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SUMMARY

To reduce the computational cost of the simulation of electro-
magnetic responses in geophysical settings that involve highly
heterogeneous media, we develop a multiscale finite volume
method with oversampling for the quasi-static Maxwells equa-
tions in the frequency domain. We assume a coarse mesh
nested into a fine mesh, which accurately discretizes the set-
ting. For each coarse cell, we independently solve a local ver-
sion of the original Maxwell’s system subject to linear bound-
ary conditions on an extended domain, which includes the
coarse cell and a neighborhood of fine cells around it. The lo-
cal Maxwell’s system is solved using the fine mesh contained
in the extended domain and the mimetic finite volume method.
Next, these local solutions (basis functions) together with a
weak continuity condition are used to construct a coarse-mesh
version of the global problem that is much cheaper to solve.
The basis functions can be used to obtain the fine-mesh de-
tails from the solution to the coarse-mesh problem. Our ap-
proach leads to a significant reduction in the size of the final
system of equations and the computational time, while accu-
rately approximating the behavior of the fine-mesh solutions.
We demonstrate the performance of our method using a syn-
thetic 3D example of a mineral deposit.

INTRODUCTION

Electromagnetic (EM) modeling is one of the most important
interpretation tools for geophysical exploration. Currently, the
two dominant commercial applications of these tools are search-
ing for mineral and petroleum deposits (Oldenburg and Li (2005)).
One major challenge in practice is the computational cost in-
volved in the simulation of EM responses of realistic geophysi-
cal settings. Such settings often consider highly heterogeneous
geologic media and features varying at multiple length scales
that may have a significant impact on the behavior of the EM
responses of interest. To obtain accurate approximations of the
responses in such cases, the mesh used in classical discretiza-
tion techniques, such as finite volume (FV) or finite element
(FE), must capture the structure of the heterogeneity present
in the setting with sufficient detail. This leads to the use of
very large meshes that translate into solving huge systems of
equations.

Adaptive mesh refinement approaches have been used to over-
come the computational cost of EM modeling (Horesh and
Haber (2011)). Although these approaches have produced ac-
curate approximations to the EM responses at an affordable
cost, they face one major issue: the mesh must still capture the
spatial distribution of the media heterogeneity both inside and
outside the region where we measure the EM responses. This
restricts the ability of these approaches to reduce the size of
the system to be solved.

Alternatively, multiscale FV/FE techniques aim to reduce the
size of the linear system by constructing a coarse-mesh ver-
sion of the fine-mesh system that is much cheaper to solve.
These techniques can be classified within the family of Model
Order Reduction methods, where the resulting fine-mesh sys-
tem from the discretization of the partial differential equation
(PDE) is replaced by its projected form. Multiscale FV/FE
techniques have been extensively studied in the field of mod-
eling flow in heterogeneous porous media, where they have
been successfully used to drastically reduce the size of the lin-
ear system while producing accurate solutions. Researchers in
this field have noted that the projection matrix constructed us-
ing multiscale FV/FE methods may lead to numerical solutions
that contain resonance errors. A solution in such cases is to
use oversampling techniques in the construction of the projec-
tion matrix (Hou and Wu (1997); Jenny et al. (2003); Efendiev
and Hou (2009); Hajibeygi and Jenny (2009)). In particular,
Haber and Ruthotto (2014) satisfyingly extended multiscale
FV techniques for application in EM modeling, where the au-
thors mentioned the need for an oversampling technique to im-
prove the accuracy of the solution obtained with their method
for certain cases.

Recognizing the success of oversampling techniques in fluid
flow applications, in this paper, we extend their use for appli-
cation in EM modeling. In particular, we propose an over-
sampling technique for the multiscale FV method of Haber
and Ruthotto (2014) for the quasi-static Maxwell’s equations
in the frequency domain. We show that our method produces
more accurate solutions than the multiscale FV method with-
out oversampling. We demonstrate the performance of our
method using a synthetic 3D example of a mineral deposit.

MATHEMATICAL MODEL

The 3D quasi-static Maxwell’s equations in the frequency do-
main subject to non-homogeneous Dirichlet boundary condi-
tions are given by

—⇥ ~E + iw~B = ~0, in W, (1)
—⇥ µ�1~B�S~E = ~s, in W, (2)

