAD 649.3 2.47 4.0E8Table 6.17: Comparison between all methods for 20% noise. True square root of themis�t is 642:1.



Chapter 6. Applications 122methods and the GCV is the most e�cient method for the solution of the boreholetomography problem. The result of the inversion for the 5% case is shown in Figure 6.23(B). When trying to understand why these methods work as well as they do we lookagain at the singular value distribution of the problem. The problem is very large andtherefore straight-forward calculation of the SVD is not practical. In order to calculatean approximation to the spectrum of the problem we use a coarser discretization andcarry out the SVD of the same system which is discretized on 16�32 = 512 cells. TheSVD of this system is plotted in Figure 6.25. Again the singular values of the system
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Figure 6.25: The singular values of the tomography system.are decaying in steps and therefore the conjugate gradient algorithm is expected to workwell when applied to this problem.After testing this problem with the synthetic data set we use a �eld data set, usingthe same discretization and the same weighting matrix. The data set is plotted in Figure6.26. Notice that the real data do not have a zero mean and therefore we would like to�nd a simple reference model which can decrease the mis�t by a large amount. The mostsimple choice is a half space and we would try to �nd the \best half space" which �ts thedata. The half space can be described as a vector of constant absorption �e, where � is
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Figure 6.26: The �eld data.a real number of the unknown absorption and e = [1; 1; :::1]T . This leads to the followingminimization problem: minimize jj�Ae� bjj2 (6.19)The optimal � is given by: � = bTAejjAejj2 (6.20)Using the data and the tomography matrix we evaluate the background � to be 6:34 m�1.We now generate the residual r = b � �Ae and use this residual as the data for thisproblem. The result of the inversion of these data is plotted in Figure 6.27. The inversionis performed using the CGLS and GCV. The �nal estimated noise on this problem is37% which explains why other studies of the same data set where not very successful(Haber and Oldenburg [1996], McGaughey [1994]), where the noise level was estimatedto be 10 � 20%. This �eld data set example shows the importance of noise estimationtechniques.
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Figure 6.27: The result of the �eld data inversion.



Chapter 6. Applications 1256.2.2 Medical Tomography - SPECTAnother very common type of tomography is the Single-Photon-Emission-Computed-Tomography (SPECT). This method is used on a daily basis in almost every large hospi-tal. A common way to reconstruct SPECT images is by �ltered back-projection (FBP).The advantage of this reconstruction is its computational time which is very low, howeverthis technique does not take the non-uniqueness of the problem into consideration. Thetechnique does not allow incorporating additional a priori information and as a result theimages are often distorted. Recently Smith et al. [1992] suggested to use the TSVD forthe reconstruction and suggested the discrepancy principle as a stopping criterion. Roset-al. [1996] looked at the role of the regularization parameter, however it is commonlybelieved that SPECT images are unique and therefore no considerable e�ort was madeto try and choose model objective functions. Noise estimation techniques are rarely usedrigorously and to my knowledge the GCV principle was never applied to SPECT recon-struction. In this thesis we show that by a simple choice of weighting matrix and noiseestimation techniques we can improve the image with only a little sacri�ce in computa-tional time. It is also important to understand that the solution of SPECT reconstructionis not unique. The ability to de�ne a new objective function and obtain di�erent modelswhich �t the data to the same extent, is an important step in this direction. In thissection we test our algorithms on a real data set which was obtained from VancouverGeneral Hospital.Recall from Chapter 1, that the data are obtained by putting an array of bins in aplane which is rotated around the object to be reconstructed. Each plane in the rotationis a projection of the image to that plane. The data are then plotted as a collectionof these planes (Figure 6.28). A �ltered back projection inversion is plotted in Figure6.29. This reconstruction is de�nitely not accurate since it does not take into account



Chapter 6. Applications 126the fact that there are areas which are outside the patient's body. We now show thatwith very few assumptions the image can be improved. We choose a weighting matrix,W , which incorporates some of our a priori information about the problem. A similarchoice was used by Haber et al. [1996]. Our goal in choosing the weighting matrix is toautomatically specify a support region for the source activity (i.e. �nd the active region)and to impose smoothness. We therefore choose our weighting by noting �rst that thereare many data which are zero. This means that the rays which generated these dataprobably did not pass through any active area (since there is no negative activity). Wede�ne such a ray as a null ray. Our goal is to locate pixels which the null rays passedthrough so we can discriminate against having some activity in these pixels. Let Iz bethe set of indices of all null rays. We sum the rows of the null rays together:rz(j) = Xi2IzAij (6.21)where A is the tomography system matrix, and each row of A represents a ray. Each
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Figure 6.29: Filtered back projection reconstruction of the data.element of the vector rz is the area of all the null rays in a particular pixel. If this numberis large, then many null rays pass through this pixel. However if this number is 0, no nullrays pass through this speci�c pixel and we can therefore assume that the probability ofhaving activity in the pixel is high. We normalize this result by dividing by the totalarea of rays which pass through the pixel, and hence the �nal weighting is:wj = Pi2IzAijPNi=1Aij (6.22)The result of such weighting is plotted in Figure 6.30. Using this simple weighting weinvert the data and use hybrid LSQR and GCV as a stopping criterion. The resultis plotted in Figure 6.31. The improvement in the inverted image is obvious. Otherregularization such as smallness, smoothness and incorporating the anatomy as a prioriinformation is possible using this strategy. This will result in improved images.So far we have demonstrated that SPECT images can be improved signi�cantly byadding simple a priori information and noise estimation techniques. We now test the



Chapter 6. Applications 128di�erent methods to achieve this goal. As done before, �rst we plot the spectrum of theproblem. Again since we cannot calculate the SVD of the SPECT system we discretizeit on a coarser grid of 32�32 cells and carry the SVD on this system. The spectrum ofthe problem decays very slowly and therefore if the noise level is high, Krylov subspacemethods may fail. In Table 6.18 we compare the mis�t which is obtained by di�erenttechniques, the model norm and the number of 
ops. In this test Krylov subspacemethods did not perform well and the noise estimation is too low. This is obvious whencomparing the images (Figure 6.33). The Krylov subspace images are noisy while othermethods give smooth images. When comparing the methods developed here to the FBP,we see that these methods are about twice as computationally intensive as the FBP,however the images are signi�cantly improved and while the noise level is not predictedby using the FBP, it could be predicted using hybrid methods. Since the computationaltime is short (about 120 seconds per inversion on a SPARC 10 work station), usinginversion techniques should not be a problem on a daily basis.As a summary to this section we note that:� Incorporating a priori information to SPECT images improves the recovered image.
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Figure 6.30: The special weighting of SPECT image.



Chapter 6. Applications 129Method jjb�Axjj=jjbjj �m 
opsCGLS+GCV 0.17 115 4.2E7CGLS+L 0.21 107 5.3E7LSQR+GCV 0.17 115 4.9E7LSQR+L 0.21 107 5.8E7ML+GCV 0.28 68 23E7H-LSQR 0.29 71 6.3E7I-KRY 0.26 70 14E7I-GRAD 0.27 72 13E7FBP 0.35 33 3.2E7Table 6.18: Comparison between methods for SPECT inversion. Note that subspacemethods underestimate the noise level.� The spectrum of the SPECT tomography matrix decays slowly and the noise isrelatively high, therefore Krylov subspace methods tend to fail when applied toSPECT inversion.� Hybrid methods and subspaces which are not data dependent such as multileveland gradients, perform well when applied to SPECT.
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Figure 6.31: Inversion of SPECT using the weighting in Figure 6.30.
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Figure 6.33: Inversion of SPECT data with di�erent techniques. Notice that theCGLS+GCV and GCV+L-curve fail to predict noise levels. Hybrid methods on theother hand give reasonable inverted models.



Chapter 6. Applications 1316.3 SummaryIn this chapter we tested the techniques which were developed in previous chapters ona wide range of problems. The problems can be characterized by three main features:their size, the distribution of their singular values, the noise levels and types. A one-dimensional problem gives rise to small systems which can be easily handled and thereforewe used the 1-D gravity data to compare noise estimation methods. We have found thatfor this type of problem, which is characterized by a fast decaying singular values, allmethods work well, however Krylov space methods are the most e�cient. The nonlineargravity spectrum behaves in a similar way, and therefore it is not surprising that thesame methods work well for these problems as well. The second type of spectrum wascharacterized by steps. The two and three dimension gravity and the borehole tomog-raphy have this type of spectrum. Almost all methods work well on this type of spectrumand Krylov space methods are the most robust in terms of computations. A comparisonof the relative amount of computation for the di�erent techniques is in Figure 6.34. The
LSQRCGLS Gradients H−LSQR I−Kry I−Grad MultilevelFigure 6.34: A comparison between the relative number of 
ops for the solution of alinear problem with di�erent methods.advantage of Krylov space methods over any other technique is substantial and thereforeunless there is no other possibility, I would try to use this method on problems whichpossess fast or steps decaying spectrum.



Chapter 6. Applications 132A di�erent type of problem is SPECT tomography. In this case the spectrum ofthe system decays slowly and the noise level is very high. In this case Krylov spacemethods tend to underestimate the noise level and converge to a noisy solution. Thereason is that oscillatory vectors may converge prior to the smooth vectors. In this caseeither subspace techniques which do not depend on the right hand side such as gradientsand multilevel methods, or hybrid LSQR iterated gradients, or iterated Krylov are thesolution for this type of problem. If storage is not a problem, then hybrid LSQR tendsto be the most e�cient method. However if storage is a problem, then iterated Krylovmethods or iterated gradients are the optimal solution to the problem.When facing a new linear inverse problem I suggest the following guide for the choiceof a method:� Estimate the spectrum of the problem. If the spectrum has steps in it or it decaysquickly, use Krylov space methods.� If using Krylov space methods, estimate the noise level. If the noise is very low(lower than 1%), use the L-curve as a stopping criterion, otherwise use the GCV.� If the spectrum decays slowly use a hybrid method.� If there is no storage problem, use the hybrid LSQR combined with the GCV.� If using hybrid methods and storage is a problem, use iterated gradients or iteratedKrylov methods.



Chapter 7Nonlinear Inverse ProblemsThis chapter presents the formulation and general ideas of nonlinear inverse theory. Itis the equivalent of Chapters 2 and 3. In the �rst section a description of two commonmethodologies for regularizing nonlinear ill-posed problems is presented. We then explainwhy one of these methodologies is faulty in nature.Solving nonlinear ill-posed problems leads to nonlinear optimization problems. Inthe second section a review of the two main strategies for carrying out an optimizationproblem, damped Gauss-Newton and trust regions, is presented. Finally, a review ofsome of the commonly used techniques for the solution of nonlinear ill-posed problemsand a discussion of some of the di�culties using these existing methods is presented. Asimple example is given to demonstrate how one of these methods can fail.7.1 Formulation of Nonlinear Ill-Posed ProblemsLet x2H be the model, b2RN the data and �2RN be the noise. First we assume a generalconnection between the model and the data:bj = Fj[x] + �j j = 1:::N (7.1)This formulation is very general and therefore not a lot can be said about methods forsolution. We therefore look closer into the source of geophysical inverse problems. Mostgeophysical inverse problems come from a physical description of the world. Usually this133



Chapter 7. Nonlinear Inverse Problems 134description can be presented in the form of a di�erential equation:L(x; u) = f (7.2)where L is a linear di�erential operator, u is some �eld, x is the model and f is thesource. For example the seismic velocity model is related to the wave �eld by the waveequation, the conductivity structure of the earth is related to the electric �eld throughMaxwell's equations. A common practice to obtain a relation between the model, x,and the data which is the measured �eld, is to use a Green's function (see for exampleTichonov [1963], [1977], Devaney [1989], Chow [1990], Li [1992]). First the �eld u isdecomposed into a primary �eld u0 which is due to the background (and is thereforeknown) and an unknown secondary �eld, u1. The problem 7.2 is transformed into anintegral equation of the form:u1(r) = u0(r) + ZvG(x(�); r; �)u1(�)d� = u0 +G(x)u1 (7.3)where G is the Green function and G represents the linear operator which depends on x.This equation is a linear Fredholm integral equation of the second kind for u1 and thesolution for u1 can be written as:u1(r) = (I �G(x))�1u0 (7.4)This is a nonlinear relation between the model x and the secondary �eld u1. Since thedata are just the �eld values measured at some places rj ; j = 1:::N , this gives a relationbetween the model and the data. In order to understand the general behaviour of suchan expression we use the Neumann series expansion:(I �G(x))�1 = I +G(x) +G(x)2 + ::: (7.5)The series is nonlinear for the model x. However we see that as a �rst-order approximation(which is known as the Born approximation), the relation between the model and the data



Chapter 7. Nonlinear Inverse Problems 135can be represented by a linear Fredholm integral equation of the �rst kind for x. If wetake more terms in the series then the equation is a nonlinear Fredholm integral equationof the �rst kind. In this thesis we assume that the inverse problem can be transferedinto a form such that the relation between the model and the data can be representedby a nonlinear integral equation. If this is the case then all the characteristics of linearintegral equation of the �rst kind and the methods we have developed in the previouschapters can be applied to the linearized equations. In order to be able to work withlinearized problems we make the important assumption that the operator F is twiceFr�echet di�erentiable.Since the operator F is general, we avoid the question of how the forward modellingshould be computed. It is possible to carry out the forward modeling through the dif-ferential or the integral relation and it is usually problem dependent. We stick to theguiding principle which we had in Chapter 2 which is to discretize the model, x (x2H),with M unknowns such that M > N where N is the number of data.The �rst question that can be asked is about the existence and uniqueness of thesolution. For a general operator not a lot can be said. However for nonlinear Fredholmintegral equations of the �rst and second kind, Jerri [1985] proved the existence of thesolution under some conditions. We assume that the solution exists for all of our problemsand also assume that since we have only N data andM unknowns with N < M , that thesolution is non-unique and that the operator is ill-posed, i.e. there might be an in�nitenumber of models x which �t the same data and for a small perturbation in the data weget a large perturbation in the model. Since we assume non-uniqueness and ill-posedness,regularization is needed. The di�erent ways to deal with nonlinear inverse problems arerevealed by the methods of regularization. In the next section we discuss two strategiesto deal with nonlinear ill-posed problems.



