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ABSTRACT

Aldridge, D.F. and Oldenburg, D.W., 1993, Two-dimensional tomographic inversion with finite-
difference iraveltimes. Journal of Seismic Exploration, 2: 257-274.

We present an iterative tomographic inversion procedure for reconstructing a two-
dimensional velocity field from measured first arrival times. Two key features of this technique are
(i} use of a finite-difference algorithm for rapid and accurate forward modeling of traveltimes, and
{ii) incorporation of constraint information into the inversion in order to restrict the nonuniqueness
inherent in large scale, nonlinear inverse problems.

Finite-difference traveltime compuiation provides a useful altermative to conventional
raytracing in tomography. All first arrival wave types are handled with relative ease. Curved
raypaths, needed for subsequent updating of the velocity model, are generaied by following the
steepest descent direction through a computed traveltime field from each receiver back to the source.
The main limitation of the method is that it is restricted to first arrivals.

Constraint information may arise from known values of the subsurface velocity (e.g., from
outcrops or well logs) or the imposition of reasonable geophysical characteristics, like smoothness,
on the constructed velocity model. In either case, the data equations are augmented with additional
linear constraint equations and a least squares solution of the entire system is obtained.

Analysis of a simulated double-well VSP plus crosswell experiment indicates that the
inversion algorithm can accurately reconstruct a smoothly varying interwell velocity field. Inclusion
of constraint information, in the form of horizontal and vertical first-difference regularization, allows
the solution of a traveltime tomography problem that is otherwise severely underdetermined. Finally,
the technique is successfully applied to two crosswell datasets acquired in a shallow oilfield in
central California.
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INTRODUCTION

Curved ray traveltime tomography was originally developed by Bois et al.
(1972) for the purpose of estimating the seismic velocity disiribution between
two boreholes. Following their seminal work, several investigators advanced the
technology of tomographic imaging with curved raypaths {Lytle and Dines,
1980; Bishop et al., 1985; McMechan et al., 1987; Bregman et al., 1989,
White, 1989). Curved ray methods are necessary for accurately reconstructing
the velocity field in highly refractive media. Although straight ray techniques
are adequate in media with relatively small velocity variations, it is difficult to
decide when this simplifying assumption of straight line raypaths becomes
invalid. Hence, there is a compelling reason to use curved ray methods in all
situations: they are based on a more accurate model of wave propagation
through variable velocity media.

Traveltime tomography is a nonlinear inverse problem that can be solved
by local linearization and iteration. Since the velocity field is updated on each
cycle of the tomographic imaging procedure, rays have to be retraced between
all source-receiver pairs. This raytracing constitutes a large part of the
computational cost of curved ray tomographic inversion. Two-point raytracing
between a specific source and receiver is an iterative process, and may
encounter difficulties due to shadow zones and multipathing. In this study, we
circumvent the problems associated with conventional raytracing by calculating
traveltimes to all points of a two-dimensional slowness field with a rapid
finite-difference algorithm (Vidale, 1988). Raypaths are then generated by
following the steepest descent direction through the computed traveltimes from
each receiver back to the source. This method yields the raypaths of all wave
types that comprise first arrivals (body waves, head waves, and diffractions).
Moreover, since arrival times are calculated throughout the slowness field,
arbitrary recording geometries are easily accommodated.

In addition to rapid and accurate forward modeling, tomographic inversion
requires the solution of a system of linear algebraic equations to obtain the
improved velocity field. This solution may exhibit erratic and unphysical
behavior due to noise in the traveltime data and/or ill-conditioning in the
equations. Hence, some form of regularization is often used to stabilize the
inversion. For example, Lytle and Dines (1980} introduce Laplacian smoothing
into the system when calculating a perturbation t0 a slowness model. Bishop et
al. (1985), Bregman et al. (1989), and White {1989} limit the size of the model
perturbation by using the damped least squares method. Macrides et al. (1988)
impose inequality constraints on a perturbation calculated via an algebraic
reconstruction technique (ART) algorithm. Qur approach is to apply linear
equality constraints directly to the slowness model, rather than to a model
perturbation, on each iteration of the inversion procedure. In addition to
improving the mathematical conditioning of the system, the constraints allow the
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introduction of a priori geological and geophysical knowledge about the model
into the inversion. In particular, the constraints may arise from a desire to
impose a preferred character, like flatness or smoothness, on the slowness
solution. Alternately, we may seek a model that is close, in some quantitative
sense, to a prescribed base model. Inclusion of these constraint equations
restricts the nonuniqueness that is common in realistic tomographic inverse
problems.

