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Abstract

This document discuss of practical aspects of running the program

EH3D . The goal of this document is to help practitioners determine

and tune parameters in the program.

1 Introduction

The program EH3D is an implementation of our work [3, 4] in a Fortran90

code with a Graphical User Interface.

The program is 
exible and allows the user to solve a variety of EM

geophysical problems involving the following EM source types:

� Grounded sources

� Loop sources

� Plane waves

� Any secondary �eld (given the primary)

The program allows arbitrary conductivity, permeability and susceptibility

structures as well as arbitrary source frequencies. However, this 
exibility

comes with a cost because for some choices of parameters care must be taken

in order to be able to solve the systems which are generated and to insure

physically reasonable solutions.
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In this document we try to give a basic understanding of the issues in-

volved in the solution of the wide range of problems that can be encountered

in the process of solving a complex 3D electromagnetic problem.

The document is divided as follows. In Section 2 we review the equations

and the discretization of the system. In Section 3 we discuss gridding issues.

In Section 4 we discuss the sources and their discretization. In Section 6 we

discuss issues which relate to the solution of the linear system. We summarize

this document by giving some illustrating examples.

2 The fundamental equations and discretiza-

tion

In this section we brie
y review some of the important results of our work

in [3, 4]. This is by no means a full theoretical discussion and we refer the

interested reader to the papers.

Maxwell's equations in the frequency domain are

r� E � {!�H = 0; (1a)

r� H � b�E = J s
; (1b)

n�H = 0; @
 (1c)

where � is the magnetic permeability, � is the conductivity, � is the electrical

permittivity,

b� = � � {!�; (2)

and J s is a known source current density. In our work we assume that the

physical properties � > 0, � > 0 and � > 0 can vary with position. We also

assume the quasi-static assumption namely that

��!
2
L
2
� 1 (3)

where L is a typical length scale.

To over-come numerical diÆculties which arise in the quasi-static range

of frequencies we have reformulated the problem in terms of the Helmholtz

decomposition of the electric �eld

E = A+r�; (4a)

r � A = 0: (4b)
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This gives a system of equations for the vector A and the scalar �

r� (��1r� A)�r(��1r � A)� {!b�(A+r�) = {!J
s

; (5a)

r � �A+r � �r� = �r � J
s

: (5b)

The system (5) is discretized using a �nite volume method on a staggered

grid. The staggered grid ensures second order accuracy of E andH. The

variablesA are located at the cell's faces and � is located at the cell's center.

This implies that H is at the cell's edges, and bJ (and therefore E) at cell's

faces. The distribution of variables over the grid cell is summarized in Table

1 and plotted in Figure 1
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Table 1: Summary of the discrete grid functions. Each scalar �eld is approx-

imated by the grid functions at points slightly staggered in each cell ei;j;k of

the grid.

It is important to understand where on the grid the variables are placed,

especially when one is looking at these values rather than using alternative

outputs, such as those obtained from output conversion utilities such

as EHPOINTS.EXE, and others.

Using this discretization and utilizing a standard �nite volume approach

we obtain a large, sparse system for the grid functions corresponding to A

and �

K u =

�
C

T
MC +D

T
McD � {!S {!SD

T

�DS DSD
T

��
A

�

�
=

�
bA

b�

�
= b: (6)

Here C corresponds to the discretization of the operator r� ; D likewise

corresponds to the discretization of the operator r� ; the diagonal matrix S
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Figure 1: Staggered grid for the discretization.

results from the discretization of the operator b�(�); M and Mc similarly arise

from the operator ��1(�) at cell edges and at cell centers respectively.

Note that as long as the frequency is low enough that the di�usion number

satis�es

d = !�b�h� 1

(where h is the grid spacing) the matrix is dominated by the diagonal blocks,

that is, we have a DC type experiment with a DC type physics. This is a

very important observation as it helps in the design of the grid and in the

selction of solvers.

3 Mesh related issues

The program EH3D uses the mesh as one of its input parameters. This

means that the user is responsible for generating the mesh for the problem,

which rise two fundamental questions

� What is the mesh spacing that should be used?

� Where should the mesh be terminated?
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Although one may want to use a very �ne grid to resolve small features

in the �eld this may take more time and memory. Our experience so far has

been that a machine of one G-Byte can run grids up to 643 cells.

This section does not answer these questions exactly as this is an active

research area. However, we do try to give some basic concepts which can

help the practitioner to design the mesh.

3.1 Mesh spacing

We start with the question of mesh spacing. In principle, as cell size gets

smaller, the results (computed �elds) are more accurate. However, there is

a tradeo� because for a �ner mesh the number of unknowns is large and the

time to solve the discrete system of equation is larger. Therefore, although

we would like to use a �ne mesh, we might want to avoid too �ne a mesh

because the resulting computational time and the memory requirement may

be excessively large.