~E ⇥~n = ~F⇥~n, in ∂W, (3)

where ~E is the electric field, ~B is the magnetic flux density,
~s is the source term, w is the angular frequency, ~n is the uni-
tary outward-pointing normal vector, ~F are given values for the
tangential components of ~E due to the boundary conditions, W
is the domain, and ∂W is the boundary of W. The media pa-
rameters, µ and S, are the magnetic permeability and electrical
conductivity, respectively. We assume that these two parame-
ters are 3⇥3 symmetric positive definite (SPD) tensors. Since
the mimetic finite volume (MFV) method is a building block
to develop our proposed oversampling technique, we provide
an overview of the MFV method. Full details can be found
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in Haber (2014). MFV is an extension of Yee’s method that
discretizes highly heterogeneous and anisotropic media in a
conservative manner, leading to sparse and symmetric linear
systems (Yee, 1966; Hyman and Shashkov, 1999a,b). This
method begins by considering the weak form of the system (1)-
(2) and uses a staggered mesh to discretizes ~E on the edges,
~B on the faces and the media properties µ and S at the cell-
centers, yielding the following linear system of equations

A(SSS)e = [CURL>M f (µµµ�1)CURL+ iwMe(SSS)]e =�iwq,
(4)

where SSS, µµµ , e, q are the discrete approximations at the cor-
responding mesh points for S, µ , ~E, and ~s, respectively. Ad-
ditionally, CURL, M f (µµµ�1) and Me(SSS) are the correspond-
ing discrete operators for the continuous operator —⇥ and the
mass matrices for the material properties µ and S. To impose
the boundary conditions, the matrix A and the vector e are re-
ordered into interior boundary edges (ie) and boundary edges
(be). Thus, the system to be solved in terms of e is

A
ie,ieeie =�iwqie�A

ie,beebe. (5)

Once we solved this system, we can compute b using the dis-
crete version of equation (1).

Multiscale Finite Volume Method with Oversampling: To
develop our multiscale method with oversampling (MSFV+O),
we adapt the work of Efendiev and Hou (2009) to apply to
the multiscale finite volume (MSFV) method for EM model-
ing proposed by Haber and Ruthotto (2014). Our MSFV+O
method can be summarized as follows: (i) we assume a user-
chosen coarse mesh nested into a fine mesh, which accurately
discretizes the given geophysical setting. Typically the coarse
mesh is much smaller than the fine mesh. (ii) For each coarse
cell, Wk, we independently solve a set of local versions of the
source-free Maxwell’s system (1)-(2) subject to a set of twelve
non-homogeneous Dirichlet linear boundary conditions on an
extended domain (one for every edge), Wext

k , which includes
the coarse cell and a neighborhood of fine cells around it. To
solve the twelve local Maxwell’s systems, we use the fine mesh
contained in the extended domain and the MFV method. We
denote the set of discrete solutions as Pext

k =
⇥
eext1 , ...,eext12

⇤
.

As described in Haber and Ruthotto (2014), this corresponds
to a coarse-to-fine local interpolation matrix for the fine-mesh
electric field. (iii) Next, these local solutions, called multiscale
basis functions, coupled with a weak-continuity condition are
used to construct a local coarse-to-fine interpolation matrix per
coarse cell, Pk. (iv) Once we have computed an interpolation
matrix for every coarse cell, we assemble a global interpolation
matrix, P, and use it within a Galerkin approach to construct a
coarse-mesh version of the fine-mesh system (5) that is much
cheaper to solve as follows

Ac(SSS f ) = P>A f (SSS f )P, qc = P>q f . (6)
The superscripts c and f denote dependency to the coarse and
fine meshes, respectively, and the rest of the terms are defined
as before. The basis functions can be used to obtain the fine-
mesh details from the solution to the coarse-mesh problem.

The linear boundary conditions imposed to the local Maxwell’s
problems in step (ii) play a crucial role in accurately capturing
the behavior of the EM responses caused by small-scale infor-
mation of the media present in the problem. If these boundary

conditions do not reflect the nature of the underlying hetero-
geneities, multiscale FV and FE procedures can have large er-
rors. These errors, known as resonance errors, appear when
the coarse-mesh size and the wavelength of the small scale os-
cillation of the heterogeneity in the problem we want to solve
are close (Hou and Wu (1997); Efendiev and Hou (2009)). By
a judicious choice of boundary conditions for the construc-
tion of the multiscale basis functions, we can reduce the reso-
nance errors significantly. Oversampling methods are used to
reduce boundary effects in the construction of the multiscale
basis functions per single coarse-mesh cell. The main idea is
to use an extended domain to avoid this boundary effects and
to use only the fine-mesh information at the interior of the cell
to construct the local basis functions.

(a)

(b)

Figure 1: Subsurface of the synthetic electrical conductivity
model and setup for our large-loop EM survey. (a) Model dis-
cretized on a fine OcTree mesh used to compute a reference
solution. (b) Model discretized on a coarse OcTree mesh used
to compute multiscaled solutions.