The nonlinear tomographic inversion procedure described in this paper
consists of four basic steps:

1} calculation of first arrival traveltimes from each source location to all points
of a gridded slowness field,

2) generation of raypaths between all source-receiver pairs,

3) solution of a large and sparse system of linear equations for a perturbation
to the existing slowness model,

4) updatinig the slowness model.

This four-step process is initiated with an estimate of the true slowness function,
and is repeated until an acceptable match is obtained between observed and
calculated traveltimes. Subsequent sections describe these steps in more detail.
The inversion procedure is demonstrated using synthetic traveltime data from
simulated VSP and crosswell experiments. Finally, the technique is applied to
a crosshole dataset acquired in a shallow oilfield in central California.

GENERAL THEORY AND MODEL REPRESENTATION

The traveltime of a seismic wave propagating through a slowness field
s(r) satisfies the eikonal equation

(Vi) |? = sc)* . (1)

This is a nonlinear partial differential equation for the traveltime function t(r).
Linearization of the eikonal equation about a reference slowness model sy(r)
yields an expression for the change in traveltime induced by a small slowness
perturbation As(r). The result is

atw) = [ asdl, (2)

Lyt

where Ly(r) is the raypath through the reference medium from the source to
position r. Hence, a small change in traveltime is linearly related to a small
change in slowness.
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We represent a two-dimensional slowness function s(x,z) by a set of K
square cells, each with a uniform slowness value m, (k = 1,2,...,K). Thus,
within a cell, a raypath is a straight line segment. For a collection of raypaths
between many source-receiver pairs, equation (2) is expressed as the
matrix/vector product

At = A(m)Am (3)

where A(m) is a matrix of raypath length segments within the square cells of the
slowness model m. In the tomographic inversion problem, we seek a model
perturbation Am such that the improved model m + Am approximates the true
slowness model associated with the measured traveltimes. Hence, the traveltime
difference vector At is given by

At = ty, — t(m) )

where t . is a vector of observed arrival times, and t,,(m) is a vector of
predicted traveltimes computed from the known slowness model m. In principle,
equation (3) can be solved for the required model perturbation. In practice,
solution difficulties arise because the raypath matrix is usually nonsquare, large,
sparse, and rank deficient. Moreover, since the observed traveltimes contain
random errors, the system (3) may be inconsistent. In this case, an exact
solution does not exist and a minimum misfit solution is usually sought. Finally,
if the initial model m is a poor approximation to the true slowness, several
iterations of the model updating procedure may be necessary before the
magnitude of the traveltime residual vector At becomes acceptably small,

FORWARD MODELING

The first arrival times of a seismic wave propagating through a two-
dimensional velocity structure are computed by Vidale’s (1988} finite-difference
scheme. This algorithm uses plane wavefront traveltime operators to extrapolate
arrival times from point to point throughout a uniformly spaced grid. The
method is rapid and accurate, and can be applied to a heterogeneous medium
with moderate to strong velocity variations. Podvin and Lecomte (1991) and
Aldridge and Oldenburg (1992) describe improvements to the local traveltime
extrapolators that allow models with very strong velocity contrasts to be
examined. The traveltimes of all wave types that comprise first arrivals (body
waves, head waves, and diffractions) are calculated. Reflections and other later
arrivals are not included; this represents a limitation of the technique as
currently formulated.
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Vidale’s method is based on a centered finite-difference solution of the
eikonal equation on each square cell of a gridded slowness field. Thus, the
associated discretization error is second order in the grid cell size. An input
slowness function s(x,z) is sampled on a uniformly spaced two-dimensional grid.
If the grid interval is h, then the sampled slowness values are given by
$i; = s{x;,7), where x;, = X4, + (i—Dh and z = z,, + (j—1h (with
i=1,2,...,1 and j=1,2,..., J). Since there are IJ grid points, there are
K={(I-1){J—1) square cells. The slowness assigned to a particular cell is the
arithmetic mean of the slowness values at the four bounding grid points:

m, = Yi(s;; + S, + S + Sionja) s (5)

where k = i+(I[-1)(j—1). With this indexing scheme, the elements of the
vector m constitute a row-ordered sequence of the two-dimensional array of cell
slowness values. An individual cell is referenced either by the coordinate indices
of its upper left corner (i) or by its sequential index (k).

