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Introduction 

 

ZTEM_MTInv is a program library for carrying out forward modelling and inversion of 

magnetotelluric (MT), magnetivariational (MV) and joint data. Modelling and inversion of MT 

data closely parallels that for controlled-source data, and thus programs  ZTEM_MTInv and 

EH3DInv share many computational routines.  There are, however, some significant differences 

between the theoretical backgrounds of the two inversion procedures. This document describes 

these differences, and, as such, should be considered a companion to the document “Overview 

of Inversion Code EH3Dinv”. 

 

Forward Modelling 

 

The MT forward modelling algorithm, like that for the controlled-source case, is built upon 

Maxwell’s curl equations (and the constitutive relations), the conservation of charge, and Ohm’s 

law: 

 

     ∇ × E  − iωµ0 H  = 0,                                                (1a) 

∇× H  − J = 0,                                          (1b) 

∇ · J = 0,                                           (1c) 

J − σE  = 0,                           (1d) 
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where E is the total electric field, H  is the total magnetic field intensity, J is the volume current 

density, ω is the angular frequency, and σ = σ(r)  is the electrical conductivity of the Earth 

model. For program ZTEM_MTInv, the magnetic permeability is assumed to be constant and 

equal to its free space value, µ0 . A time-dependence of e−iωt  is assumed. 

 

There is effectively no source term in eqs. (1a–d). The source that is inducing electromagnetic 

fields in the MT case is considered to be outside what will be the computational domain.   

This is modelled by specifying the tangential components of the H-field and the normal 

component of the current density on the boundaries of the domain.  In other words, and in 

contrast to the controlled-source case, the forward-modelling problem for the MT case involves 

homogeneous equations with inhomogeneous boundary conditions. 

 

As for the controlled-source case, the electric field is decomposed into the sum of a vector 

potential and the gradient of a scalar potential: 

 

     E  = A  + ∇φ,                                                          (2) 

 

with uniqueness obtained by imposition of the Coloumb gauge condition: 

 

    ∇ · A  = 0.                                                       (3)  

 

Eliminating the H-field from Maxwell’s two curl equations (eqs. 1a & b), and 

introducing eqs. (2) & (3) gives 

 

    ∇2 A  + iωµ0 σ(A  + ∇φ) = 0,                                   (4)
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The algorithm used for the MT forward modelling is based on the separation of the total electric 

and magnetic fields into primary parts that exist in a background conductivity model, and 

secondary parts that exist because of the difference between the actual conductivity model and 

the background model. That is, 

E  = Ep + Es ,                                                (5a) 

H  = Hp + Hs ,                                               (5b) 

 

where the primary fields Ep  &  Hp  satisfy eqs. (1a–d)  for the background conductivity σb 

and the inhomogeneous boundary conditions. Equivalently, the vector and scalar potentials can 

be thought of as being divided into primary and secondary parts: 

 

A  = Ap + As ,                                              (6a) 

φ = φp   + φs ,                                                        (6b) 

 

where Ap & φp  satisfy eqs. (1c) & (4) for the background conductivity model and the 

inhomogeneous boundary conditions. Substituting eqs. (6a–b) into eqs. (1c)  & (4) gives 

 

∇2 As  + iωµ0 σ As + ∇φs = − iωµ0 ∆σEp , (7a) 

∇ ·  σAs+ ∇ ·  σ∇φs = −∇ ·  ∆σEp   , (7b) 

 

where ∆σ = σ − σb .  The preceding pair of simultaneous equations are the equations that are 

solved in the MT forward-modelling algorithm. The secondary potentials are assumed to vanish 

on the boundaries of the computational domain, that  is, satisfy  homogeneous boundary 

conditions. This pair of inhomogeneous equations, and the homogeneous boundary conditions, 

match the boundary value problem that is solved for the controlled-source case. 

 

The discretization and solution of eqs. (7a–b) is done in exactly the same way as for the 

controlled-source case.  However, one more step is required in the forward-modelling procedure 

for the MT case.  Because, in practice, the source field for the MT case is never known, its 
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effects are “cancelled” by considering ratios of the E-  & H-fields. Specifically, observations in 

the MT  case, and hence the data  to be calculated by  the forward-modelling procedure, are 

the impedances  Zxx , Zxy , Zyx  & Zyy  (or functions of these impedances), where the 

impedances are obtained by the solution  of: 
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The superscripts in the above equation indicate the E & H fields computed in the same 

conductivity model for two different polarizations of the source field, and the subscripts denote 

the components of the fields.  Two invocations of the forward modelling algorithm are therefore 

required, once using a primary field calculated for boundary conditions corresponding to an in- 

ducing H-field polarized in the x-direction, and again using a primary field calculated with 

boundary conditions for an inducing H-field polarized in the y-direction. The MT case therefore 

requires the solution of two systems of equations: 
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here the vector )1(

su contains the values of the components of the secondary vector potential and 

the values of the secondary scalar potential on the mesh for the first polarization, q̂(1) represents 

the discretization of the right-hand side of eqs. (7a–b) for the first polarization, and A represents 

the discretization of the left-hand side of eqs (7a–b). Equation (9b) is the equivalent equation for 

the second polarization.  Each of these equations is analogous to the matrix equation that is 

solved for the controlled-source case. 