Chapter 7. Nonlinear Inverse Problems 1367.2 Formulation of the SolutionIn this section we review the two main strategies for nonlinear inverse problems. Inorder to solve a nonlinear problem it is common to use linearization and iteration. Otherstrategies such as genetic algorithms and simulated annealing are also possible. Howeverthese methods are very computationally intensive and therefore we do not deal with themin this thesis.7.2.1 Creeping Versus LeapingTraditionally, there has been two basic approaches to tackle nonlinear inverse problems.In both cases we want to �nd a model x� which �ts the data to some extent. This leads�rst to the solution of the equation:0 = jjF [x]� bjj2 � T (7.6)where T is some tolerance level. This problem is not linear and therefore we choose aninitial model x and linearize equation 7.6 with respect to this model by using the Taylorexpansion for F : F [x+ �x] = F [x] + J(x)�x+R(x; �x) (7.7)where: J(x) = @F@x (7.8)is the Fr�echet derivative and R(x; �x) is the residual. The linearization leads to theequation: b� F [x]�R(x; �x) = J(x)�x (7.9)Quadratic approximation for the function F is also possible in principle:F [x+ �x]�F [x] + J(x)�x+ 12�xTH(x)�x (7.10)



Chapter 7. Nonlinear Inverse Problems 137where H(x) = @@xJ(x)While a quadratic approximation is obviously better than a linear one, the second Fr�echetderivatives H are not usually calculated since that involves an inordinate amount ofcalculation even for a small problem. We therefore stick to the formulation of calculatingonly the �rst Fr�echet derivatives.The linearized formulation is local in nature, and if we are close enough to the min-imum we can neglect the residual, R(x; �x), which is of O(�x2). This leads to a linearequation for �x: b� F [x] = J(x)�x (7.11)While the non-uniqueness is not observed at �rst sight when working with the nonlinearoperator F , the Fr�echet derivative J(x) is underdetermined (and therefore not invertible)since there areM model parameters and only N < M data points. Furthermore, since Fis usually a nonlinear integral equation, the linearization can be represented as a linearFredholm equation of the �rst kind and therefore, the Fr�echet derivative typically has alarge condition number. In order to solve equation 7.11 we have to add regularization tothe problem. As in the linear problem, di�erent regularizations yield di�erent types ofsolutions. The �rst way to impose regularization is a naive regularization. Noticing thatwe have to solve a linear inverse problem for �x, we could use the same methods we usedfor the linear case and transform this linearized ill-posed problem into an optimizationproblem: minimize �jjW�xjj2+ jjb� F [x]� J(x)�xjj2 (7.12)Such methods are often refered to as creeping since they obtain a small perturbation�x. Hanke [1997 a,b] suggested using this type of regularization and proved that thesemethods converge to a solution x� of the nonlinear inverse problem. The main problem



Chapter 7. Nonlinear Inverse Problems 138with using these kind of methods is that while a solution with the desired mis�t isobtained, we do not have any control on the characteristics of the solution. The solutionx� depends on the starting point x0 and on the path of minimization. The �nal solutioncan be written as: x� = x0 + PXk=1�xk (7.13)While every �xk is small, the �nal result x� does not have to be small. Parker [1994] hasshown that this type of method might converge to an unacceptable model. Finally, themost important aspect of this solution, is consistency. There are many ways to calculatethe updates �xk. One could use Krylov space methods or one could use a full-spacemethod. The result would be that the end model, x�, even if it is reasonable, is di�erenteven if the same kind of regularization operator W is used, and thus the �nal results ofthe same problem using two optimization techniques may not be similar. Interpretationof such results is somewhat meaningless because the features in the �nal model might notbe there because of a priori information but as a result of the minimization algorithm.This type of algorithm does not take into consideration the non-uniqueness of the originalnonlinear inverse problem and therefore although commonly used, is faulty by its nature.A di�erent methodology was suggested by Oldenburg [1983], who altered the for-mulation such that a global objective function of the model could be minimized. Thisformulation was used by Constable et al. [1987] to �nd the \simplest model". This isoften referred as \Occam's method", named after the English philosopher who claimedthat \it is vain to do with more what can be done with fewer". The interpretation of thisphilosophy to the inverse problem is that the model which solves to a problem shouldbe as \simple" as possible. In order to obtain such a solution the regularization is notimposed on the perturbation �x but on the model x, i.e. at iteration k + 1 we solve the



Chapter 7. Nonlinear Inverse Problems 139problem: minimize �jjW (xk + �x)jj2+ jjb� F [xk]� J(xk)�xjj2 (7.14)In this way the regularization takes into account the non-uniqueness of the nonlinearproblem. This method is often referred to as \leaping" since the step size �x might notbe small. Since the regularization is global, this problem can also be written as thelinearization of: minimize � = �jjWxjj2+ jjF [x]� bjj2 (7.15)which is a nonlinear optimization problem. The problem is consistent, and if the mis-�t term is convex and W is not singular, it possesses one global minimum (Luenberger[1969]). In this formulation the solution does not depend on the starting point x0 (assum-ing convexity) and on the nonlinear optimization process. In this thesis we shall studythis optimization problem further.7.2.2 Penalty Formulation Versus Lagrangian FormulationThe minimization problem given by 7.15 is an unconstrained optimization problem. Asimilar, yet di�erent, problem can be derived from the point of view of constrainedoptimization. We review these considerations and observe the di�erences between theproblem as formulated in 7.15 and the constrained formulation.Assume that we have a target mis�t T and we actually know that the noise levelof our problem can be represented by this target mis�t. We could then formulate theinverse problem as follows (Parker [1994]):minimize jjWxjj2 (7.16)subject to jjF [x]� bjj2 = T



Chapter 7. Nonlinear Inverse Problems 140The next step is to form a Lagrangian:L(x; �) = jjWxjj2+ ��1(jjF [x]� bjj2 � T ) (7.17)The Lagrangian is then minimized with respect to x and we want to �nd a saddle pointat ��1. When working with the linear problem, this formulation is equivalent to thepenalty formulation expressed in 7.15. However for nonlinear methods the Lagrangianformulation is somewhat di�erent. First we note that the domain jjF [x]� bjj2 = T is notconvex. This is easily shown since ifjjF [x1]� bjj2 = jjF [x2]� bjj2 = Tthen usually: jjF [x1+ 
(x2 � x1)]� bjj2 6=T 0 < 
 < 1This is obvious for the case where F is linear. Therefore if we are on the constraint, i.e.we have reached a point xc such that jjF [xc]�bjj2 = T , we might not be able to move fromthis point to the minimum point of the Lagrangian while staying on the constraint. Thesecond reason that this methodology does not �t most data sets is that the tolerancelevel T is usually unknown a priori. We therefore stick to the penalty formulation oftrying to �nd the unconstrained minimum of the quadratic expression 7.15 exactly as inthe linear case.7.3 Methods for Nonlinear OptimizationAfter a global objective function as in 7.15 is chosen, we are facing a well-posed nonlinearoptimization problem, with an unknown regularization parameter �. In this section weassume � is known and review methods for the solution of the nonlinear problem 7.15. Wereview the work of Gauss [1801], Marquardt [1963], Armijo [1966], Cost [1983], Dennis



Chapter 7. Nonlinear Inverse Problems 141et al. [1988], Dembo and Steihaug [1983], Eisenstat and Walker [1994], Fraley [1989],Elster and Neumaier [1997], Gulliksson et al. [1997] and Knoth [1996], and examinetwo types of nonlinear optimization algorithms, the �rst is the Damped Gauss-Newton(DGN) iteration and the second is a trust region (TR) algorithm.7.3.1 Damped Gauss-Newton MethodThe DGN methods start with the di�erentiation of 7.15 with respect to x and settingthe result equal to zero. This gives:@�@x = g(x) = �W TWx+ J(x)T (F [x]� b) = 0 (7.18)where g(x) is the gradient of 7.15. If we �nd x� which solves 7.18, then we have found thedesired solution. The main problem is that 7.18 is a nonlinear equation, which alreadyinvolves the derivative of F with respect to x. In order to avoid the calculation of thesecond derivative of F to x, this equation is linearized by:�W TW (x+ �x) + J(x)T(F [x] + J(x)�x� b) = 0 (7.19)This gives a linear system of equations for �x. This process is repeated and our goal inthe kth iteration is to �nd the perturbation �x which solves the linearized equation 7.19.Rearranging the terms in the equation gives:(J(xk)TJ(xk) + �W TW )�x = J(xk)T (b� F [xk])� �W TWxk (7.20)This problem is identical to the least-squares problem:24 J(xk)p�W 35 �x = 24 b� F [xk]�p�Wxk 35 (7.21)Writing xk+1 = xk + �x equation 7.19 is identical to:(J(xk)TJ(xk) + �W TW )xk+1 = J(xk)T (b� F [xk] + J(xk)xk) (7.22)



Chapter 7. Nonlinear Inverse Problems 142This problem is identical to the least-squares problem:24 J(xk)p�W 35xk+1 = 24 b� F [xk] + J(xk)xk0 35 (7.23)Now, we can solve for either the perturbation �x or for the model xk+1 and go tothe next step. If the steps �x are small, then this approach would work, however inmost geophysical problems we do not start very close to the solution and therefore thelinearization process which involves neglecting the residual R(xk; �x) from equation 7.9might not be justi�ed. Recall that R(xk; �x) is of O(�x2) and therefore when the stepsize is large the minimization of the linearized equation might cause an increase in theobjective function. Such a step is obviously a bad choice because it does not take uscloser to the minimum of the nonlinear problem. This defect can easily be corrected. TheGauss-Newton step is a descent direction (Dennis and Schnabel [1996]) and therefore ifthe step size is small enough, the nonlinear function will have a similar behaviour to thelinearized problem. Based on this observation, Armijo [1966] suggested trying a step sizeof �x !�x where 0:1 < ! < 0:5 and to repeat the process. Finally, for small enoughstep, the nonlinear function decreases and we get closer to the minimum of the nonlinearfunction. This algorithm can be written as follows:Damped Gauss-Newton Minimization� Choose a starting model x0 and regularization parameter �� Calculate � = �jjWx0jj2 + jjb� F [x0]jj2� Set �old = �� Until convergence do{ Linearize 7.15: Calculate the Fr�echet derivative J(xk) and the gradient g(xk)



Chapter 7. Nonlinear Inverse Problems 143{ Check for convergence (see discussion next).{ Solve 7.20 and obtain �x{ Calculate �new = �jjW (xk + �x)jj2 + jjb� F [xk + �x]jj2{ If �new < �old accept the step and set: xk+1 = xk + �x, �old = �new{ Elseif �new��old reject the step and set �x!!�x where ! insures that thefunction decreases.There are a few important details when carrying out the DGN method. The �rst ischecking for convergence. Our �nal goal is to �nd a model x� which solves the nonlinearequation for the gradient of �, 7.18. It is therefore a good idea to check how well thisequation is solved. A very simple convergence criterion is to demand that jjg(x)jj < �where � is some small number. This demand is usually not satisfactory since scaling isa factor. If we minimize �� instead of � then the gradient is multiplied by the factor�. For this reason it has been suggested by Dennis and Schnabel [1996] to replace thiscriterion by: jg(x)jT jxj�(x) < � (7.24)or jjg(x)jj�(x) < � (7.25)where jg(x)j is the absolute value of the elements of the vector g(x). Another importantpoint in the DGN algorithm is the step size reduction factor, !. The choice of 0:1 < ! <0:5 is somewhat arbitrary and more e�cient line search methods can be used in orderto �nd the minimum of the function 7.15 in the direction �x. For a collection of suchmethods see Luenberger [1969].



Chapter 7. Nonlinear Inverse Problems 1447.3.2 Trust RegionsAnother very popular method to deal with globally convergence optimization is to use atrust region (TR). Again we are faced with the solution of the nonlinear equation 7.18where we might take steps that are too large and the Taylor expansion might not hold.The general idea of the trust region strategy is not only to limit the step size but also toobtain a new descent direction. Assume that we know that the linearized problem 7.19and the nonlinear problem 7.18 are equivalent in a region of size �. We could then lookfor the best perturbation �x in this region by introducing a new optimization problem:minimize �jjW (x+ �x)jj2+ jjF [x] + J(x)�x� bjj2 (7.26)subject to jj�xjj2��The radius � is known as the size of the trust region and its size is discussed laterin this section. Using the penalty formulation, this constrained problem leads to theminimization of:�TR = �jjW (x+ �x)jj2 + jjF [x] + J(x)�x� bjj2 + �(�)jj�xjj2 (7.27)where �(�) is another penalty parameter which depends on the trust region size. Thisleads to the linear system:(�W TW + �I + J(x)TJ(x))�x = J(x)T (b� F [x])� �W TWx (7.28)or, in the least-squares formulation:26664 J(x)p�Wp�I 37775 �x = 26664 b� F [x]�p�Wx0 37775 (7.29)After this equation is solved and �x is found we check that the new update actuallydecreases the function �. If this is the case then we update the model and go to the next



Chapter 7. Nonlinear Inverse Problems 145step, however if the function does not decrease, then we have to decrease the trust regionsize. Before we proceed and discuss how to determine the trust region size, we need tohave a method to �nd a perturbation �x such that jj�xjj2 = �.Calculating The Trust Region StepThe problem of �nding a perturbation �x with a small norm is akin to the linear problemsthat were dealt with in Chapters 3, 4 and 5. There, a small model which minimizes jjxjj2such that jjAx � bjj2 = T had to be found. Here a model which minimizes 7.26 withjj�xjj2 = � has to be obtained. We therefore use three of the methods outlined in thosechapters. The �rst method is a full space methodology and it is a variation of thealgorithm suggested by Dennis and Schnabel [1996]. The second is a subspace algorithmsuggested in Haber and Oldenburg [1996], and the third is a hybrid algorithm based ona method of Golub and Von Matt [1991].In the full space method we solve equation 7.28 or 7.29 for di�erent �'s. For each �we calculate jj�xjj, so e�ectively we need to solve the nonlinear equation for �:jj�xjj2 = jj(�W TW + �(�)I + J(x)TJ(x))�1[J(x)T(b� F [x])� �W TWx]jj2 = � (7.30)This equation can be solved using a variety of methods. In this work we use a Newton-secant method for the solution of this nonlinear one-dimensional equation.While solving for � directly is possible when the problem is small, it is not practicalfor large-scale problems. As discussed in the chapters on linear inversion, the inversionof the matrix in 7.28 takes at least O(M3) operations, and therefore it is desirable to �nda cheap variation of this process. We recall from Chapter 4 that Krylov space methodshave regularization properties and that the norm of �x increases as the iterations proceed.The use of Krylov space methods is also justi�ed since for very large � the full space



Chapter 7. Nonlinear Inverse Problems 146solution behaves like: �x�1�(J(x)T (b� F [x])� �W TWx)which is the gradient direction. For very small � the solution behaves like the full Newtonstep. In CGLS the �rst direction is the gradient direction and it is therefore similar to�!1. If the CGLS is carried to its completion then we have the full Newton step andit is similar to the case of �!0.We therefore suggest the use of CGLS as a method to �nd a trust region update. Wechange the problem 7.26 into:minimize �jjW (x+ �x)jj2+ jjF [x] + J(x)�x� bjj2 (7.31)subject to jj�xjj2 = �and �x2K(A(x); y(x); n)where: A(x) = 24 J(x)p�W 35and y(x) = 24 b� F [x]�p�Wx35The implementation of such an algorithm is straight-forward. We solve the systemA(x)�x = y(x)using CGLS and in each iteration check the norm of the solution. If at iteration kjj�xkjj2 < �, we proceed to the next iteration. At some stage we get to an iteration nsuch that jj�xnjj2�� and jj�xn+1jj2 > �. At this stage we terminate our process and wehave a perturbation �xn with a norm which is smaller than the trust region size �.