Calculations are initiated at a designated source point (x,, z,) (nhot
necessarily coincident with a grid node) within the slowness model. Since
wavefronts are strongly curved in the immediate vicinity of a point source, plane
wavefront traveltime extrapolators are inappropriate in this region. Furthermore,
near-source inaccuracies will be propagated to all greater distances. In order to
mitigate these effects, we calculate arrival times in a near-source rectangle via
the exact traveltime formula for a linear velocity field. The coefficients defining
the linear velocity function are obtained by performing a least squares fit to the
velocity samples v;; = 1/s;; surrounding the source.

The finite-difference algorithm calculates a traveltime t;; at every grid
point of the slowness field. If a receiver is not located on a grid node, then an
interpolator is needed to estimate the arrival time at the actual receiver position.
Simple bilinear interpolation provides adequate accuracy. Hence, if a receiver
with coordinates (x, , z ) is located within cell ij, then define the dimensionless
quantities p = (x, — x;¥h and q = {z - z }/h. The interpolated traveltime is
given by

t{x,z) = 0-p)l-gt; + p(l-q)t,,, ; + q{l=p)t; j,;, + PAti, 1 - (6)

If the four arrival times bounding cell ij are due to local plane wave
propagation, then equation (6) is an exact expression for the traveltime at the
interior point (x,, z,}. In other cases, the interpolator (6} has accuracy O(h?)
(Dahlquist and Bjork, 1974, p. 319) and thus is consistent with the level of
accuracy associated with the forward modeling scheme.
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RAY GENERATION

Raypaths are generated by following the steepest descent direction through
a computed traveltime field from each receiver back to the corresponding source
point. This strategy was originally suggested by Vidale (1988) and has recently
been implemented (in a form somewhat different from that described here) by
Podvin and Lecomte {1991}.

The horizontal and vertical components of the traveltime gradient vector
within cell ij are approximated by the centered finite-difference formulae

at/ax [(ti+l,j + ti+1'j+1)—(tij + ti,jq.l)]lzh > (7)

It

otz = [(t . + ti,p ) —; + 4y )/2h . (8)

The assignment of a constant traveltime gradient to a cell is compatible with the
assumption of locally plane wavefronts used in the forward modeling algorithm.
The steepest descent direction is opposite to the gradient direction of the
traveltime field. Hence, within cell ij (or k) the steepest descent direction is
defined by the angle

8, = tan~'[(01/3z)/ (Bt/dx)) + x . ©9)

8, is measured clockwise from the positive horizontal axis. For a fixed source,
all raypaths that cross cell ij have this same orientation angle. The lengths of
the raypath segments within the cell range from zero to a maximum of /2h.

A representative situation for cell 1j is depicted in Fig. 1. The raypath
enters the cell at point A on its right boundary with coordinates (x, , z, ).
Depending on the value of the steepest descent angle assigned to the cell, the
ray may exit on any of the remaining three sides or one of the four corners. The
logic that selects one of these possibilities is given in the first column of Table
1, where a; and «, are positive acute angles defined by

a; = tan"'[(z,; — z)/Mh], a = tn'[(z, - z)/h]

These two angles are illustrated in Fig. 1. After an exit option is selected, the
coordinates of the exit point B are easily determined (columns 2 and 3 in
Table 1). These coordinates (x, ,z,) constitute the entry point coordinates for
the next cell that the ray crosses (columns 4 and 5 in Table 1). In the particular
case displayed, the raypath enters cell i, j+1 on its top boundary. Hence, a
different logical scheme is required to extend the raypath across this next cell.
A total of eight logical tables are necessary to handle all of the possibilities.
These correspond to a raypath entering a cell on any of its four sides or four
corners.
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Fig. 1. Raypath (heavy line) traced through square cell i j of a 2-D slowness model. Ray enters cell
at point A, follows the local steepest descent direction across the cell, and exits at point B.

Ray tracing is initiated at each receiver position and continues until the
raypath arrives at the boundary of a prescribed near-source zone. The final
portion of the raypath is then taken to be a straight line segment from the
boundary point directly to the source position {x,, z ). This ray termination
procedure is designed to overcome difficulties associated with nonuniformity of
the traveltime gradient vector in close proximity to the source.