As we discussed above, EH3D assumes that we are working in the quasi-

static region. This implies that the experiment has similar physical features

to the DC experiment namely

� The �elds decay toward in�nity

� The �elds are generally smooth on the grid and vary slowly

Thus if one has some intuition about the DC case, then similar methods can

be applied to the quasi-static case. Care must be taken such that the cells

are smaller than the skin-depth.

The above can be summarized by a few simple set of guidelines

1. Mesh �nely where the \action" in the solution is.

This simple guideline implies that in order to resolve the variations in

the solution, one needs to mesh �nely in regions where the solution

changes the most (such as in the skin area). In many problems it is

hard to know these regions a-priori and therefore a technique of gradual

re�nement is used. This means that the user meshes the problem on a

uniform coarse grid and uses the solution on this grid to �nd the active

regions. The user then re-meshes the problem by putting more cells in

the active regions.
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2. Keep a reasonable aspect ratio.

Although one may want to keep the discretization �ne where the action

is, one needs to pay attention not to generate cells that have a large

aspect ratio, (greater than 10 or so). This is especially true for the

regions where the solution changes. The reason is that such large aspect

ratios generate an unscaled system and as a result, the problem may

be ill-conditioned and harder to solve.

3.2 Mesh termination

Geophysical problems consider the whole space as the domain but in prac-

tice the grid must be terminated at a �nite length. The question of mesh

termination is somewhat simpler than of grid spacing. Again we will see that

the DC setting can give most of the intuition needed.

We know that the electric �eld decays as

E �
exp((i!b�) 12R)

R3

We see that there are two main factors that determine the decay. First,

there is the geometrical spreading term R
�3. This term implies that even for

a very low frequency the �eld decays at a rate which is similar to the DC

rate. As the frequency gets higher, the �eld is further damped by the skin

depth e�ect.

Thus the padding and the termination of the grid should be smaller or

equal to the DC case. We summarize this by the following guidelines

1. Do not terminate the grid where there is \action".

This is similar to the above guideline and it implies that the boundary

area needs to be an area where things do not change in any signi�cant

way.

2. Pad using reasonable cell increments.

If cells that are very coarse are put close to very �ne cells, the stabil-

ity of the system can be compromized and convergence may be slow.

Therefore, the padding should be done gradually in cells that do not

have an expansion rate of more than 2.

In cases of uncertainty, one could determine the size of the domain using

a similar approach to the gradual re�nement we discussed in the last subsec-

tion. This is done by solving a sequence of problems where each problem is
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solved on a larger domain. The solution is regarded as satisfactory when the

�elds do not change as the domain becomes larger.

4 Wire sources and the mesh

Sources in EH3D are either wires carrying a current or elese, a primary J or

H �elds due to a prescribed conductivity. In this section we shortly discuss

the placement of wires on the grid.

We start by a mathematical description of a unit current which 
ows in

a wire that stretches from [�L=2; y0; z0] to [L=2; y0; z0] as in Figure 2

[-L/2, y  ,  z  ]0 0 [L/2, y  ,  z  ]0 0 

Figure 2: Wire in the x direction.

J
s =

0@(H(x� L=2)�H(x+ x=2)) Æ(y � y0) Æ(z � z0)

0

0

1A (7)

where H the the Heaviside function and Æ is the delta function. This is an

exact mathematical description of the current that needed to be integrated

into EH3D .

As discussed in 2 EH3D is a �nite volume code which implies that this

right hand side is integrated on a �nite volume. The right hand side has

dimensions of current which implies it has to be evaluated in volumes where

the currents reside, that is, the volumes that include the cell's faces. Consider

a cross section of the volumes where the wire lies as plotted in Figure 3. In

this example, the wire crosses three cells and should be integrated through

them. The integration volume between the �rs two cells is shaded in the

picture.
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Jx

Jz

Figure 3: Integration over a wire in the x direction.

Integrating the wire in this volume gives

ZZZ
vi

J
s

dV =

ZZZ
vi

0@(H(x� L=2)�H(x+ L=2)) Æ(y � y0) Æ(z � z0)

0

0

1A dx dy dz(8)

=

Z
xright

xleft

0@(H(x� L=2)�H(x+ L=2))

0

0

1A dx =

0@hx0
0

1A
where hx is the grid spacing. This result is then used in the code for the

right hand side.

The source in the picture does not have to be aligned with the bJx grid.

This may result in some conceptual diÆculties that we now describe. Assume

for a moment a di�erent discretization plotted in Figure 4. Here the wire

is at the bottom of the grid rather than near the top of it as in Figure

3. Repeating the integration we see that we obtain the same result as the

scenario we had before, where the wire was in the top part of the cell. In

fact, it is easy to see that the result remains constant for every wire which

cross the cell perpendicularly regardless to its position within the cell. This

refered to as the loss of resolution on a grid level since it is clear that one

cannot expect to obtain resolution smaller than the grid size. If we want to

better resolve the wire, we need a �ner discretization for it.
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Jx

Jz

Figure 4: Integration over a wire in the x direction.