Chapter 7. Nonlinear Inverse Problems 147It is also possible to obtain a model such that jj�x�njj2 = �, using the same methodproposed in Chapter 4 when we wanted to hit the target mis�t. Assume we are atiteration n with jj�xnjj2 < � and that at iteration n+ 1 we havejj�xn+1jj2 = jj�xn + �pjj2 > �where p is the last CGLS direction and � is its coe�cient which is calculated in the CGLSprocess. We seek a parameter 
 such that:jj�x�njj2 = jj�xn + 
�pjj2 = �This leads to the quadratic equation:(�2jjpjj2)
2 + 2�(�xTp)
 + (jj�xjj2� �) = 0 (7.32)This equation has two roots since �2jjpjj2 > 0 and jj�xjj2 � � < 0. We choose the rootwhich gives rise to a smaller jjA(x)�x�n � y(x)jj as the trust region step.The last method which can be used for determining a step for the trust region ap-proach is a hybrid method. Golub and Von Matt [1991] showed that using a Krylov spacedecomposition of the matrix A(x) one could construct an upper and a lower bound ofjj�x(�)jj2. Similarly, we use the hybrid LSQR which was developed in Chapter 5 to esti-mate the regularization parameter � in 7.28 subject to the restriction that the solutionis in a Krylov subspace.Determining the Trust Region SizeWe now know how to take a step in the trust region method. In order to make thealgorithm complete we need to determine two further things. First, we need to estimatethe trust region size � and second how to change this size if it is not suitable for thecurrent step. We use the same methodology as in Dennis and Schnabel [1996] for bothof these processes.



Chapter 7. Nonlinear Inverse Problems 148First we set the trust region size � to be the size of the Gauss-Newton step, i.e. noregularization is used for the step size. After the Gauss-Newton direction is calculated,we check whether our nonlinear function decreases, i.e. whether:�(x+ �x) < �(x)If the function decreases, then the Gauss-Newton step is satisfactory and we proceed.However, if the Gauss-Newton step is not satisfactory then we decrease the trust regionby a factor of two and try again.Now assume we are at iteration k and we have a trust region size from the previousiteration �k�1. In order to calculate this iteration it would be useful to start using this �k�1as an estimation for the trust region size in order to save expensive function evaluations,and therefore in iteration k we set �k = �k�1 as a starting trust region size. We usethe same strategy we had before to decrease the trust region size if it is needed. So farthe trust region size can only decrease in the course of optimization. If the iterationsproceeds we might �nd ourselves stepping in smaller and smaller steps and not utilizingthe full capacity of our Fr�echet derivatives. We therefore need to add a condition forincreasing the trust region size. This is done as follows, after the update �x is calculatedwe can estimate two functions, the nonlinear function:��(x; �x) = �jjW (x+ �x)jj2 + jjF [x+ �x]� bjj2 � �jjWxjj2� jjF [x]� bjj2and the linear function��lin(x; �x) = �jjW (x+ �x)jj2+ jjF [x] + J(x)�x� bjj2 � �jjWxjj2� jjF [x]� bjj2If the agreement of these two quantities is very good, i.e.,j�����linjmax(��;��lin) < � (7.33)



Chapter 7. Nonlinear Inverse Problems 149we suspect we are not using the full capacity of the trust region and therefore we doublethe trust region size. Dennis and Schnabel [1996], suggested that � = 0:1 and we adoptthis strategy.Finally we summarize the trust region algorithm as follow:Trust Region Algorithm For Gauss-Newton Iteration� Choose a starting model x0 and regularization parameter �� Calculate � = �jjWx0jj2 + jjb� F [x0]jj2� Set �old = �� Until convergence do{ Linearize 7.15: Calculate the Fr�echet derivative J(xk){ Check for convergence (equation 7.24).{ If iteration number is 1, solve 7.20 and obtain �x. Set �1 = jj�xjj2{ If iteration number is di�erent than 1 then solve 7.26 using either full-space,Krylov space or subspace methods and obtain �x{ Calculate �new = �jjW (xk + �x)jj2+ jjF [xk + �x]� bjj2�lin = �jjW (xk + �x)jj2+ jjF [xk] + J(xk)�x� bjj2��(x; �x) = �new � �oldand the linearized function��lin(x; �x) = �lin � �old



Chapter 7. Nonlinear Inverse Problems 150{ If �new < �old and j�����linj=max(��;��lin) > �accept the step and set: xk+1 = xk + �x, �old = �new{ Elseif �new < �old and j�����linj=max(��;��lin)��increase �!2� and re-solve for �x{ Elseif �new > �oldreject the step and set �!0:5� and re-solve for �x7.3.3 Comparison Between Damped Gauss-Newton and Trust RegionWe have reviewed two common methods for the solution of the minimization problem7.15. The main question to ask therefore is which method to use and when? Thequestion does not have a trivial answer and so, as a means of answering this question,we summarize the advantages and disadvantages of each of the methods considering thespecial structure of our optimization problem. When facing a speci�c problem one shoulddecide which method to use based on the weaknesses of the methods and the bottle-necksof the problem.The main advantage of the DGN method is simplicity. Determining the step directionis not related to the step length and therefore each one can be done independently. Thisgives rise to simple and elegant programs. Another advantage of the DGN formulation isthat there are not a lot of parameters which need to be determined. The only parameterwhich is chosen is the step length ! and there are simple criteria to choose it. From acomputational point of view, the separation of the direction and size yields only a singlematrix inversion at each DGN step. After the matrix has been inverted, preferably usingiterative methods, we work only with a single vector and therefore from a storage pointof view we need only to store the matrix (or have a method to calculate it) and threemore vectors for the iterative solver. Notice that in the regular implementation of DGN



Chapter 7. Nonlinear Inverse Problems 151the iteration matrix �W TW +J(x)TJ(x) is usually positive de�nite and unless � is verysmall or W is ill-posed itself, its condition number is reasonable and therefore usuallyconvergence is obtained after a few number of iterations.There are two major disadvantages to the DGN method. First, if the Gauss-Newtondirection is not satisfactory and the step length has to be very short, in the next step wewould face a similar Fr�echet derivative and the minimization process might stagnate. Inorder to stop this stagnation it might be better to take a di�erent direction and the trustregion algorithm might be better. The second disadvantage of the DGN method is thatin each step we solve the linear system to a high accuracy which may not be needed. Thisdisadvantage can be overcome by using Krylov space methods and stopping the iterationwith a relatively large residual. This was suggested by Brown and Saad [1990], [1994],and by Eisenstat and Walker [1994]. In this work we use CGLS and stop the iterationswhen the normalized residual is lower than 0:01.The main advantages of the trust region method occur exactly where the DGN fails.By changing the direction of the step when the step is very small, there is a better chanceto �nd a satisfactory step and not to get into stagnation. However the disadvantages ofthe TR method is that it is harder to implement. First, since the direction is relatedto the step size the program is usually not as elegant as DGN programs. Second, theimplementation of TR requires the choice of some arbitrary parameters. Both the para-meter � (which determines if we need to increase the step size) and the reduction of trustregion size are somewhat arbitrary. From a computational point of view, calculating theparameter � for large scale applications is usually not possible. Working with hybridmethods requires extra storage for the subspace vectors and therefore implementation ofTR for large scale problems can be done e�ciently only through subspace methods.As a summary, I would prefer DGN over TR for most inverse problems since it iseasier to program and implement. However for very nonlinear problems, and especially



Chapter 7. Nonlinear Inverse Problems 152for problems where the iteration matrix �W TW + J(x)TJ(x) is not positive de�nitebecause the matrix W does not have full rank (such as in Haber and Oldenburg [1996]),I would prefer to use TR methods.7.4 Common Nonlinear Strategies For Nonlinear Inverse Problems - ReviewIn this section we review two common techniques for the solution of nonlinear inverseproblems. This section is a review of the work of Tarantola [1987], Parker [1994] andEngl et al. [1996]. We review the algorithms and the main di�culties of these algorithms.Based on the strengths and weaknesses of the algorithms, we shall suggest new algorithmsin the next chapter.In the previous section we have introduced the ideas of global regularization and re-viewed two methods to solve the nonlinear problem which arises from this regularization.However, there is one question which we did not answer. We work with the penaltymethod and minimize: � = �jjWxjj2+ jjF [x]� bjj2 (7.34)The main question then is how to determine the regularization parameter �. We nowreview two strategies for this problem.7.4.1 The Method of Fixed Regularization ParameterThe �rst method, which was suggested by Tarantola [1987], Parker [1994] and Engl etal. [1996], was to �x the regularization parameter �k k = 1; 2::: and solve the nonlinearoptimization problem with similar methods to those suggested in the last section. Afterthe problem has been solved with a regularization parameter �k we can check if thesolution is satisfactory, i.e. if it obeys some criteria. The only criterion suggested wasthe discrepancy principle. This method is similar to the Tichonov regularization in full



Chapter 7. Nonlinear Inverse Problems 153space for the linear problem and it involves the sequential solution of the minimizationproblem: �k = �kjjWxjj2 + jjF [x]� bjj2for di�erent �'s. Now assume that we have solved the problem for �k with a solution x�k,and found that ��d(�k) = jjF [x�k] � bjj2 > T . In this case we pick a new regularizationparameter �k+1 such that �k+1 < �k. Exactly as for the linear problem we can interpolatebetween di�erent ��d in order to approximate the nonlinear function ��d(�). After solvinga few nonlinear problems we could �nd an acceptable �� which yields the model x� suchthat jjF [x�]� bjj2 = T .The algorithm can be summarized as follows:Fixed Regularization Parameter� Choose regularization parameter �1 and a starting model x0� For k = 1; 2::: do{ Solve the minimization problem 7.34 and obtain x�k{ If j jjF [x�k]� bjj2 � T j < � terminate process.{ Elseif j jjF [x�k]� bjj2 � T j > �Interpolate/extrapolate the function ��d(�k) and �nd a new regularization pa-rameter �k+1The main di�culty in this algorithm is that we need to solve a new nonlinear problemat each stage and therefore this algorithm is computationally expensive. The algorithmis substantially cheaper if we estimate �1 to be close to the optimal ��. In Engl et al.[1996] and Bakushinsky et al. [1994], considerable e�ort is made to choose such a �1.However, the estimates there are asymptotic in nature and 7.34 has to be solved manytimes.



Chapter 7. Nonlinear Inverse Problems 154In order to better understand this and other such algorithms, we introduce the L-curve for the nonlinear problem. Although there is no guarantee that the L-curve wouldhave the typical L-shape it has in the linear case, we assume that this is the case. Everypoint on this curve is a solution to the problem 7.34 and we could plot the path ofminimization on this curve. This path is plotted in Figure 7.1 From this �gure it is clear
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4th itrFigure 7.1: A hypothetical path for the solution of a nonlinear ill-posed problem byminimizing for four di�erent �'s.that some of the work which is done using this method is a waste. The method workshard in order to get to a good solution for the minimization problem at the kth stagewhen such a solution is not needed. For this reason, this method is not used very muchand a cheaper substitute has to be developed.7.4.2 The Two-Stage Method of Constable Parker and ConstableAs a cheaper substitute to the �xed regularization parameter, Constable et al. [1987]have developed a di�erent methodology. In their famous paper, the authors named theiralgorithm Occam's inversion because they wanted to di�erentiate their algorithm from



Chapter 7. Nonlinear Inverse Problems 155the creeping algorithm which we discussed in the beginning of this chapter. This thesistries to �nd only models which minimize a global objective function and therefore theunderlying philosophy of algorithms here is not di�erent from theirs. However, the way toachieve this Occam goal is di�erent. We therefore refer to the Constable et al. algorithmas the Two-Stage Method (TSM). The reason for the name is revealed next.The goal of the TSM is to minimize the global objective function 7.34. As in allNewton-type methods, the equation is linearized:��jjF [x] + J(x)�x� bjj2 + �jjW (x+ �x)jj2 = �lind + ��m (7.35)Di�erentiating with respect to �x and equating to zero gives:(J(x)TJ(x) + �W TW )�x = J(x)T (b� F [x])� �W TWx (7.36)As explained before, the main problem is that the regularization parameter � is notknown. The major idea of the TSM is to choose a di�erent � in each iteration. Theprocess is divided into two stages (hence the name two-stage method). In stage onethe mis�t �d is reduced to some target mis�t and in stage two this target mis�t is keptconstant while the model norm �m is reduced. The process can be viewed as combiningtwo methods. Stage one is a penalty stage in which the regularization parameter takesthe role of penalizing the model norm. The second stage can be viewed as a Lagrangeprocess in which we try to minimize a function while staying on the constraints. Althoughthese two processes have similarities, they are di�erent. While one is trying to get to theconstraint and therefore use a global objective function, the other stays on the constraintwhich means that it tries to obtain a saddle point. The algorithm can be summarized asfollows:Occam's Method through the Two-Stage MethodStage 1.