We now proceed to discuss step (iii) in detail, which along with
step (ii) form the core idea behind our proposed oversampling
strategy. For a given coarse cell Wk, this idea consists of com-
puting the local interpolation matrix Pk from Pext

k coupled with
a weak continuity condition that enables the use of the new
projection matrix within the Galerkin formulation that follows
in step (iv). Following Efendiev and Hou (2009), we assume
that the set of local basis functions in Wk can be expressed as a
linear combination of the extended basis functions as follows

e j(~x) = [eext1 , ...,eext12 ]c j, j = 1, ...,12, (7)
where c j are coefficients to be determined. In order to uniquely
determine such coefficients, we impose the following weak
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continuity condition given by

Aêm (ei) :=
1

Lêm

Z

êm

ei · têm ds = dmi, (8)
to 7 that yields to the system of equations to determine the
coefficients as follows

Aê j (e1) =
⇥
Aê1

�
eext1

�
, ...,Aê12

�
eext12

�⇤
c j, j = 1, ...,12. (9)

Combining equations (9), (8) and (7), we obtain the desired
expression for the coefficients

C =

2

66664

p>
ê1

eE
1 p>

ê2
eE

1 . . . p>
ê12

eE
1

p>
ê1

eE
2 p>

ê2
eE

2 . . . p>
ê12

eE
2

...
...

. . .
...

p>
ê1

eE
12 p>

ê2
eE

12 . . . p>
ê12

eE
12

3

77775

�1

. (10)

Finally, we form the local interpolation operator Pk, by com-
puting

Pk = Pext

k |Wk C (11)
where Pext

k |Wk represents the list of indexes of fine-mesh edges
inside the coarse-mesh cell Wk.

NUMERICAL RESULTS

In this section, we demonstrate the performance of our pro-
posed oversampling technique for the multiscale finite volume
(MSFV+O) method using a synthetic 3D example of a mineral
deposit. The results are compared to those obtained using the
MFV method on a fine mesh, and the MSFV method (Haber
and Ruthotto (2014)) on a coarse mesh. For this example, we
construct a synthetic electrical conductivity model based on
the inversion results of field measurements over the Canadian
Lalor mine obtained by Yang et al. (2014). The conductivity
model, shown in Figure 1, has an area with non-flat topography
and extends from 0 to 6.5km along the x, y and z directions, re-
spectively. The model comprises air and the subsurface that is
composed of 35 geologic units. The unit with the largest con-
ductivity value represents a gold deposit. We assume a con-
ductivity of 10�8S/m in the air. The subsurface conductivity
values range from 1.96⇥10�5S/m to 0.28S/m. In addition, we
consider a large-loop EM survey for this example, where we
use a rectangular transmitter loop with dimensions 2km⇥3km,
operating at the frequencies of 100, 200 and 400Hz. The trans-
mitter is placed on the Earth’s surface and it is centered above
the gold deposit (Figure 1). Inside the loop, we place a uni-
form grid of receivers that measure the three components of
the magnetic flux. The receivers are separated by 50m along
the x and y directions, respectively. To reduce the effect of the
imposed natural boundary conditions (3), we embed the survey
area into a much larger computational domain which replaces
the true decay of the fields towards infinity (Figure 1).

Our aim is to estimate the secondary magnetic flux induced by
the gold deposit in the survey area. For this purpose, we simu-
late two sets of the magnetic flux data for each frequency. The
first data set considers the conductivity model including all ge-
ologic units, and the second data set excludes the gold deposit
from the original conductivity model. The secondary magnetic
flux induced by the gold deposit, denoted as D~B, is then com-
puted by subtracting the two data sets. To compute a refer-
ence solution, we discretize our conductivity model at the cell

centers of a fine OcTree mesh using the MFV method (Haber
(2014)). The fine mesh has cell sizes of (50m)3 within the
survey area and at the interfaces of the model where the con-
ductivity varies, the rest of the domain is padded with coarser
OcTree cells (Figure 1(a)). This mesh has 546,295 cells. To
get an estimate for the proper cell size, we consider the largest
background conductivity value (4.5⇥10�3S/m) and calculate
skin depths of 745, 527 and 373m for the 100, 200 and 400Hz
frequencies, respectively. We find that using cells of size 50,
100 and 200m is sufficient to capture the decaying nature of
the magnetic flux in the survey area. Using the MFV method
on the fine OcTree mesh yields systems with roughly 1.5 mil-
lions degrees of freedom (DOF) which we solve using the di-
rect solver MUMPS (Amestoy et al. (2001)). The computation
time per single simulation is 883s on a two hexa-core Intel
Xeon X5660 CPUs at 2.8Hz, 64 GB shared RAM using MAT-
LAB. The real and imaginary parts of the results obtained for
the z-component of D~B, denoted as DBz, at 100Hz are shown
in Figures 2(a,b).