Table 1. Ray tracing logic for an entry point on the right side of a square grid cell. Column 1 gives
possible ranges for the stcepest descent angle 6, assigned to the cell. Angles a; and &, are defined
in the text and illustrated in Fig. 1. Columns 2 and 3 give the horizontal and vertical coordinates of
the ray exit point, respectively, (x, ,z,} are the ray entry point coordinates. Columns 4 and 5 give
the indices of the next cell that the ray enters.

ANGLE RANGE EXIT COORDINATES NEXT CELL
0 <6 < a2 Xi,1 Zjy i+1 j+1
a2 < 8, < T-a X, +(z;,,—z,)cot O, Ziyy i j+1
6 =1 - X Zi i—1 j+1
- < 6 < At+a, X; z,—htanf, i-1 j
B =m + X Z; i-1 j-1
T+ a, <6 <32 x+(z-z)coth z i j—1
3a/2 < 8, < 2x X1 Z i+1 j—1
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Fig. 2a is a contour plot of a velocity model bounded by two vertical
boreholes. A shallow low velocity anomaly overlies a dipping, higher velocity
zone. The first arrival wavefronts from a surface source located between the
boreholes are illustrated in Fig. 2b. The wavefronts are retarded by the low
velocity zone and advance more rapidly through the high velocity zone. In
addition, Fig. 2b displays the raypaths traced through this time field from 18
downhole receivers back to the source. The raypaths are orthogonal to the
wavefronts, as expected.

=te]

0 100 200 300 400 500 0 100 200 aon 400 500

Fig. 2. (a) Velocity model (contour interval = 100 m/s) with a horizontal low velocity zone and a
dipping high velocity zone, Maximum velocity = 2800 m/s; minimum velocity = 1633 m/s. (b}
Wavefronts (contour interval = 20 ms) and raypaths generaled by a surface source. The raypaths
are traced from 18 downholé receivers back to the surface source.

INVERSION MATHEMATICS

As indicated previously, system (3) is typically ill-conditioned and
inconsistent. Hence, an undamped least squares solution (i.e., a solution of
ATAAm = A"At) may yield a model update vector with relatively large and
unrealistic cell-to-cell variations in slowness. Robust inversion algorithms handle
the inconsistency of the equations, and the nonuniqueness arising from
ill-conditioning, by minimizing an objective function that is the sum of a misfit
term ¢, and a model dependent term ®,,. A commonly used misfit measure
employs the L, norm: ®; = | W,(AAm — At} ]|? where W, is a prescribed data
weighting matrix. This matrix is usually diagonal with elements inversely
proportional to estimated standard errors for each datum. For simplicity, we
assume that the data are uniformly weighted; W, then reduces to the identity
matrix.
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The model objective function term &, may take various forms, but a
typical objective function for this two-dimensional problem is

$, = 14 _[f W10, Z)(S — Spge )2dxdz + 1 II w,(x,2)[0(s = 810 HOX)*dxdz

+ 12 [ [ w206 = 5,0, ozPdxdz . (10)

The weighting functions w,, w,, and w; are specified by the user. These
functions can be tailored so that the constructed slowness model s(x,z) is
preferentially close to a known base model s, (x,2) at certain locations (for
instance, near the boreholes), or so that penalties against horizontal and vertical
variation can be imposed in certain regions. The scalars y;, w,, and y; control
the relative importance of the various terms.

The discrete form of (10), after explicitly writing the updated model as
m + Am, is

3
&, = > 2|B,m + Am -m,)|* , {11)
n=1

where the matrices B, represent the operators in the integrands of (10). Hence,
the total objective function is

N
®(Am) = |AAm - At]? + D 2| B.m+Am-m,)]% ., (12)

n=1

where, for generality, a total of N distinct terms is now allowed in the sum.
Extremizing ® with respect to Am yields the linear algebraic equations

N N
[ATA+ D 2B'B,JAm = ATAt + . 12B'B (my,—m) . (13)
n=1

n=1

For nonzero (£, the coefficient matrix in this equation is usually nonsingular.
The required model perturbation Am can be obtained by solving (13) using
standard techniques of numerical linear algebra. However, the coefficient matrix
is large (K x K, where K is the number of slowness cells) and may be dense
even if the original raypath and constraint matrices are sparse. Hence, it is
advantageous to seek a solution method that avoids explicitly forming the square
matrices A"A and BIB,.