Chapter 7. Nonlinear Inverse Problems 156� 1.a. Pick a starting model x0, a tolerance mis�t level T and tol.� 1.b. while jjb� F [xk]jj2 > T{ line search:for i = 1 : number of �'s� Solve (JTk Jk + �iW TW )�x(i)k = JTk (b� F [xk])� �iW TWxk� Form the update: x(i)k+1 = xk + �x(i)k� Calculate the mis�t for the updated model:�d(i) = jjb� F [x(i)k+1]jj2{ From all the steps �x(i)k pick the one which gives the lowest mis�t,or a step such that T = jjb� F [xk + �x(i)k ]jj2. Call this step �x(�)k .{ Update the model: xk+1 = xk + �x(�)kStage 2.� 2.a. while jjxk+1 � xkjj > tol{ line searchfor i = 1 : number of �'s� Solve (JTk Jk + �iW TW )�x(i)k = JTk (b� F [xk])� �iW TWxk



Chapter 7. Nonlinear Inverse Problems 157� Form the update: x(i)k+1 = xk + �x(i)k� Calculate the mis�t for this model:�d(i) = jjb� F [x(i)k+1]jj2{ From all the steps �x(i)k pick the one which gives the mis�t,T = jjb� F [xk + �x(i)k ]jj2 and possesses the smallest model norm.Call this step �x(�)k .{ update: xk+1 = xk + �x(�)kSince there is no formal proof of convergence of this algorithm the question which canbe asked is: Does the algorithm reach the goal of minimizing a model objective functionsubject to �tting the data to some tolerance T ?In our work we have found that the answer to this question can be no. In orderto demonstrate, let us construct an extremely simple problem. Suppose we measurethe gravity �eld next to a fault. Assume we have two thin layers with known densityanomalies �1 and �2 but unknown depths x1; x2 (Figure 7.2). It can be shown that thegravity �eld (the data) at distance d from the fault is given by:F [x] = F [x1; x2] = �1 arctan( dx1 ) + �2 arctan( dx2 ) + � = b (7.37)Now suppose we have only a single datum with some noise measured at d = 1 meteraway from the fault, and we want to recover the \best" combination x1; x2. In order todo that we de�ne the objective function:� = �jjxjj2+ jjF [x]� bjj2 =



Chapter 7. Nonlinear Inverse Problems 158�(x21 + x22) + (�1 arctan( 1x1) + �2 arctan( 1x2)� b)2Our goal in this simple example is to minimize this function such that the mis�t T =0:01jjbjj2. For this simple example we let �1 = �2 = 0:785 and b = 1. We now apply theTSM starting from the point x0 = [3; 2].In order to view the results we put in a table, in each iteration, the mis�t as a functionof x = [x1; x2]. We also plot all the possible models which are achieved by the � linesearch (step 1.b). Four of the iterations are plotted in Figure 7.3 . Notice that for all ofthe plots as � goes to in�nity, the models go to zero as expected. In each iteration wetry to decrease the mis�t as much as possible. The minimum norm solution subject to�tting the data to the desired tolerance level is marked by a star at the point [1:2; 1:2].Note that for the four iterations plotted we did not get closer to the minimum.It is clear that the TSM failed and did not reach the true minimum in this extremelysimple problem. We now ask the question why?
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Chapter 7. Nonlinear Inverse Problems 159x1 x2 jjF [x]� bjj2 jjxjj23 2 0.14 13.00.91 1.45 0.016 2.931.71 0.83 0.011 3.610.82 1.74 0.011 3.69Table 7.1: Path of minimizationThere are three main reasons for the failure. The �rst one is that while the methodtakes care of the non-uniqueness by minimizing a global objective function, it does nottake into consideration the nonlinearity of the problem. The Taylor expansion is F [x+�x] = F [x] + J(x)�x+ R(x; �x). We are allowed to neglect the remainder only if it issmall. Since each step in the TSM is not constrained, it might well be that F [x]+J(x)�xis a very bad approximation to F [x+ �x]. In this case the next iterate does not have anyreal connection to the function we are minimizing.A second important aspect of the TSM is that in stage one we accept steps accordingto their mis�t reduction. Thus at the �rst stage we are really concerned only with themis�t and therefore minimize jjF [x]� bjj2. However the mathematical problem we posedwas to minimize a combination of mis�t and model norm: �jjxjj2+jjF [x]�bjj2. Thereforeit could well be that while the mis�t was reduced the function we attempted to minimizeactually increased! Thus the TSM could give a totally faulty step.The third reason the method can fail is in stage two. In stage two we are supposedto stay on the same mis�t level while reducing the model norm. This process can bewritten as a constrained minimization problem:minimize jjWxjj2subject to jjF [x]� djj2 = TAs discussed before, the domain jjF [x] � bjj2 = T is non-convex and therefore even if
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Chapter 7. Nonlinear Inverse Problems 161jjF [x] � bjj2 is a convex function we might not get to the true minimum due to thenon-convexity of the domain.Although we have just shown that this algorithm might not converge to the rightresult, previous experiments (see for example Parker [1994], Jingsheng and Elsworth[1995], Smith and Booker [1991], Thompson et al., Zhang [1995], Li and Oldenburg [1996],Farquharson [1995]) shows that it may give reasonable results. In order to understandwhy the TSM seems to work in many cases we examine this algorithm with the L-curve.The paths of minimization for a \successful" TSM and an \unsuccessful" TSM are plottedin Figure 7.4. Since in the �rst stage of the TSM we are concerned only with the mis�twe can end this stage anywhere on the line �d = T . If we are lucky enough, this point isgoing to be close to the minimum and with some local improvement in stage two, we getclose to the minimum and the result of such minimization is considered succesful. This
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in TSM(2)Figure 7.4: Two possible paths for the TSM. In the �rst path TSM(1) we end with amodel with the right mis�t but with large model norm and in the second, TSM(2), weend with a reasonable model but, not the smallest model.



Chapter 7. Nonlinear Inverse Problems 162path is plotted by the TSM(2) line. However if we are not so lucky we might end stageone of the TSM very far from the minimum, and since stage two of TSM could not get usall the way back to the minimum, we would end the process with an unsuccessful model.Such a path is plotted in TSM(1). The possible failure of the TSM when decreasingthe mis�t very fast is a known phenomenon, however it has not been explained so far,and therefore di�erent algorithms try to avoid reducing the mis�t fast by setting ad hocparameters, which are obtained by trial and error.Obviously the basic idea of Occam is good because it deals with the non-uniquenessof the inverse problem, however the way it is being carried out in the TSM, can lead tonon-optimum solutions. Our goal is to present a methodology which achieves the goal ofOccam's idea, and minimize a global objective function without ignoring the nonlinearityof the problem. This will be done in the next chapter.



Chapter 8Methods for Nonlinear InversionIn the last chapter we have reviewed the current methodologies for nonlinear inversion.This chapter is dedicated to the development of new strategies. We start with a straight-forward improvement of the constant regularization parameter technique, then develop anew technique based on the GCV. Finally, we discuss subspace and hybrid methods thatcan reduce computations.8.1 The Cooling MethodIn the last chapter we discussed the method which uses a constant regularization para-meter. Recall that we want to minimize:� = �jjWxjj2+ jjF [x]� bjj2 = ��m + �d (8.1)In the constant regularization method, we pick a regularization parameter and carrythe nonlinear minimization all the way through to its solution. If the result is notsatisfactory, we pick a new regularization parameter and repeat the process. We de�neeach minimization process for a di�erent regularization parameter as the outer iteration,we de�ne every DGN or TR step as the inner iteration, and we de�ne the linearizedsystem which is solved in each inner iteration as the inner-inner iteration.The process for a constant regularization parameter, which is plotted in Figure 7.1, isnot e�cient since we invest work in every outer iteration only to get to a minimum of 8.1which is not desired and is used only as a starting point for the next outer iteration. The163



Chapter 8. Methods for Nonlinear Inversion 164�rst improvement to be made then, is to generate a process in which we do not invest inexpensive nonlinear solutions for regularization parameters which we think will not givethe desired mis�t. Another goal of this process is to generate a series of models whichgradually give a better �t to the data, and give rise to a gradually increasing model norm.These are the major features of the cooling process which is developed next.In order to understand the cooling process, �rst note that equation 8.1 contains twoparts. The model norm �m is quadratic and gives rise to a linear system of equations,and the mis�t �d is the nonlinear part. The function � is almost quadratic if the regu-larization parameter is large, and it is very non-quadratic if the regularization parameteris small. It is very well known that solving a nonlinear optimization problem takes lesswork if we start close to the solution, and therefore if we \jump" from one regularizationparameter to the other in very large steps, the minimum of 8.1 would change signi�c-antly and the solution of one problem would not be a good starting point for the nextminimization problem. The cooling process then, is a process in which the regularizationparameter changes or cools slowly, such that the solution which was obtained using oneregularization parameter is a good starting point for the next.The �rst question which can be asked then is how to choose the �rst regularizationparameter and the �rst starting model. Since we want to minimize jjWxjj, where thisnorm is supposed to be based on a priori information, we pick as a starting model, themodel x0 which gives jjWx0jj = 0. Starting from other models does not make sense sinceif we think that the model is similar to a model x1 such that jjWx1jj6=0, we are notutilizing our a priori information about the problem, and therefore miss the purpose ofregularization. In this case we should change the problem and add this information intothe inverse problem by minimizing jjW (x� x1)jj.After x0 has been chosen, we need to choose the �rst regularization parameter. Thereare three possible options. The �rst is to start with a small regularization parameter



Chapter 8. Methods for Nonlinear Inversion 165and then to increase it slowly. This process does not seem to be reasonable since ourstarting point x0 is not close to the minimum of the function � which possesses a smallregularization parameter, �. Another possible option is to guess a \reasonable" � andto start from there. The trouble with this option is that it is hard to have such a goodestimation, and therefore this process is not very practical. A third and reasonablechoice is to start with a regularization parameter � which is very large. This optionhas not only the advantage of a good starting point x0 which is close to the minimumof that function, but also if the regularization parameter is large then the function �is almost quadratic and therefore the minimum should be obtained after a few steps.We therefore start with a large regularization parameter. One option for ensuring thatthe regularization parameter is large, is to start with a regularization parameter whichensures the condition: �W TW + J(x0)TJ(x0) � �W TWThis can be done by looking at the largest singular value of J(x0) and assuming thatW = I (which can be done using the transformation to standard form), and choosing aregularization parameter �1 = 
 max(SVD(J(x0))). In this work we have found that
 = 2 was satisfactory. If the SVD of J(x0) is not avaliable then we approximate it bychoosing a random vector v2RM and estimating the regularization parameter by:�1 = 
 jjJ(x0)vjjjjvjj (8.2)We can now start the iteration process and minimize �(�1; x) starting with x0. How-ever we have a good idea that this minimization process would not yield the desired modelx� and therefore we terminate this iteration relatively fast i.e., we use the criterion forconvergence 7.24. with higher tolerance level.jg(x)jT jxj�(x) < �1 (8.3)



Chapter 8. Methods for Nonlinear Inversion 166where �1 is relatively large. In this work we used �1 = 0:01. We found out in mostexperiments that we need only one or two inner iterations to achieve this criterion in the�rst outer iteration. In the next stage we have to pick a new regularization parameter�2 and repeat the process.One very common demand from this regularization parameter � is that it woulddecrease the mis�t by a factor �. We now present a method to guess such a regularizationparameter. Assume that we have carried out k > 1 outer iterations, thus we haveminimized (to some extent) k functions [�(�1); ::; �(�k)] and we have the quantities[�m(�1); ::; �m(�k)] = [�1m; ::; �km][�d(�1); ::; �d(�k)] = [�1d; ::; �kd]and [�1; ::; �k]Our goal is to choose a new regularization parameter �k+1 based on the knowledge ofthese quantities. In order to do that we notice that at a stationary point of �(�):�� = ��d + ���m = 0 (8.4)Therefore ���d��m = � (8.5)This means that if we plot the mis�t versus the model norm, the slope of the curve isgiven by the regularization parameter �. We can then write the following equations:�d(�m + ��m)��d(�m)� ���m (8.6)and �(�m + ��m)��(�m) + @�@�m ��m (8.7)



Chapter 8. Methods for Nonlinear Inversion 167From our experience we know that the change in � is usually logarithmic, while thechange in �m is linear. It is therefore useful to replace 8.7 by:log(�(�m + ��m))�log(�(�m)) + @(log(�))@�m ��m (8.8)As stated at the beginning, the goal is to �nd a regularization parameter which yieldsa reduction of � in the mis�t and therefore we let:�d(�m + ��m) = �d(�m)� ���m = ��d(�m)From this equation we can �nd that the desired change in the model norm ��m is:��m = (1� �)�d� (8.9)Substituting the expression for ��m in the equation 8.8 we get:log(�(�m + ��m)) = log(�(�m)) + @(log(�))@�m (1� �)�d� (8.10)Thus if we can approximate the derivative of log(�) with respect to �m we have thedesired approximation. The derivative @log(�)=@�m is approximated by the secant ap-proximation: @log(�)@�m �log(�k)� log(�k�1)�mk � �mk�1 (8.11)which gives: log(�k+1) = log(�k) + log(�k)� log(�k�1)�mk � �mk�1 (1 � �)�dk�k (8.12)Using this strategy we decrease the regularization parameter � and the mis�t untilwe expect to get the target mis�t T . At this stage we switch the tolerance level in theconvergence criterion 8.3 to our real tolerance level � which is used in Chapter 7.Two questions which are still open are the second step of the algorithm and themis�t reduction factor �. Since we can start to predict �k+1 only if we already calculated�k k > 1, the question which needs to be answered is how to predict �2. After the �rst



Chapter 8. Methods for Nonlinear Inversion 168outer iteration we cannot have information about the derivative of � with respect to �mand therefore we just reduce � by a �xed amount. In this work we have used �2 = 0:9�1.This choice yields fast convergence of the inner iteration (usually 1-2 inner iterations).In the next stage we continue with the � estimation 8.12. The second question is themis�t reduction parameter � that has to be chosen for each outer iteration. Recallthat the whole process of cooling is based on relatively small variations in the di�erentminimization problems which are solved in the outer iteration, thus we do not want todecrease the mis�t at the expense of an abrupt increase in the model norm. We thereforeallow only an increase of a factor 
 in the model norm, where 
 = 0:5. This choice issomewhat arbitrary and if the problem is highly nonlinear we might want to make 
smaller. In order to predict the relation between the change of mis�t to the change ofmodel norm we use equation 8.9. First we set � = 0:5. The predicted change in modelnorm for this choice is: ��m = �d2� (8.13)If this choice is satisfactory, i.e., ��m=�m < 
, we want to �nd � such that:(1� �)�d� = �m
 (8.14)which gives: � = 1 � 
��m�d (8.15)Finally we summarize this algorithm as follows:Inversion Through Cooling� Choose a model x0 such that jjWx0jj = 0. Calculate the Fr�echet derivatives J(x0),�1 = 2max(SVD(J(x0))) or use 8.2.� Outer Iteration: For k = 1; 2; 3:::



Chapter 8. Methods for Nonlinear Inversion 169{ Inner iteration: minimize 8.1 using DGN or TR with stopping criteria 8.3 and�1 = 10�2.{ Calculate �dk; �mk{ If k = 1, �2 = 0:9�1{ Elseif k > 1, choose � = 0:5 or � = 1 � 
��m=�d (as explained in the abovesection). Choose �k+1 using 8.12.{ If the predicted mis�t is achieved (using 8.5) switch �1 in the stopping criteriafor the inner iteration to �.Finally we view the iteration on the L-curve. The curve demonstrates that this
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1st β 
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3rd β

4th βFigure 8.1: The path of the cooling strategy on the L-curve.algorithm can be cheaper and safer than the regular � search as suggested in the previouschapter. It is cheaper because we do not waste expensive function evaluations on tryingto obtain the total minimum of the objective function for � values which we are not



Chapter 8. Methods for Nonlinear Inversion 170interested in. Also, by starting each inner iteration from a point which is close to theminimum, we speed up the inner iteration. The method is safer since we move slowlydown the L-curve so even if we do get trapped in a local minimum, at least it would be alocal minimum with a small model norm. The main problem with this method is that inorder to use it we need to have a predicted target mis�t, which is usually not avaliable.Second, the path to the point x� is still not optimal. As stated before, if we could onlypredict the right � the process would be shorter. This is the goal of our next section.8.2 Nonlinear Inversion Through Generalized Cross ValidationIn the last section we used a �xed regularization parameter in the outer iteration, in orderto perform a few Gauss-Newton inner iteration steps and achieve a speci�c target mis�t.In this section we discuss how to make only one step of the inner iteration for each outeriteration, and to obtain a regularization parameter based on the GCV principle whichwe reviewed in Chapter 3.8.2.1 Full-Space Nonlinear InversionOur goal is to decide on an adaptive regularization parameter. In order to do that wenotice that at the kth iteration we face a linearized problem of the form:J(xk)�x = b� F [xk] + nonlinear terms + noise (8.16)We therefore have to deal with two problems. The �rst is the measurement noise and thesecond is the nonlinear terms. While the noise has to be treated through a global regular-ization, i.e. assessing the regularization parameter, �, for a global objective function, thenonlinear terms have to be treated by reducing the step size in DGN or obtaining a localregularization parameter � for TR algorithm. These processes are not necessarily pullingin the same direction and therefore we want to treat them separately and di�erently.