In order to use the MSFV+O method introduced in the pre-
vious section, we need to choose a suitable coarse mesh and
the size of the oversampling area to compute the local projec-
tion matrix. For the coarse mesh, we consider a coarser Oc-
Tree mesh nested in the fine OcTree mesh. The coarser mesh
is designed to maintain the fine-mesh resolution (50m)3 in-
side the survey area, whereas the rest of the domain is filled
with increasingly coarser cells (Figure 1(b)). In total, this
mesh contains 60,656 cells. To analyze the performance of
our MSFV+O method for coarse OcTree meshes, we do not
refine the mesh outside the survey area where a large conduc-
tivity contrast is present in the model (Figure 1(b)). Next, to
investigate the effect of the size of the oversampling area, i.e.,
the number of fine-mesh padding cells by which we extend ev-
ery coarse cell on the resulting magnetic flux data, we pad the
coarse cell using 2, 4, and 8 fine cells.

Applying the MSFV+O method, we obtain reduced linear sys-
tems with 169,892 DOF, which are also solved using MUMPS.
The total run times for oversampling sizes of 2, 4 and 8 padding
cells are 186, 526 and 3,680s, respectively, on the same ma-
chine. The real and imaginary parts of DBz at 100Hz are shown
in Figures 2(c,d). We also carry out simulations using the
MSFV method (Haber and Ruthotto (2014)) on the coarse Oc-
Tree mesh shown in Figure 1(b). We first adapt the MSFV
method for OcTree meshes, as the original version is derived
for tensor meshes only. This method also yields reduced sys-
tems of equations which are solved using MUMPS. The total
run time per single simulation is 84s on the same machine.
The real and imaginary parts of DBz at 100Hz are shown in
Figures 2(e,f).

Table 1 shows the relative errors in infinite norm for the real
and imaginary parts of DBz obtained from comparing the refer-
ence solution with the MSFV and MSFV+O solutions for each
frequency and oversampling size. From this table, we observe
the following. First, our oversampling technique significantly
improves the accuracy for both the real and imaginary parts of
the solution in comparison to the MSFV method as the errors
decrease with oversampling. Second, as the oversampling size

Page 983© 2016 SEG 
SEG International Exposition and 86th Annual Meeting 

D
ow

nl
oa

de
d 

03
/1

3/
17

 to
 1

28
.1

89
.1

18
.2

00
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Oversampling technique for multiscale FV method to simulate frequency-domain EM responses

increases the error decreases at the expense of more compu-
tational run time, which, however, is still considerably lower
compared to the time of the reference solution for the cases of
2 and 4 padding cells. Third, for a simulation at 400Hz with
an oversampling size of 8 padding cells the slight increment
in the error of the imaginary part may be caused by excessive
coarsening for such high frequency. Four, for the simulation
at 200Hz the increase and decrease in the error going from
padding cell 2 to 4 and 4 to 8, respectively, may be related to
the combined discretization error in simulating secondary field
data.

Table of relative errors

Frequency
Method 100Hz 200Hz 400Hz

Relative errors for real part of DBz (%)
MSFV 69.76 70.30 54.71
MSFV+O (2 pc) 14.61 12.87 8.84
MSFV+O (4 pc) 12.88 11.35 8.39
MSFV+O (8 pc) 10.57 8.52 7.48
Relative errors for imaginary part of DBz (%)

MSFV 69.17 58.02 73.25
MSFV+O (2 pc) 11.96 23.53 19.11
MSFV+O (4 pc) 10.11 29.47 12.92
MSFV+O (8 pc) 9.95 25.08 14.54

Table 1: Relative errors in infinite norm for the real and imag-
inary parts of DBz. Note that pc stands for padding cells.

CONCLUSIONS

We develop an oversampling technique for the multiscale finite
volume method to simulate electromagnetic responses in the
frequency domain for geophysical settings that include highly
heterogeneous media. Our method produces results compara-
ble to those obtained by simulating electromagnetic responses
on a fine mesh using classical discretization methods, such as
mimetic finite volume, while drastically reducing the size of
the linear system and the computational time. Using the over-
sampling technique in the presented example, the size of the
coarse-mesh system is only about 10% of the fine-mesh sys-
tem size, while the relative error is less than 30% for all the
cases considered.

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2: Numerical results for our large-loop EM survey for
100Hz. The first and second columns visualize the real and
imaginary parts of the z-component of the secondary magnetic
fluxes of the gold deposit, DBz, respectively. Top row: ref-
erence solution computed using the MFV method on the fine
OcTree mesh with 546,295 cells. Middle and bottom rows:
results using the MSFV+O (with 8 padding cells) and MSFV
methods on the coarse OcTree mesh with 60,656 cells, respec-
tively. All results are shown in picoteslas (pT) and plotted us-
ing the same color scale (g).
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