It is straightforward to demonstrate that (13) are the normal equations
associated with the least squares solution of the rectangular system
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A At
#1?31 Am = lulBl(lsn'base - m) (14)
HnBy pxBr(my,, ~ m)

When written in this manner, it is clear that the various terms in the model
objective function (10) can be interpreted as linear equality constraints on the
updated model of the form

B.m + Am} = Bm,,_, . (15)

We use algorithm LSQR (Paige and Saunders, 1982) to solve equation (14)
directly for Am. LSQR is an iterative solution technique for large and sparse
systems of linear equations that is closely related to the conjugate gradient
method. It is designed to seek the minimum norm least squares solution of a set
of equations. Numerical studies of LSQR applied to the tomographic inversion
problem indicate that it is both rapid and accurate (Nolet, 1985; Scales, 1987).
A simple FORTRAN version of the LSQR algorithm is given by Nolet (1987).

The dimensions of the coefficient matrix in (14) are Ny, + Ney ) X K,
where N, and N_. are the number of data and constraint equations,
respectively. Since this matrix may be large and sparse, a significant reduction
in storage space is achieved by storing only the nonzero elements in a one
dimensional array. We use the full index scheme described by Scales (1987) to
store and address the matrix elements. With this storage method, the sparse
matrix/vector multiplications required by the LSQR algorithm are particularly
simple to implement.

Finally, the correction to the slowness value at grid point i j is determined
by averaging the slowness perturbations calculated for the four surrounding
cells:

As; = VilAm,_; + Amy_ . + Am,_, + Am,} , (16)

where k = 1 + (I-1)(j—1). Grid points located on the edges {(cotners) of the
slowness model are updated by adding the average of the perturbations
associated with neighboring two (one) cells. After all grid points are updated,
forward modeling of traveltimes for the next iteration of the inversion can
proceed.

MODEL CONSTRAINT EQUATIONS

There is considerable latitude is designing the model objective function
term @, and correspondingly, the individual matrices B, used in the constraint
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equations. In our examples, the weighting functions w,, w, and w; in equation
(10} are taken to be unity. Then, the constraint matrices are easily generated
from a two-dimensional ‘operator’ or ‘filter’ with five specified constants ¢;, ¢,,
s, ¢4 and cs. Fig. 3 depicts the application of this operator to interior cell i j of
a slowness model. Using the row-ordered indexing scheme, the k™ component
of the filtered image Bm is given by

CiMy, + Coflyyyy + Caly_ + CMy_ypyy + G5y

Edge cells are handled by conceptually extending the slowness model beyond
the defined region with the local cell slowness values. For example, application
of the 5-cell operator to the upper left corner cell (i = 1, j = 1 corresponding
to k = 1) of the model m is via the formula

cm, + cmy + {c; + ¢ + cdmy

One such constraint is applied to each cell of the slowness model. Development
of the matrix representation B for this set of equations is a matter of proper row
and column indexing.

The 5-cell operator is an extremely simple and flexible mechanism for
introducing various types of model roughness penalties into tomographic
inversion. Some common examples include:

Case I: ¢; = 1 and all other ¢, = 0. An individual cell slowness is not
constrained by its immediate neighbors. Rather, inversion produces a model that
is closest, in the least squares sense, to a given target model my,, . This
emulates the first term of @, in equation (10).

Xj Xis1 X
T T T T >
€4
Zi -
Ca Cs Cq
Zje[~
Ca2
r4

F

Fig. 3. Schematic representation of the 5-cell constraint operator applied to cell i j of a slowness
model. The slowness values in five neighboring cells are multiplied by constants ¢, through ¢, and
the products are summed.
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Case 2: ¢, = 1/2h, ¢; = —1/2h and all other ¢, = 0. This operator is a centered
finite-difference approximation to the horizontal derivative of the slowness field.
A similar approximation to the vertical derivative is obtained by setting ¢, =
1/2h, ¢, = —1/2h and all other ¢, = 0. These operators introduce first-
difference regularization, or flattening, into the procedure. Inversion produces
a model with first derivatives that are close, in the L., norm sense, to those of
the prescribed base model m,,,, . These operators emulate the second and third
terms of &, in equation (10).