Chapter 8. Methods for Nonlinear Inversion 171First we deal with the measurement noise. Ideally, we need a method which candi�erentiate between the Gaussian noise and the correlated nonlinear terms. Such amethod would provide a value of � for the current iteration. Then using this �, we carryout one step of DGN or TR iteration. The damped DGN or TR takes the nonlinearityinto consideration and makes sure that the nonlinear terms are actually small.Applying such a process is not straight-forward. The �rst thing we have to rememberis that at each linear iteration we are minimizing a di�erent norm. The norm we want tominimize at the kth iteration is jjW (xk+�x)jj and therefore the regularization parametersfor noise estimation and the step length should be taken with respect to this norm. Ouralgorithm can be summarized as follows:Nonlinear inverse problem through Noise Estimation� 1. Calculate the sensitivities J(xk)� 2. Calculate the regularization parameter �.� 3. Use the regularization parameter to calculate �x using DGN or TR.� 4. Update using step length strategy.� 5. Check for convergence and go to 1There are three important points in this algorithm which need to be explained. Firstwe need to explain how to pick a regularization parameter (stage 2). We delay thisexplanation for now. We also need to explain how to make the update (stage 4) and howto check for convergence (stage 5).The main problem with the update is that the objective function changes from iter-ation to iteration. While in the Gauss-Newton method it is clear that �(xk) > �(xk+1),



Chapter 8. Methods for Nonlinear Inversion 172it is not clear that this is the case in this algorithm. The main reason is that�(�k; xk) = �kjjWxkjj2 + jjF [xk]� bjj2while �(�k+1; xk+1) = �k+1jjWxk+1jj2 + jjF [xk+1]� bjj2Since the global objective function � is changing at each iteration, the demand of de-creasing the value of the objective function is not reasonable. We therefore replace itwith the consistent demand: �(�k+1; xk) > �(�k+1; xk+1) (8.17)which means that:�k+1jjWxkjj2 + jjF [xk]� bjj2 > �k+1jjWxk+1jj2 + jjF [xk+1]� bjj2 (8.18)Thus every step in the algorithm is also equivalent to a one-step descent from the modelxk to xk+1 with regularization parameter �k+1. This point is extremely important if wewant our algorithm to be consistent with the objectives of the minimization.The second important point is convergence (stage 5). For every iteration k we needto know whether to stop the process or to continue on. Since the objective function ischanging the question is what criterion should be used? The answer is again given byconsistency. If each iteration is a Gauss-Newton iteration with di�erent parameter �kthen our convergence criterion is the same as for a Gauss-Newton algorithm 7.24.The third and the last thing to explain is the method in which we choose � foreach iteration. As stated before we need a method which can di�erentiate between thenonlinear terms and the noisy terms. Recall from Chapter 6 the experiment on thelinearized gravity problem. We found that GCV did not detect the nonlinear termsat each iteration and hence it yielded a regularization parameter which penalizes only



Chapter 8. Methods for Nonlinear Inversion 173against the uncorrelated Gaussian correlated noise. Our observation is not the only onefor this behaviour. Altman [1987] and Nychka et-al. [1984] experimented with smoothcorrelated errors, and noticed that the GCV did not penalize correlated smooth noise.This observation can be used to our bene�t. It means that GCV responds only to theGaussian noise and therefore it can be used to estimate a global regularization parameter.The GCV does not regularize nonlinear terms, and therefore we need to add the secondregularization which ensures that the steps are small enough and that the linearizationprocess holds.To summarize, our methodology is based on three main components.� 1. A method to pick a regularization parameter (GCV)� 2. A method to pick a step size. (DGN or TR)� 3. A method to accept/reject a stepStep one is based on the ability of GCV to di�erentiate between noise and signal whilesteps two and three are based simply on DGN or TR methods. In general, our methodcan be simply viewed as a variation of the �xed regularization parameter method, witha regularization parameter � which is changing at each iteration. If the regularizationparameter approaches a speci�c value �� then our algorithm turns into a Gauss-Newtonalgorithm. However if the GCV process at each iteration yields a di�erent regularizationparameter the process might not converge. Our experience has been that this has nothappened and that the regularization parameter tends to converge quickly to its �nalvalue. This point will be demonstrated in Chapter 10.Finally we discuss our algorithm on the L-curve. If the regularization parameter iscorrectly estimated, then it does not change very much through the process and the pathfrom the starting point x0 to the �nal model x� is almost direct. The process is plottedin Figure 8.2
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log(||F[x] - b||)
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log(T?)Figure 8.2: The path of the GCV strategy on the L-curve.8.2.2 Subspace Methods For Nonlinear InversionSo far we have discussed Tichonov-style regularization for nonlinear problems. Thesetechniques are based on the ability to estimate a regularization parameter and invert theregularized Fr�echet derivatives. The main problem is that just as for the linear case, theinversion of the Fr�echet derivatives for large scale problems is costly, and therefore someshortcuts are needed. The obvious shortcut is to use the methodology we have developedin the linear case and to use a cheap matrix inversion through Krylov subspace, in order tocalculate the solution of the matrix inversion. We have suggested this for the calculationof the TR step and the calculation of the DGN step.The second shortcut, which is more e�ective, is to use the properties of the subspacein order to substitute for the regularization parameter �, just like in the linear case. Thespace size acts as a global regularization parameter which penalizes against noise, andthen we use another local regularization in order to penalize against the nonlinearity.



Chapter 8. Methods for Nonlinear Inversion 175The problem can be formulated as follows:minimize jjF [x]� bjj2 (8.19)subject to x 2 K(JW (x); r(x); n)where r(x) is some right hand side (which will be de�ne next), JW (x) is the reduction ofthe matrix J(x) to the standard form with the matrix W .In order to work with the subspace formulation we recall from Chapter 7 that theGauss-Newton iteration can be formulated either for the perturbation, �x, or for themodel at the next iteration, xk+1. If we formulate the iteration using the perturbation,then we would have terms that depend on � on the right hand side (see equation 7.20).However if we formulate the problem using the next iteration then we get (7.22):(J(xk)TJ(xk) + �W TW )xk+1 = J(xk)T (b� F [xk] + J(xk)xk) (8.20)This is identical to the least squares problem:24 J(xk)p�W 35xk+1 = 24 b� F [xk] + J(xk)xk0 35 (8.21)Which is identical to the Tichonov regularization of:J(xk)xk+1 = b� F [xk] + J(xk)xkAs was demonstrated in Chapters 4 and 5, a similar solution to that problem canbe obtained using Krylov space regularization. Therefore if problem 8.21 is transformedinto its standard form it could be replaced with the subspace problem:minimize jjJ(xk)xk+1 � b+ F [xk]� J(xk)xkjj2 (8.22)subject to xk+12K(JW (xk); r(xk); n)



Chapter 8. Methods for Nonlinear Inversion 176where now we see that r(xk) = b� F [xk] + J(xk)xkIn every step we use the Krylov space in order to regularize the problem and obtain asuggested model xk+1. This new model, although it solves the linearized mis�t problem,does not necessarily reduce the nonlinear mis�t which we try to minimize. A simplesolution to this problem is to use a step length strategy and calculate the direction�x = xk+1�xk and to use the same method as in the DGN method to calculate the steplength. The algorithm can be summarized as follows:Krylov Subspace - Damped Gauss-Newton Method� Choose an initial model x0. Calculate the mis�t �d = jjb� F [x0]jj2� For k = 1; 2:::{ 1. Calculate J(xk){ 2. Solve: J(xk)xpk+1 = b� F [xk] + J(xk)xkusing CGLS and GCV stopping criterion.{ 3. Calculate the perturbation �x = xpk+1 � xkand the new mis�t �dnew = jjb� F [xpk+1]jj2{ 4. If �dnew < �d, set xk+1 = xpk+1 go to 1.{ 5. Elseif �dnew > �d setxpk+1 = xk + !�x 0:1 < ! < 0:5go to 3.



Chapter 8. Methods for Nonlinear Inversion 177{ 6. If jjxk+1 � xkjjmax(jjxk+1jj; jjxkjj) < �terminate the processIn the implementation of this process we chose ! = 0:5 and the stopping criterionwas � = 10�3. Notice that this algorithm does not get to a minimum of a functional likethe Tichonov regularization and in principle, the solution of this method is di�erent fromTichonov solution. However as we saw in the linear case, the solutions are very similarto the full space regularization and the cost of this solution is substantially less than afull space solution.8.2.3 Hybrid Methods For Nonlinear InversionThe subspace implementation which we discussed in the last subsection might give solu-tions which are di�erent from the Tichonov solution. One way to obtain a more Tichonov-like solution is to use a hybrid method. Again, the main purpose is to avoid invertingdirectly the matrix J(x)TJ(x) + �W TW . The problem can be presented as:minimize jjF [x]� bjj2 + �jjWxjj2 (8.23)subject to x2 K (JW (x); r(x); n)where r(x), JW (x) are the same as in 8.19. Linearizing and formulating the objectivefunction we get:minimize jjJ(xk)xk+1 � b+ F [xk]� J(xk)xkjj2 + �jjWxjj2 (8.24)subject to xk+1 2K (JW (xk); r(xk); n)Again this is equivalent to the solution of the system:J(xk)xk+1 = b� F [xk] + J(xk)xk



Chapter 8. Methods for Nonlinear Inversion 178using hybrid Krylov space methods. The algorithm can be summarize as follows:Krylov Hybrid Subspace - Damped Gauss-Newton Method� Choose an initial model x0. Calculate the mis�t �d = jjb� F [x0]jj2.� For k = 1; 2:::{ 1. Calculate J(xk){ 2. Solve: J(xk)xpk+1 = b� F [xk] + J(xk)xkusing hybrid LSQR with weighting matrix W and GCV criterion for the reg-ularization parameter �k.{ 3. Calculate the perturbation �x = xpk+1 � xk,the new mis�t �dnew = jjb� F [xpk+1]jj2and the new model norm �mnew = jjWxpk+1jj2{ 4. If �dnew + �k�mnew��d + �k�m, set xk+1 = xpk+1 go to 1.{ 5. Elseif �dnew + �k�mnew > �d + �k�m, setxpk+1 = xk + !�x 0:1 < ! < 0:5go to 3.{ 6. If jjxk+1 � xkjjmax(jjxk+1jj; jjxkjj) < �terminate the processIn the implementation of this process we chose ! = 0:5 and the stopping criterionwas � = 10�3. This algorithm, although it does not get to a minimum of a functional



Chapter 8. Methods for Nonlinear Inversion 179like the Tichonov regularization, gives a very similar solution especially if the subspace ischosen such that most of the vectors which are associated with the large singular valueshave converged.8.3 SummaryIn this chapter we developed two algorithms for solving nonlinear ill-posed problems.Both algorithms are based on understanding the two di�erent processes which we facewhen solving a nonlinear ill-posed problem. The �rst process is noise estimation. Thisprocess is global in nature, and therefore one has to look for global type techniques inorder to estimate the regularization method. Here we suggested the cooling strategy,which is a \safe" method to descend from an estimate of high noise level to low noiselevel. Cooling does not use the characteristics of random uncorrelated noise and thereforeis not very e�cient. We therefore suggested the use of GCV as a method to estimate theglobal noise. We use three variants of the GCV which have been developed in Chapters3, 4 and 5.The second process which has to be addressed is the estimation of the step length. Ifthe step length is too large then the linearization does not hold and the iteration mightnot converge. This process is local in its nature and therefore needs a di�erent type ofregularization than the noise estimation process. We have suggested to use two commonmethods for this process, the damped Gauss-Newton or trust regions. In this way weensure that the step which we choose is not only regularized against the non-uniquenessof the problem, but we also make sure we descend in each nonlinear step.