One way of thinking about this issue is in terms of an equivalent cur-

rent density distributed over the whole cross section of the cell. Regardless

of where the actual current �lament is (vertically within the cell), the pro-

gram produces results that are caused by a distributed current density that

is equivalent to the individual current �lament.

In order to make the user aware of this fact, EH3D prints the cell center

that the wire is going through. In this way, the users should be aware about

the cell resolution they obtain.

One conclusion is that, as in other similar codes, results in cells that

are within one or two cells of the source location should be treated as more

inaccurate than results in cells that are more distant from the source.

5 Using primary �elds as input rather than

speci�c sources - Secondary �elds compu-

tation

In some cases, the sources are very far from the region of interest. In these

cases, one may need to discretize a huge area with relatively small cells, which

may impose computational diÆculties. Furthermore, the dynamic range of

the �eld is very large. Near the source they may be of O(1) but they decay
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by a few orders of magnitude in the region of interest. In cases of such a

large dynamical range, the results may not be very accurate.

One way to overcome this problem is by transforming the problem to

calculate secondary �elds [5]. This requires the calculation of a primary

�eld assosiated with the background conductivity. EH3D allow the user to

de�ne the primary �elds as the values of the current J over the grid (note

again the staggered grid). The code requires both the primary �elds and

the background conductivity for the calculation of the secondary �elds. Care

must be taken such that the input primary �elds uses the same conventions

as EH3D .

6 The linear solver

After the mesh has been speci�ed and the right hand side calculated, the

matrix system (6) is generated and the �elds are solved using an iterative

method.

In general we write the system as

Ku = b

where K is the system b is the right hand side and u contains the �elds.

The matrix K is sparse, that is, although it is very large (a few millions

for a 643 grid), it has only a very small number of non-zero elements. Such

matrix systems can be solved using iterative methods and our implementation

uses BiCGstab [1] as the iterative solver. However, in most applications,

many iterations are needed unless the matrix is preconditioned. The term

preconditioning means that the original system is changed to

M
�1
Ku =M

�1
b

where M is a preconditioning matrix.

Obviously, ifM = K then the problem is solved in one iteration however,

calculating the inverse of K is a computational challenge that requires huge

amount of computational time. Therefore, one tries to obtain a good and

sparse approximation to the inverse of K. This is an ongoing research topic

which arise in most computational science.

In our implementation we have used two types preconditioners. First, as

mentioned before, the system is DC like for low frequencies. We therefore use
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an approximation to the DC case as a preconditioner. The approximation

is based on the LU decomposition of the diagonal blocks of K. If we set

the frequency to 0 and the tolerance for the LU to 0, the problem will be

solved in 1 iteration. However, this requires a very large size of memory and

therefore we use an Incomplete LU (ILU) factorization which does not give

as good of a preconditioner but can still converge in a small number of steps.

The ILU preconditioner is based on the idea that the problem is DC like.

However, as the frequency becomes higher, the problem does not behave as

a DC type problem. In this case the ILU is not a good preconditioner and

we use the SSOR [2] as a preconditioner.

To �nalize we give the following set of guidelines

� For low frequency use the ILU preconditioner

� For higher frequencies (where the ILU is not very e�ective) use SSOR

� If there is no memory limitation use ILU with low tolerance ( lower

than 10�2)

� If you are limited by memory use either ILU with a high tolerance or

SSOR

� As a rule of thumb, failure is possible when any cell has an aspect ratio

> 10, although padding cells should be less of a problem because �elds

in padding cells should be small.

Another important issue for the solver is the convergence. The following

question has no simple answer: "How do we know that we have converged

and how to set the tolerance of the solver?". To illustrate we consider an

example. �
1 0

0 �

��
x1

x2

�
=

�
1

�

�
Of course we need not use iterative methods for this system and the

solution is �
x1

x2

�
=

�
1

1

�
However, for this example, consider we use an iterative solver and assume

that at iteration k we have the approximate solution 
x
(k)
1

x
(k)
2

!
=

�
0:9999

0:1

�

11



Simple calculation shows that

r =

�
1 0

0 �

� 
x
(k)
1

x
(k)
2

!
�

�
1

�

�
= �

�
0:0001

0:9 �

�
and the square norm of the residual is

krk
2 = 0:00012 + (0:9 �)2 = 10�8 + 0:81�2

For � small (say 1e� 3) the norm of the residual looks small and we may

think we have converged. However, this is obviously not true for the second

component as it is very far from the actual solution.

For this reason, the choice of norms which represents the accuracy of the

solution is not an easy task. The norm used in EH3D is the two norm

described above which works best if the matrix is scaled. This assumption is

not correct for very large aspect ratios and therefore results may be biased.

This is one of the reasons that care should be taken in the discretization to

select grids with good aspect ratios.
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