Case 3: ¢, = 1/0%, ¢5 = —2/h%, ¢; = 1/h? and all other ¢, = 0. This operator,
as well as its vertical counterpart, introduces second-difference regularization,
or smoothing, into the inversion.

Case 4: ¢, = ¢, = ¢; = ¢, = 1/h® and ¢; = —4/h*. This operator incorporates
Laplacian smoothing into the inversion.

Combinations of these cases are easily implemented (this is the reason for
generalizing to N terms in ke sum of expression (12)). In the following
synthetic and field data examples, we apply the flattening constraints described
in Case 2 above.

100

200

£
N = - -
e 0 100 200 300 400 SC-)O
X (m)

Fig. 4. 243 raypaths iraced through the velocity field of Fig. 2a. These rays link all source-receiver
pairs of a combined double-well VSP and crosswell experiment.
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SYNTHETIC EXAMPLES

The examples presented in this section demonstrate the ability of the
tomographic inversion procedure to image a smoothly varying velocity field.
Fig. 2a displays the 500 m x 500 m velocity mode] used to generate synthetic
traveltime data. Since the grid interval is h = 5 m, there are IJ = 10201 grid
peints used for the forward modeling and K = 10,000 square cells used in the
inversion.

The data acquisition geometry used for the first example simulates a
double-well VSP plus crosswell experiment. Nine surface sources, located
between two vertical boreholes, are spaced 50 m apart. Traveltimes are recorded
by 18 borehole receivers (9 per well; 50 m separation) from each source
position. In addition, the 9 downhole receivers in the right well record
traveltimes from 9 sources symmetrically placed in the left well. The complete
set of 243 raypaths linking all source-receiver pairs is illustrated in Iig. 4. Note
that these first arrival raypaths tend to avoid the low velocity zone, resulting in
a region of reduced ray coverage. Furthermore, no raypaths penetrate below 450
m depth.

Contoured velocity tomograms obtained by inverting the combined VSP
and crosswell traveltimes are displayed in Fig. 5. Both horizontal and vertical
first-difference constraints are imposed in the iterative inversions. Initial and
base slowness models are uniform, and are obtained from the slowness value
that minimizes the rms traveltime residual. In Fig. 5a, numerically exact
traveltimes are inverted. In eleven iterations, the initial rms traveltime misfit of
18.2 ms is reduced to ~ 0.5 ms, which is about 0.25 % of the rms value of the
synthetic data.

= T

500

x (m)

Fig. 5. Reconstructed velocity models (contour interval = 100 m/s) obtained by inverting combined
VSP and crosswell traveltimes. {a) Exact traveltimes. Max velocity = 2822 m/s; min velocity =
1730 m/s. (b} Noisy traveliimes. Max velocity = 2803 m/s; min velocity = 1745 m/s.

GP2 236
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Fig. 5b illustrates that the inversion method is stable when the synthetic
traveltimes are contaminated with small amounts of random noise. Random
numbers drawn from a uniform probability distribution on * 4 ms are added to
the exact times. The convergence criterion for terminating iterations is
arbitrarily selected to be 2.5 ms of rms traveltime misfit (approximately one
standard deviation of the noise). An accurate velocity reconstruction results
when the weights of the flattening constraints (u, and g in equation (14)) are
set sufficiently high.

The main features of the true velocity model are recovered by both of the
inversions depicted in Fig. 5. The location and amplitude of the dipping high
velocity anomaly are approximately correct. Also, the shallow low velocity zone
has been detected and correctly positioned, although the computed velocity value
at its center is about 90 m/s too high. This effect is associated with the reduced
raypath density in this area of the model. The principal difference between the
two reconstructions appears in the region below 400 m depth, where raypath
coverage is negligible.