Chapter 9Approximate Fr�echet KernelsIn the last chapter we presented a methodology for large scale nonlinear inverse problems.While this methodology deals with the choice of regularization parameter and the matrixinversion, there are still two other bottle-necks for the inversion. The �rst bottle-neckis the forward modelling, which has to be calculated for each proposed model, and thesecond is the calculation of the Fr�echet derivatives, that is, the sensitivities. While theforward modelling has to be accurate in order to estimate the data mis�t, the sensitiv-ities are needed in order to calculate the next step and to check for convergence. It wastherefore suggested by Farquharson [1995], Farquharson and Oldenburg [1996], Li [1992],Ellis et al. [1993], to approximate the sensitivities. In this section we discuss some of themethods to approximate the sensitivities and the problems which rise from such approx-imations. We step through two common strategies - the cord or AIM update, (Kelley[1995]) and the Shamanskii update (Shamanskii [1967]). We propose a new methodologyfor the implementation of these strategies when applied to ill-posed problems. We thenpropose a secant type update for the nonlinear problem.9.1 The Concept of Approximate SensitivitiesThe concept of approximate sensitivities is not new. Newton suggested approximating the�rst derivative of a nonlinear minimization problem in one dimension by using informationfrom previous iterations. His approach was extended to systems of equations by Broyden[1965]. Other simple approximations such as the cord and Shamanskii methods also were180



Chapter 9. Approximate Fr�echet Kernels 181suggested for nonlinear equations (see review by Kelly [1995]). However the applicationof these techniques to nonlinear ill-posed problems is not straight-forward. An ill-posedproblem does not have a unique solution and therefore the solution is de�ned by someminimization problem where the desired model yields the smallest norm jjWxjj2 subjectto �tting the data. This model minimizes the nonlinear objective function � = �d+��mand solves the nonlinear system of equations for the gradients:g(x) = J(x)T (F [x]� b) + �W TWx = 0 (9.1)This system involves the sensitivities J(x) and therefore if the sensitivities are approxi-mated by a matrix B and are not calculated, we cannot check for convergence, or evensolve the correct system of equations, i.e., the gradient system. It is therefore suggestedby some authors (Dennis and Schnabel [1996]), to calculate the sensitivities and notto use such approximations. Although they are right if the exact Tichonov solution isneeded, just like in the linear problem, we do not have to restrict ourselves to Tichonovsolutions only, and we could obtain other reasonable solutions which �t the data usingapproximate sensitivities. However we should be aware that the solution is di�erent thanthe Tichonov solution.The common approach to the approximated sensitivities is local. This approach looksat the linearized approximation problem:g(x+ �x)�J(x)T(F [x] + J(x)�x� b) + �W TW (x+ �x) = 0 (9.2)and suggests to use approximate sensitivities in order to solve 9.2. While this approachis valid for linear problems it is not necessarily valid for nonlinear problems. The reasonis that in the linear case the local (linearized) problem and the global (not linearized)problems are identical. In the nonlinear case if we do not estimate the function g(x) thereis no way to know if the model xk which was obtained by a series of k steps actually



Chapter 9. Approximate Fr�echet Kernels 182minimizes the objective function. Furthermore, even if the iteration converges to somemodel xy there is no way to know (without calculating sensitivities) how close it is tothe Tichonov solution. But the worst thing is that since we solve a sequence of linearproblems without de�ning a global function, we cannot be sure that the model obtainedis not a product of the minimization process, i.e., if we start from di�erent points orcarry out the iterations using di�erent strategies (DGN versus TR for example) we getto the same solution.We therefore suggest a new and di�erent formulation for approximate sensitivitieswhich is global in nature. Our goal in this section is to quantify this approximation. Inorder to do that we de�ne the Jacobian H(x) = g0(x) and assume that it is bounded.Given the Jacobian the Newton iteration for the solution of the system 9.1 is:�x = �H(x)�1g(x) (9.3)We now review a theorem from non-exact minimization which discusses the relationbetween convergence and errors in the Jacobian of a nonlinear system of equations anderrors in the function evaluationTheorem 9.1: Error in Jacobian and function evaluation (Kelly [1995])Let g(x) be continuously di�erentiable and let H(x) = g0(x). Let �(x) be the errorin the evaluation of g(x). Then there are K > 0, � > 0 and �1 > 0 such that given theexact solution x� to the system g(x) = 0, if jjxk � x�jj < � and the perturbation, �(xk),to H, such that jj�(xk)jj < �1 then the update:xk+1 = xk � (H(xk) + �(xk))�1(g(xk) + �(xk)) (9.4)satis�es: jjxk+1 � x�jj�K(jjxk � x�jj+ jj�(xk)jj jjxk � x�jj+ jj�(xk)jj) (9.5)This theorem shows that while the minimization process is forgiving to inaccurateJacobians H(x), it is not very forgiving to inaccurate calculations of the function g(x).



Chapter 9. Approximate Fr�echet Kernels 183We have used this characteristic before without noticing. The Gauss-Newton formulationis such that the Jacobian is approximated such that the second derivatives of F [x] withrespect to x are not calculated. If we start from a point x0 such that jjx0 � x�jj is smallenough, then using the wrong Jacobian would slow down the convergence rate, howevererrors in the function g(x) would cause an error in the �nal result. Thus approximatesensitivities cannot give the solution of the Tichonov problem but rather solve a closeproblem to the gradients. We de�ne the \near-by problem" to 9.1 as the following systemof equations: f(x) = �W TWx+BT (F [x]� b) = 0 (9.6)where the matrix B is hopefully close to the sensitivities J(x).We de�ne the solution of 9.6 as xy. The Jacobian of the system 9.6 is given by:G(x) = �W TW +BTJ(x) (9.7)The Newton step, xNk+1, for the solution of the system 9.6 is then:xNk+1 = �G(xk)�1f(xk) = �(�W TW +BTJ(xk))�1(�W TWxk +BT (F [xk]� b)) (9.8)The Newton step, although it converges quickly, contains the term J(x) which we try toavoid calculating. This is not a problem since the theorem of errors in the Jacobian andin function evaluations states that a small error in the Jacobian just slows the processand therefore we replace 9.8 by an approximate sensitivities step:xk+1 = (�W TW +BTB)�1(BT (b� F [xk])� �W TWxk) (9.9)If the di�erence between the approximate Jacobian and the Jacobian of the Newtoniteration of 9.8 is small enough, i.e., if:jj(�W TW +BTB)� (�W TW +BTJ(xk))jj = jjBT(B � J(xk))jj < �1 (9.10)



Chapter 9. Approximate Fr�echet Kernels 184then theorem 9.1 about errors in the Jacobian holds and the iteration will converge toxy. Now assume that we have found the solution of the near-by problem 9.6, xy. It isimportant to know how close this solution is to the real solution x�. In order to determinethis we notice that:g(xy)� g(x�) = g(xy) = �W TWxy + J(xy)T (F [xy]� b) (9.11)Adding and subtracting BT (F [xy]� b) gives:�W TWxy +BT (F [xy]� b) + (J(xy)T �BT )(F [xy]� b) = (9.12)(J(xy)T �BT )(F [xy]� b)Using the fundamental theorem of calculus we can also write:g(xy) � g(x�) = H(�)(xy � x�) (9.13)where � is a point between x� and xy, and H(�) is the Jacobian. Assuming that theJacobian H(x) is invertible we can write:H(�)�1(g(xy)� g(x�)) = xy � x� (9.14)For simplicity assume that W = I. Di�erentiating 9.1, the Jacobian can be written as:H(x) = @g@x = �I + J(x)TJ(x) + @J@x (F [x]� b) (9.15)For the analysis we assume that terms in the Jacobian which come from the mis�t term,are positive (not necessary de�nite) and therefore its minimum eigenvalue is � (andjjH(�)�1jj < ��1). If this is the case, we can substitute 9.12 in 9.14 and obtain:jjH(�)�1(g(xy) � g(x�))jj = jjH(�)�1(J(xy)T �BT )(F [xy]� b)jj = jjxy � x�jj (9.16)



Chapter 9. Approximate Fr�echet Kernels 185and therefore: jjxy � x�jj � ��1jj(J(xy)T �BT )jj jj(F [xy]� b)jj (9.17)This equation shows how bad the approximation can be. The approximation depends ontwo parts. First it depends on how well the matrix B approximates the sensitivities J(x)and second it depends on the mis�t and �. While the mis�t is dictated from the problem,the approximation of B to J(x) is in our control. In the next sections we discuss someof the possible approximations to the sensitivities.The formulation of the near-by problem is satisfactory if the gradient direction isclose to the near-by direction. In this case an actual reduction in the real nonlinearminimization function � = ��m + �d can be obtained. However if these directions arenot close then the direction of the near-by problem might not be a descent direction. Inthis case we know that the near-by problem is not so near-by, and it should be replacedby another problem or terminated. This is demonstrated in Figure 9.1.
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Chapter 9. Approximate Fr�echet Kernels 186Therefore after obtaining a direction �x we suggest to check if this direction actuallydecreases the value of the original objective function. If we start far from the solution,then at some stage, the update direction �x would not be satisfactory and even for a verysmall step length, a reduction in the function � cannot be obtained. At this stage thenear-by direction is not acceptable and the problem should be terminated.Finally we write a general description of the approximate sensitivities algorithm:Nonlinear Inversion Using Approximate Sensitivities� Choose an initial model x0 and approximate sensitivities B.� Calculate �old = �jjWx0jj2 + jjF [x0]� bjj2� For k = 1; 2::: do:{ Calculate a near-by step using 9.9.{ Calculate �new = �jjW (x+ �x)jj2 + jjF [x+ �x]� bjj2{ If �new��old set x = x+ �x{ Elseif jj�xjj < � terminate process.{ Else �x!�x=2{ Check for convergence of the near-by problem.Using the formulation of the near-by problem, we can use algorithms which weredeveloped for nonlinear equations in order to solve 9.6. In the next sections we exploresome of these methodologies.9.2 The Cord and Shamanskii UpdatesMaybe the most simple update is the cord method. For this method we assume that wecan calculate J(x0) analytically or numerically. We therefore set B = J(x0) and solve



Chapter 9. Approximate Fr�echet Kernels 187the system fc(x) = �W TWx+ J(x0)T (F [x]� b) = 0 (9.18)using the cord method, which means that the sensitivities in this case are kept constant.xk+1 = (�W TW + J(x0)TJ(x0))�1(J(x0)T (b� F [xk])� �W TWxk) (9.19)Such an iteration was used by Li [1992] for the DC resistivity problem and Routh andOldenburg [1996] for the nonlinear tomography problem. The di�erence between theapplication of the iteration suggested here and their work is that while their criterion fortermination was based on the mis�t, the criterion suggested here is based on the valueof the global objective function.The main problem of the cord method is that if we do not start very close to thesolution, then the near-by problem is not so similar to the real problem and thereforeafter a few iterations the objective function, �, can no longer be minimized. At thisstage we face two options. If we are satis�ed with the model and the mis�t, we mightterminate the iteration, however if we are not satis�ed with the model, i.e., the mis�t istoo large or does not satisfy some criteria of convergence, then we can restart the processonce again, and calculate a new matrix B based on the model which is obtained at thecurrent iteration. This approach was �rst suggested by Shamanskii [1967] for the solutionof nonlinear systems of equations. A similar strategy was proposed by Dosso [1990] forthe solution of the MT problem. Thus, the cord process is repeated again, and therefore,the Shamanskii method could be viewed as a sequence of near-by problems such thateach near-by problem is utilized to its full capacity. It is also possible to obtain the exactTichonov solution using the Shamanskii method. In this case we continue the processuntil the function f(x) is actually the gradient g(x).So far, the algorithms deal with the case of a constant regularization parameter.However in most cases we need an adaptive regularization parameter. Just like when the



Chapter 9. Approximate Fr�echet Kernels 188sensitivities are known exactly, we suggest two methods to choose such a regularizationparameter. The �rst method is the cooling method. In this case we follow the coolingalgorithm in Chapter 8, however we substitute the approximate sensitivities in the place ofthe exact sensitivities. The second possibility is to use the GCV to �nd the regularizationparameter. In this case we substitute the approximate sensitivities in place of the exactsensitivities in the nonlinear GCV algorithm.9.3 Secant-Type UpdateIn the last section we discussed a constant near-by problem, i.e., the approximate sensit-ivities B are kept constant and the function f(x) does not change until we cannot carrythe nonlinear iteration any longer. However the near-by problem is not really the problemof interest and therefore, given new information, we might want to update the near-byproblem. This is the idea behind the secant update for nonlinear ill-posed problems.The application of secant updates to nonlinear systems of equations is not new (Denniset al. [1989], Kelley [1995], Dennis and Schnabel [1996]). However applying secantupdates to nonlinear inverse problems has been done only in a few cases (Zhang et al.[1995]). The main idea of the secant method is to obtain a better estimate for thesensitivities J(x) by looking at the models which were calculated in the iteration process.In order to explain the basic idea we �rst consider the one-dimensional case. Assumewe have a function of one unknown s(x) and we want to �nd the solution of s(x) = 0.In the �rst iteration we choose x0 and calculate s(x0) and s0(x0). Then using Newtonor some other iteration we calculate a point x1 and the function at that point s(x1). Inorder to continue the iteration we would need the derivative s0(x1). Newton suggestedapproximating the derivative by:s0(x1) � ~s0(x) = s(x1)� s(x0)x1 � x0 (9.20)



Chapter 9. Approximate Fr�echet Kernels 189Thus the approximate derivatives obey the secant equation~s0(x)(x1 � x0) = ~s0(x)�x = s(x1)� s(x0) = �s (9.21)In the one-dimensional case, it has been proved that this iteration converges to thesolution of s(x) = 0.The extension of this iteration to more than one dimension is not straight-forward.Assume that we start with a model x0. For this point we calculate the forward modellingF [x0] and the exact sensitivity J(x0). Using this sensitivity we proceed and calculate x1and F (x1). Our goal is to �nd an approximation to J(x1), call this approximation B1.In parallel to the one-dimensional case we want the new sensitivity to obey the secantequation: B1(x1 � x0) = F [x1]� F [x0] (9.22)The matrix B1 is of size N�M , however we have only one vector equation to satisfy andtherefore we have another N � 1 degrees of freedom. It was suggested by Broyden [1965]to choose a matrix B1 such that it is as close as possible to the current sensitivities,J(x0). i.e. B1 should minimize: jjB1 � J(x0)jj22 = jj�J jj22 (9.23)subject to B1(x1 � x0) = F [x1]� F [x0]Adding and subtracting J(x0)(x1 � x0) from the equation and substituting �J = B1 �J(x0), the constraints with �J can be written as:�J(x1 � x0)� F [x1] + F [x0] + J(x0)(x1 � x0) = 0In order to �nd B1 we take the route of constrained minimization which is di�erentfrom Broyden's paper. We de�ne the Lagrangian:L = 12 jj�J jj22+ �T (�J(x1 � x0)� F [x1] + F [x0] + J(x0)(x1 � x0)) (9.24)



Chapter 9. Approximate Fr�echet Kernels 190In order to �nd �J we di�erentiate the Lagrangian and equate to zero. This yields:�J + �(x1 � x0)T = 0 (9.25)�J(x1 � x0)� F [x1] + F [x0] + J(x0)(x1 � x0) = 0Multiplying the �rst equation by (x1 � x0) gives:0 = �J(x1�x0)+�(x1�x0)T (x1�x0) = F [x1]�F [x0]�J(x0)(x1�x0)+�(x1�x0)T (x1�x0)where the last equality due to the second equation in 9.25. From this equation we can�nd that: � = F [x1]� F [x0]� J(x0)(x1 � x0)(x1 � x0)T (x1 � x0)Substituting back in the �rst equation of 9.25 gives:�J = F [x1]� F [x0]� J(x0)(x1 � x0)(x1 � x0)T (x1 � x0) (x1 � x0)T (9.26)Equation 9.26 is the famous Broyden's update to the sensitivities.We can now combine this methodology with the near-by problem methodology whichwe introduced in the previous section. Using this update, at each iteration we can havean estimate of the sensitivities J(xk) and thus we de�ne in each iteration a di�erentnear-by problem. We then carry one iteration of this near-by problem to obtain a newnear-by problem.There are a few potential problems with this method. First, since we do not have aglobal function to solve, because the near-by problem is constantly changing, we cannotsay a priori to which solution the procedure will converge and to what distance fromthe Tichonov model. Hopefully the secant approximation yields a better approximationto the sensitivities at x� than J(x0) and therefore the solution is a better one. Second,there is a potential danger of not converging at all. In this work, termination of the



Chapter 9. Approximate Fr�echet Kernels 191secant iteration occurred if it had not converged to some model after a �xed number ofiterations. These two problems emphasise the third problem which is in my opinion thebiggest problem when using such algorithm. The end result depends on the minimizationprocess itself, since there is no global objective function to minimize or an equation whichwe solve, the end solution is based on the path of minimization. It is therefore impossibleto compare results of two secant algorithms, and it is hard to conclude if some features inthe model are there due to the data and the objective function, or due to the minimizationprocess.Although the above problems are de�nitely signi�cant, secant updates could stillachieve a model which makes the objective function small and �ts the data. The secantmethod may still give reasonable results where the constant approximate sensitivitiesmay fail.