 

The two kinds of data-types originally accepted by the program MT3DInv were the real & 

imaginary parts of the elements of the impedance tensor (as functions of position and frequency), 

or the apparent resistivities and phases associated with the elements of the impedance tensor: 
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The main modification to the old version of the package (MT3DInv) implemented in the code 

ZTEM_MTInv is the added capability to accept measured components of 3D transfer functions 

(Tippers), which are related to the electrical properties of the Earth and are defined only through 

the magnetic field components (measured both on the ground and in the air). In classical theory, 

the vertical component of the magnetic field, raised in the Earth by natural sources is linearly 

dependent on the horizontal components of this field (Wiese-Parkinson relation) as following: 

 

Hz = [T]H(11)

 

Where [T]=[Tzx Tzy];   Hz is the vertical component of the raised magnetic field and  
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The updated import into ZTEM_MTInv is designed in a manner to accept any combination of Real 

(In-Phase) and Imaginary (Quadrature) components of Tipper functions and or any combination of 

MT impedance data. 
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Inversion 

 

Exactly as for the controlled-source case, the MT inverse problem is solved by finding the 

conductivity model that minimizes the sum of a data misfit term and a measure of the amount of 

structure in the model, where this model is determined using an iterative, Gauss-Newton 

procedure. The only difference between the MT and controlled-source cases is the explicit 

composition of the Jacobian matrix of sensitivities.  As mentioned above, the data in the MT  

inverse problem are impedances, or functions of the impedances, and can be represented by: 

 

    )2()2()1()1( ,F spspii uuQuuQd                                                     (13) 

 

where di  is the i-th  datum, Q  is the matrix that produces the components of the E &  H-

fields at  the observation locations given the values of the vector and scalar potentials on the 

mesh, and the function Fi  represents the operation of calculating the i-th  datum, whether it 

is an impedance or an apparent resistivity or phase, from the E-  & H-fields at its observation 

location. The sensitivity of the i-th  datum with respect to the j-th  model parameter is 

therefore 
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where )1(

k
F represents an E or H-field component (for the first polarization) at the observation 

location and 
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since the primary fields are not dependent on the model parameters in the inversion. 
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The expressions for the derivatives of the secondary vector and scalar potentials for both 

polarizations with respect to the j-th model parameter are obtained by differentiation both 

sides of eqs. (9a–b): 
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The structure of the right-hand sides of eqs. (9a–b) (see eqs. 7a–b) is very similar to the model-

dependent parts of the left-hand sides of these equations. Hence, 
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and similarly for the second polarization.  Introducing the same notation as for the controlled-

source case, the derivative of the discretization of the vector and scalar potentials can be 

expressed as 
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and the product of Jacobian matrix of sensitivities with a vector, as 

 

      vGGQASGGQASvJJJv spsp
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where the superscripts and subscripts indicate to which polarization each term refers, and 

whether it involves the primary or secondary potentials. 
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Equation (19) also indicates the sequence of operations that are required to compute the 

product of the Jacobian matrix with a vector, which is one of the two computationally-

intensive operations required by the iterative solution to the Gauss-Newton normal system 

of equations.  It can be seen that for the MT case, the solution of two prototypical forward-

modelling problems, A x = b , are required for one product of the Jacobian matrix with a 

vector. Likewise, the solution of two prototypical transpose systems, AT v = w, are required 

to compute the product of the transpose of the Jacobian matrix with a vector, which is the 

other computationally-intensive operation that is required. 

The size of matrix A is (na+np)*nf, where na is the total number of cell faces in the discretization 

mesh, np is the number of cells and nf is the number of frequencies. 

The modifications implemented in ZTEM_MT3DInv_64 include parallelization of the calculation 

for different frequencies and source polarizations, making the code suitable to be used with MPI 

(Message Pass Interface) and OpenMP. Hence, the new code is solving one frequency at a time, 

instead of solving all at once, which requires arrays of length (na+np). The frequency 

calculations are parallelized with MPI, while the 2 polarizations are parallelized using open MP. 

In a 2 frequency example (eqs. 20-23) 
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Here )1(

1G corresponds to   )1()1(

sp GG   from eqt. (19) and index 1 in the subscript corresponds 

to the frequency 

 

In new code: 
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For the transposed matrixes: 
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Old code: 
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In the new code:  
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