Chapter 10Applications of Nonlinear Inverse ProblemsIn Chapters 7-9 we discussed the formulation and strategies for the solution of nonlinearinverse problems. In this chapter we compare the di�erent strategies when applied to twogeneric type of problems, the nonlinear gravity problem and the magnetotellurics inverseproblem. Unlike the linear case our measure of e�ciency is not based on the number of
oating point operations. Di�erent problems have very di�erent characteristics, while inone problem calculating the forward modelling is not a problem, in the other forwardmodelling is the most expensive part. We therefore compare between the e�ciency ofthe methods by counting the number of forward modellings, sensitivity calculations andmatrix inversions which needed in order to obtain convergence. The quality of the solutionis judged by the model norm and the mis�t (just like in the linear case).Each example is tested using eight di�erent algorithms with various noise levels. Themethods we are going to use are:� CGLS+GCV - Solving each linearized system for xk+1 using the CGLS and theGCV as a stopping criterion (Section 8.2.2).� Hybrid+GCV - Solving each linearized system for xk+1 using hybrid Krylov methodwith GCV criterion (Section 8.2.3).� Full-Space+GCV - Solving each linearized system for xk+1 using Tichonov regular-ization with GCV criterion (Section 8.2.1).192



Chapter 10. Applications of Nonlinear Inverse Problems 193� Cooling - Starting with large regularization parameter and decreasing it slowly.Recall that this method must have a target mis�t (Section 8.1).� TSM - Using the two stage method for regularization parameter. Recall that thismethod must have a target mis�t (section 7.4.2).� Cord+GCV+Hybrid - Fixing the sensitivities and using the GCV+Hybrid methodon each linearized iteration (Section 9.2).� Shamanskii+GCV+Hybrid - Fixing the sensitivities for a number of iterations, andusing the GCV+Hybrid method on each linearized iteration (Section 9.2).� Secant+GCV+Hybrid - Updating the sensitivities using Broyden's method, andusing the GCV+Hybrid method on each linearized iteration (Section 9.2).Trust region methods are not explored here since, as explained in Section 7.3.3, thespecial structure of the problem is such that TR methods does not give substantialadvantage on the DGN.10.1 The Gravity Interface ProblemThe gravity interface problem was described in Chapters 1 and 6, and we use the samediscretization and linearization procedures which we described in Chapter 6. Recall thatthe forward modeling is given by:�gj = Z ZD 1rh(x; y; h(x; y);xj; yj) � 1rm(x; y;m(x; y);xj; yj)dxdy (10.1)with: rh(x; y; h(x; y);xj; yj) = q(x� xj)2 + (y � yj)2 + h2and rm(x; y;m(x; y);xj; yj) = q(x� xj)2 + (y � yj)2 + (h+m)2



Chapter 10. Applications of Nonlinear Inverse Problems 194and the sensitivities are:J(m)(:) = Z ZD (h(x; y) +m(x; y))(:)dxdy((x� xj)2 + (y � yj)2 + (h(x; y) +m(x; y))2) 32 (10.2)The integrals are discretized using the midpoint rule. The 100m�100m square domainis divided into 49�49 grid points and we assume we have 30�30 data points. We add5% and 10% Gaussian noise to the data. The model and the data are plotted in Figure10.1.
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Figure 10.1: The model and data used for nonlinear inversionOur goal is to test the di�erent algorithms using di�erent conditions. We therefore



Chapter 10. Applications of Nonlinear Inverse Problems 195Method jjF [x]� bjj �m FM Sens Matrix InversionsCGLS+GCV 6.47E-2 34.43 8 5 5Hybrid+GCV 6.61E-2 32.99 8 4 4Full-space+GCV 6.75E-2 31.45 7 4 4Cooling 6.73E-2 31.48 72 63 63TSM 6.73E-2 32.21 20 5 5Cord+GCV+Hybrid 6.53E-2 35.45 11 1 7Shamanskii+GCV+Hybrid 6.65E-2 32.87 13 3 9Secant+GCV+Hybrid 6.69E-3 35.21 13 1 8Table 10.1: Experiment one: Comparison between di�erent methods for 5% noise. Truemis�t is 6:72E � 2, real model norm 36:87.design three tests. In the �rst test we use as a background model a half space whichhas the value of the true background (20 meters). This choice gives an initial mis�t of1:41 when the �nal mis�t is 0:067 in the 5% noise case. In this case the initial modelis relatively close to the end result. In the second case we assume we have a wrongbackground and therefore start with a half-space which is far from the initial model(30 meters instead of the 20). In this case the initial mis�t is 9:56, which is obviouslyfar from the end result. In the third experiment we use the correct reference model,but start with a far starting model which is a 
at half-space at depth 10 meters lowerthan the true reference. In order to carry the inversion we choose a weighting functionW = �0:01r2 + I, where the r2 operator does not contain boundary conditions.We start with the �rst experiment and use the di�erent methods to invert the system.A comparison of these methods is in Table 10.1 and 10.2. The �nal models which wereobtained using these methods in the 10% noise case are plotted in Figures 10.2 and 10.3.In Figures 10.4, 10.5 and 10.6 we view the iteration progress for the GCV+CGLS case,the GCV+full space case and the TSM. Note that in the di�erent variants of the GCV,the model norm is monotonically increasing and the mis�t is monotonically decreasing



Chapter 10. Applications of Nonlinear Inverse Problems 196Method jjF [x]� bjj �m FM Sens Matrix InversionsCGLS+GCV 1.38E-1 36.43 15 10 10Hybrid+GCV 1.55E-1 31.45 8 6 6Full-space+GCV 1.55E-1 31.44 7 6 6Cooling 1.55E-1 31.44 69 58 58TSM 1.55E-1 32.31 20 5 5Cord+GCV+Hybrid 1.54E-1 32.29 13 1 5Shamanskii+GCV+Hybrid 1.55E-1 31.46 17 3 17Secant+GCV+Hybrid 1.55E-1 31.46 17 5 17Table 10.2: Experiment one: Comparison between di�erent methods for 10% noise. Truemis�t is 1:53E � 1, real model norm 36:87.
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Figure 10.2: Experiment one: results of Full-space+GCV, Hybrid+GCV, Cooling andShamanskii inversions. Noise level 10%.



Chapter 10. Applications of Nonlinear Inverse Problems 197to the �nal value while in the TSM the model norm �rst increased above its �nal valueand then decreased back to its �nal value. This behaviour of the TSM is predictedwhen looking in Figure 7.3. Note also that hybrid GCV, full-space GCV, cooling andShamanskii methods give basically the same results (Figures 10.3 and 10.3. This resultis expected since the same quantity is minimized. The results of the GCV+CGLS, TSM,cord and secant methods are somewhat di�erent. This result is also expected since theminimization problem is di�erent for each of these problems.In comparing the di�erent inversions we notice the following observations from this�rst experiment:� Noise was estimated quite accurately using the three variants of GCV (full, hybrid
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Figure 10.3: Experiment one: results of TSM, CGLS+GCV, Cord+GCV+Hybrid,Cord+GCV+Hybrid inversions. Noise level 10%.



Chapter 10. Applications of Nonlinear Inverse Problems 198and subspace).� Noise was estimated quite accurately using approximate sensitivities. Basically theapproximate sensitivities did not in
uence noise estimation.� The quality of the solution in terms of model norm versus mis�t is similar in thecooling and the GCV algorithms and the Shamanskii method. However the modelswhich are obtained using cord and secant methods are somewhat di�erent and havehigher model norm.� Although the cord and secant methods give di�erent results, the models can beconsidered to be reasonable.� TSM gives reasonable models but with model norm slightly higher than cooling orGCV for the same mis�t.� The results emphasise that the use of global algorithms which minimize a Tichonov
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Chapter 10. Applications of Nonlinear Inverse Problems 199objective function, have an advantage over the inexact algorithms such as the cordand secant, where the minimization result depends on the path of minimization.In the �rst experiment we have performed, most methods did well. The experiment issomewhat easy since the initial model is close to the �nal model. In order to demonstrate,we calculate the di�erence between the �nal sensitivities of the full space GCV modeland the initial model is: jjJ(x0)� J(x�)jj2 = 0:0098Therefore it is not a surprise that all the methods did so well. In the next experimentwe take the wrong base model and try to recover the model using this reference model.The base model is a model which has a mean depth of 30 meters instead of 20 meters.
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Chapter 10. Applications of Nonlinear Inverse Problems 200For this case: jjJ(x0)� J(x�)jj2 = 0:8The experiment is done for the 5% noise and the results are shown in Table 10.3, andthe models obtained using di�erent methods are plotted in Figures 10.7 and 10.8.All the algorithms have converged, and the models are satisfactory from an inter-pretation point of view. From a mathematical point of view, this example shows thatthe algorithms proposed in Chapter 8 and 9 are robust and work well even when thereference model is notoriously bad.As a last example we try a more di�cult test. We start from a model which is not thereference model. The model is a surface at depth 10 meters lower than the real reference,
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Chapter 10. Applications of Nonlinear Inverse Problems 201Method jjF [x]� bjj �m FM Sens Matrix InversionsCGLS+GCV 3.6E-1 118.3 6 4 4Hybrid+GCV 3.8E-1 108.5 5 3 3Full space+GCV 3.8E-1 108.0 6 4 4Cooling 3.8E-1 108.0 38 31 31TSM 3.8E-1 108.6 20 4 4Cord+GCV+Hybrid 3.8E-1 110.1 12 1 5Shamanskii+GCV+Hybrid 3.8E-1 108.0 9 2 7Secant+GCV+Hybrid 3.8E-1 108.4 8 1 5Table 10.3: Experiment two: Comparison between di�erent methods for 5% noise. Ref-erence model is far from the real model. True mis�t is 3:7E � 1, true model norm 113:5.
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Figure 10.7: Experiment two: 2-D Nonlinear Gravity Inversion. The reference model isfar from the true reference.



Chapter 10. Applications of Nonlinear Inverse Problems 202i.e., x0 = 10. The noise level is 3%. In this case the di�erence between the sensitivity ofthe true model and the starting model is:jjJ(x0)� J(x)jj = 0:3This experiment has no geophysical meaning, since, as stated in Chapter 7, if the a prioriinformation states that the model is similar to a model x1 other than the reference modelx0, we should reset the reference model x0 to x1, which means, in our example, to set thereference depth to 30 meters instead of the original 20 (just as in the experiment two).However from a mathematical prespective it is a good example to test the stability ofthe algorithms. The results are shown in Table 10.4 and in Figures 10.9 and 10.10.We summarize the results of the last two experiments:
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Figure 10.8: Experiment two: 2-D Nonlinear Gravity Inversion. The reference model isfar from the true reference.



Chapter 10. Applications of Nonlinear Inverse Problems 203Method jjF [x]� bjj �m FM Sens Matrix InversionsCGLS+GCV 5.0E-2 33.3 21 16 16Hybrid+GCV 5.6E-2 31.1 10 8 8Full space+GCV 5.6E-2 31.0 9 7 7Cooling 5.6E-2 31.0 41 35 35TSM 5.6E-2 31.4 29 9 9Cord+GCV+Hybrid 9.3E-2 30.8 15 1 10Shamanskii+GCV+Hybrid 5.7E-2 31.1 14 3 10Secant+GCV+Hybrid 9.1E-2 31.1 12 1 9Table 10.4: Experiment three: Comparison between di�erent methods for 3% noise.Starting model is far from the real model. True mis�t is 5:5E � 2, true model norm36:87.
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Figure 10.9: Experiment three: 2-D Nonlinear Gravity Inversion, starting model is farfrom the reference model



Chapter 10. Applications of Nonlinear Inverse Problems 204� All methods did well when the reference model is far from the true reference.� Cooling, GCV in full space, hybrid GCV, TSM and Shamanskii methods did welleven when starting model is not reasonable.� Cooling, GCV in full space, hybrid GCV and Shamanskii methods produce verysimilar results.� Methods which depend on the path of minimization such as cord, secant andCGLS+GCV, obtained a reasonable model but did not predict the mis�t verywell.We summarize the nonlinear gravity problem with a discussion about the e�ciency
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Figure 10.10: Experiment three: 2-D Nonlinear Gravity Inversion, starting model is farfrom the reference model



Chapter 10. Applications of Nonlinear Inverse Problems 205of the di�erent methods. In order to determine which of the algorithms is the moste�cient for this problem a comparison of the di�erent possible bottle-necks is needed.For this size of problem, the forward modeling takes around 50 seconds (using SPARC 10workstation), the sensitivities take around 180 seconds and inverting a matrix of that sizeusing CGLS takes around 700 seconds. It is clear from this rough count that we wouldprefer an algorithm which performs fewer matrix inversions and sensitivities and doesmore forward modeling. In this case the GCV with CGLS is signi�cantly more e�cient,since for every direction only one matrix inversion is performed and only one sensitivitymatrix is calculated.



Chapter 10. Applications of Nonlinear Inverse Problems 20610.2 The Magnetotelluric Problem10.2.1 Equations and Synthetic ExampleA very di�erent and generic type of electromagnetic inverse problem arises from themagnetotelluric (MT) experiments. In this experiment we measure the response of theearth due to a plane wave impinging upon the earth's surface. Recall from Chapter 1that assuming that the earth is layered, the electric �eld, E, is given by the equations:d2Edz2 = i!�0�(z)E (10.3)With boundary conditions: E(1) = 0E(0) = 1Where ! is the angular frequency, �(z) is the one-dimensional conductivity structure and�0 is the magnetic permeability, which is assumed to be constant. Equation 10.3 is thegoverning equation for the MT experiment. The data for this experiment are given by:c0(!; �(z)) = � E(z = 0; !)@zE(z = 0; !) (10.4)Our goal is to recover the conductivity pro�le �(z) from the complex measurementsc0. It is common to present the complex data, c(!), by its phase and by the apparentconductivity which is de�ned as: �a(!) = �0!jc(!)j2 (10.5)Although the sensitivities for this problem can be found analytically (Oldenburg[1979]), in this work we have used numerical di�erentiation in order to obtain the sensit-ivities. Thus the only thing needed for the solution of this problem is a robust forwardmodelling program. The forward modelling is performed through the propagator matrix



Chapter 10. Applications of Nonlinear Inverse Problems 207formulation (Ward and Hohmann [1988]). The one-dimensional earth is divided into Mlayers with constant conductivity in each layer. The di�erential equation 10.3 is solvedin each layer, with the conditions of continuity of the �eld E and its derivative E0 ateach layer interface. This leads to the recursive relation for C(z; !) = �E(z; !)=E0(z; !)which constitutes the forward modelling:C(zj�1; !) = 1kj tanh(kjhj) + kjC(zj; !)1 + kjC(zj; !)tanh(kjhj) j =M:::1 (10.6)where kj = 1p2(1 + i)p!�0�jhj is the thickness of the jth layer and �j is the conductivity of the jth layer. The dataare given simply by c0(!) = C(0; !).In order to carry out forward modelling and inversion we pick a model made from 64layers. The thickness of the layers increases quadratically with depth such that zi = �2iand � is linearly spaced. The conductivity model is taken from the book by Whittall andOldenburg [1992]. The model is plotted in Figure 10.11. The data in terms of phase andapparent conductivity are plotted in Figure 10.12. In the �rst stage we add 5% noise tothe data. In order to carry out the inversion we need to pick a reference model and
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Chapter 10. Applications of Nonlinear Inverse Problems 208a weighting matrix. In this work we use the operator 0:001I � r2 where r2 does notcontain boundary conditions, and we set the reference model to have the value of thebackground, x0 = 0:04 S=m. The model tend to span many order of magnitude andtherefore we do not invert for the conductivity but rather for the log of the conductivity.The results of this inversion are summarized in Table 10.5. In order to demonstraterobustness of our algorithm we repeat the same experiment, but this time with noiselevel set to 0:5%. The results of this experiment are shown in Table 10.6 and plotted inFigures 10.13 and 10.14.From these two experiments we conclude:� All the methods which do not use approximate sensitivities predict the mis�t andobtained reasonable models.� All the methods which do not use approximate sensitivities work well even for very
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Chapter 10. Applications of Nonlinear Inverse Problems 209Method jjF [x]� bjj �m FM Sens Matrix InversionsFull space+GCV 3.0E-1 6.7E-1 6 4 22CGLS+GCV 2.9E-1 7.4E-1 9 7 7Hybrid+GCV 3.3E-1 5.9e-1 6 4 4Cooling 2.9E-1 7.2E-1 17 13 13TSM 3.2E-1 6.0E-1 20 4 4Cord+GCV+Full-space 6.3E-1 1.4 25 1 19Shamanskii+GCV+Full-Space 3.0E-1 6.7E-1 10 3 7Secant+GCV+Hybrid 9.1E-1 1.3 8 1 5Table 10.5: Inversion of MT data for the 5% noise case. True mis�t is 3:2E � 1, truemodel norm is 1:58.
Method jjF [x]� bjj �m FM Sens Matrix InversionsFull space+GCV 4.2E-2 9.3E-1 10 6 76CGLS+GCV 3.9E-2 1.01 10 8 8Hybrid+GCV 4.1E-2 9.3E-1 9 5 5Cooling 4.3E-2 9.2E-1 63 45 45TSM 4.2E-2 1.1 35 9 9Cord+GCV 3.1E-1 2.1 9 1 6Shamanskii+GCV 4.1E-2 9.3E-1 19 3 10Secant+GCV 4.1E-1 1.8 6 1 4Table 10.6: Inversion of MT data for the 0:5% noise case. The true mis�t was 0:04 andthe true model norm is 1:58.
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Depth (m)Figure 10.13: Result of full-space GCV, Shamanskii, hybrid GCV and cooling MT inver-sions. low noise levels, where the nonlinear part of the objective function is dominant.� Models obtained by approximate sensitivities did not �t the data to the right extentand have a larger model norm. However the inverted models have the \right 
avour"to them, and they simulate the correctly inverted models.Notice that the approximate sensitivities fail to �nd a model which predict the data.The main reason is revealed when observing the norm of the di�erence between thesensitivities of the half-space and the sensitivities of the �nal model. For this case:jjJ(x0)� J(x�)jj = 1:13therefore we cannot expect the models from the approximate sensitivities to converge tothe true model.



Chapter 10. Applications of Nonlinear Inverse Problems 211
10

−2

10
−1

Secant + GCV

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

10
−2

10
−1

Cord + GCV

10
−2

10
−1

CGLS + GCV

Depth (m)

C
o

n
d

u
c
ti
v
it
y
 (

S
/m

)

10
−2

10
−1

TSM

Depth (m)100
5x104 5x104100Figure 10.14: Result of secant GCV, cord GCV, TSM and CGLS GCV MT inversions.As a last experiment with the synthetic data, we pick a starting model which hassensitivities which are close to the �nal ones:jjJ(x0)� J(x�)jj = 0:12The model is plotted in Figure 10.15 (top left). We now carry out three inversions. Twousing the cord and the secant method and one with the full-space GCV for comparison.The results of the inversions are plotted in Figure 10.15 and the numbers are in Table10.7. The results emphasize the importance of a good starting point for the use ofapproximate sensitivities.



Chapter 10. Applications of Nonlinear Inverse Problems 212Method jjF [x]� bjj �m FM Sens Matrix InversionsFull space+GCV 2.7E-1 1.7E-1 6 3 3Cord+GCV+Full-Space 2.5E-1 3.1E-1 8 1 6Secant+GCV+Full-Space 2.7E-1 2.6E-1 8 1 5Table 10.7: Inversion of MT data with approximate sensitivities. The starting model isclose to the �nal model. The true mis�t is 0:27.
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Chapter 10. Applications of Nonlinear Inverse Problems 21310.2.2 Field Example and ConclusionsAs a �nal experiment, we invert �eld data taken from Young et al [1988]. The data areplotted in Figure 10.16.
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Figure 10.16: Field MT data.Although the standard deviations of the data are given, we ignore them for the mo-ment and invert these data using the GCV �rst. We use the same discretization, objectivefunction and reference model as the synthetic example. We repeat the inversion of thesame data using the cooling method (the target mis�t is calculated using the standarddeviations) and the TSM, and compare between the results. The results of the inversionare plotted in Figure 10.17 and summarized in Table 10.8. Again we see that GCVpredicted the right mis�t well and produced reasonable models which matched the cool-ing method and the TSM. The TSM gave a model with a slightly higher model norm



Chapter 10. Applications of Nonlinear Inverse Problems 214Method jjF [x]� bjj �m FM Sens Matrix InversionsFull space+GCV 3.8E-1 5.5E-1 12 10 85CGLS+GCV 3.9E-1 5.9E-1 10 8 8TSM 3.8E-1 5.9E-1 40 10 10Cooling 3.7E-1 5.6E-1 26 19 19Table 10.8: Inversion of MT �eld data. Predicted mis�t is 3:8E � 1.
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Figure 10.17: Inversion of the MT �eld data.than the GCV for the same mis�t, however the models look almost identical and froman interpretation point of view they are similar.Finally in order to decide which method is the most e�cient for the inversion, wechecked the computational time of each of the stages in the inversion. For the 64 modelparameters and 16 data points, it takes about 0:01 seconds to carry out full matrix



Chapter 10. Applications of Nonlinear Inverse Problems 215inversion or the SVD, 0:9 seconds for the forward modelling and 61 seconds for thecalculation of the sensitivities. It is therefore clear that subspace and hybrid methods playno role in the improvement of computational time. The main hurdles are the sensitivitiesand the forward modelling. If approximate sensitivities yield good results then theywould give the shortest computational time. However the problem is fairly nonlinear,and as shown before, in order to make the approximate sensitivities approach successful,we need a fairly good starting model. If such a starting model is not avaliable we need totake a method which yields good descent directions. The GCV based methods and theTSM seem to have such descent vectors. The advantage of the GCV methods is that theydo not need a target mis�t. When using the GCV, all three variants, full-space, hybridand subspace, give good results. In numerical testing we found that in general the hybridGCV is the most stable variant. I believe that the main reason is that when using thefull-space GCV, it could happen that the \black box" minimization for the GCV functionmight fail in one speci�c iteration. In this case the model for this iteration might buildstructure which is hard to get rid of in later iterations. Hybrid methods, restrict themodel to a \nicer" space and therefore even if in one iteration the GCV function is notfully minimized, the result of this iteration is still reasonable.10.3 SummaryIn this chapter we investigated nonlinear inversion methods for two types of problems,nonlinear gravity and magnetotellurics. As a conclusion to this section we summarizethe selection of an inversion method for a nonlinear inverse problem, based on these tworesults. First for a new problem, where the behaviour of the nonlinearity is not known,I would start with the cooling method. The main reason is that the cooling method is a\safe". It is important to note once again that the starting model and the reference model



Chapter 10. Applications of Nonlinear Inverse Problems 216should be identical. If this is done then the starting model norm is zero and the problemis almost quadratic in the �rst iterations, which makes convergence easy. Observing thecooling method, we could learn something about the nonlinearity of the problem, thereference model that we picked, and the computational time. If the problem is highlynonlinear, I would work with the GCV and a hybrid method, limiting the space size andensuring to work only with \nice" vectors. In cases that the computational time of thecooling method is not satisfactory, or when the noise level is not known, we should useone of the GCV variants. The variant depends on the computational time of each of thethree bottle necks, i.e., the sensitivities, forward modelling and matrix inversion. In caseswhere the matrix inversion is the biggest problem, the combination of GCV and CGLS isthe most e�cient. If the forward modelling is the main problem then hybrid or full spaceGCV are the best options, since they obtain a better direction. Finally if the sensitivitiesimpose great di�culty, then the Shamanskii method performs better. Using approximatesensitivities such as the cord and secant methods are possible in certain cases. Specialcare should be taken in these cases to start from a relatively near-by point. If such apoint is not avaliable, then it is possible that the reconstructed model does not �t thedata but hopefully has the \
avour" of the exact inverted model.



Chapter 11Summary and Future WorkThe goal of this thesis was to review and develop new techniques for solving linear andnonlinear inverse problems. In so doing, the computational tools for solving inverseproblems have been comprehensively studied.First, in Chapters 2-6, linear inverse theory was dealt with. Linear inverse theory wasformulated in Chapter 2. Chapter 3 reviewed the commonly-used Tichonov regularizationas well as providing noise estimation techniques and, a new explanation for the L-curvetechnique. This explanation suggests a new choice for the point on the L-curve requiredto solve a linear inverse problem. Tichonov regularization, although commonly used,cannot handle large scale applications within a reasonable amount of time and mem-ory. Chapters 4 and 5 presented methods to obtain solutions, similar to the Tichonovsolution, using subspace and hybrid techniques. These techniques require substantiallyless computing time and memory than Tichonov regularization. Chapter 4 reviewedKrylov space methods, Lanczos bidiagonalization, least-squares QR and conjugate gradi-ent least-squares, and studied the behaviour of the Krylov �lter. Other subspaces whichwere analysed in this chapter are a new multilevel formulation and a subspace formedfrom gradients. Finally, the chapter reviewed noise estimation criteria and extended thegeneralized cross validation criterion so it can be used e�ectively in subspace regulariza-tion. Chapter 5 introduced hybrid regularization methods. It further developed existinghybrid Krylov methods, reviewed gradient hybrid methods and developed a new iteratedKrylov space method. Chapter 6 summarized Chapters 2-5 by using and testing the217



Chapter 11. Summary and Future Work 218techniques which were developed in these chapters on examples from gravity and tomog-raphy. This chapter showed that all variants of GCV (full-space, subspace and hybrid)are very robust and stable as noise estimation techniques. It is demonstrated that theGCV methods tend to detect uncorrelated noise and to ignore correlated noise. Chapter6 also compared the di�erent methods for solving linear inverse problems. Krylov spacemethods were the most e�cient methods (for most cases), while multilevel methods werethe slowest. The experiment with the nonlinear gravity problem demonstrated the abilityto carry out one iteration in a nonlinear process. This experiment also showed that thedi�erent variants of the GCV tend to ignore the nonlinear terms in the right hand side,and produce a model which �ts the linear iteration to within the predicted noise level.Chapters 7-10 comprise the second part of this thesis, and made extensive use of thelinear algebra and the noise estimation methods which were developed in the �rst part ofthe thesis. Chapter 7 reviewed the major aspects of the formulation of nonlinear inverseproblems, nonlinear minimization techniques and other commonly used algorithms forthe solution of nonlinear inverse problems. This chapter also reviewed the commonly usedtwo stage method and demonstrated that this method might fail. A new explanation issuggested for this failure. Chapter 8 discusses new techniques for solving nonlinear in-verse problems. First the cooling method was developed. This method is an improvementof a method presented in Chapter 7. Then a new method for solving nonlinear inverseproblems was developed. This method is based on separation of the regularization intolocal regularization (to overcome the nonlinearity of the problem) and global regulariza-tion (to overcome the non-uniqueness of the problem). The method uses the GCV forthe global regularization and damped Gauss-Newton for the local regularization. In thischapter it was also shown how to calculate an approximation to the solution for largescale problems using Krylov spaces and hybrid methods. Chapter 9 discussed approxi-mate sensitivities. The chapter presented a new formulation of approximate sensitivities



Chapter 11. Summary and Future Work 219and reviewed a few of the common methods to obtain them. The new formulation allowsone to compute a bound on the distance between the approximate sensitivities solutionsand the Tichonov solution. Chapter 10 summarized the ideas and concepts of Chapters7-9 by applying them to two generic examples: the gravity interface problem and themagnetotelluric problem. Experiments with both examples showed that the techniquescan estimate the noise accurately and obtain satisfactory solutions. In the comparisonof the methods, hybrid solutions tend to be the most stable.Future work to be done is to tackle other computational challenges which evolve frominverse problems. These includes: combining the methods presented here with otherconstraints such as bounds on the unknowns, using di�erential equations in order tosolve ill-posed problems, estimating resolution and inference of a nonlinear problem andgeneral improvement of the algorithms by parallelizing them.
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