100

200

300

400

I j i I
0 100 200 300 450 500

x {m)

500

Fig. 6. 81 crosswell raypaths traced through the velocity model of Fig. 2a. 9 sources are in left well
and 9 receivers are in right well.
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The next example examines the ability of the constrained inversion
algorithm to recover the interwell velocity field when only crosshole traveltimes
are available. Fig. 6 displays the 81 crosswell raypaths. The zone of reduced
ray coverage at shallow depths is much more extensive. Images obtained by
inverting error free traveltimes are illustrated in Fig. 7. Once again, both
horizontal and vertical flattening constraints are applied. In Fig. 7a, the initial
and base slowness models are uniform and equal to each other. The computed
image displays a shallow low velocity zone and a deeper, dipping high velocity
zone. However, the peak of the high velecity anomaly is shifted downdip by a
significant amount. The result in Fig. 7b is obtained from nonuniform initial and
base slowness models constructed by horizontally interpolating the borehole
slowness values. Additionally, the slownesses of the cells adjacent to the two
boreholes are constrained to be equal to the true values. In an actual field
experiment, this information may be available from borehole velocity logs.
There is some improvement in the velocity reconstruction compared with Fig.
7a. In particular, the high velocity zone at depth has moved updip towards its
true location. The rms traveltime misfits associated with both tomograms in
Fig. 7 are ~ 0.6 ms. This example illustrates the well known ambiguity
inherent in tomographic inversion when only crosshole traveltimes are used.

x {m)

Fig. 7. Reconstructed velocity models (contour interval = 100 m/s) obtained by inverting only the
crosswell traveltimes. {a) Uniform initial and base models; no borehole velocity constraints. Max
velocity = 2825 m/s; min velocity = 1790 m/s. (b) Nonuniform initial and base models; borehole
velocity constraints applied. Max velocity = 2722 m/s; min velocity = 1709 m/s.

FIELD DATA EXAMPLE

Our final example applies the tomographic inversion procedure to two
crosswell traveltime datasets recently recorded in the Midway-Sunset oiifield in
central California. The reservoir rocks of the Midway-Sunset field have
undergone years of steam drive in an effort to enhance oil production. In
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1989-90, foam was injected into the reservoir in an attempt to control steam
mobility. The changing conditions in the reservoir were monitored by crosswell
surveys conducted in July 1989 and August 1990. Paulsson et al. (1992) provide
a detailed description of these experiments, and give pertinent aspects of the
geological and geophysical environments. Moreover, their tomograms
(calculated via an ART algorithm) provide a basis for comparison with the
results presented here.

Fig. 8 displays P-wave velocity tomograms between well pair 68J-68Z in
the Midway-Sunset oilfield. The image in Fig. 8a is computed from crosswell
traveltimes acquired in July 1989, shortly after the onset of foam injection. The
velocity field in Fig. 8b is obtained by inverting traveltimes recorded 13 months
later in August 1990. The number of observed first arrival times used for the
two inversions differ due to varying recording geometries and noise conditions.

68Z 68J 68Z 684
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6.09
6.57
7.06
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9.50

1200 -

1400 -

1600 -

Fig. 8. P-wave velocity tomograms between well pair 68J-68Z in the Midway-Sunset oilfield. (a)
July 1989 survey. (b) August 1990 survey.
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There are 436 raypaths used for Fig. 8a, and 933 raypaths used in Fig. 8b.
Each tomogram consists of 8320 square pixels, 5 ft on a side. Also, the color
scale is identical to that used by Paulsson et al. (1992, Figs. 6 and 7) in order
to facilitate comparison with their results.

The iterative inversions are initiated with uniform slowness models
calculated by the same method used for the synthetic examples. Both horizontal
and vertical flattening constraints are imposed, and base slowness models are
identical to the initial models. In order to determine appropriate numerical
values for the tradeoff parameters in equation (14}, repeated inversion runs are
executed. The largest values of y, and g, that yield a final rms traveltime misfit
of ~ 1 ms are retained. In this manner, the inversions reconstruct the flattest
(i.e., minimum first derivative norm) models for the specified misfit level.
Smaller values of these weights yield slowness models that overfit the error
contaminated traveltimes, and may produce spurious structures that are merely
artifacts of the noise.

The tomograms of Fig. 8 are similar to equivalent tomograms displayed
in Figs. 6 and 7 of Paulsson et al. (1992). Evidently, the velocity structure
underwent substantial alteration in the 13 months intervening between the two
crosswell surveys. A detailed interpretation of these changes is discussed at
length by Paulsson et al. (1992).

CONCLUSION

Finite-difference traveltime computation offers an attractive alternative to
conventional raytracing for tomographic inversion purposes. The method is
sufficiently rapid and accurate, and handles all of the various wave types that
constitute first arrivals (body waves, head waves, and diffractions). Moreover,
since traveltimes are computed throughout a slowness model, very general
recording geometries are easily accommodated. The main limitation of the
technique is that it is restricted to first arriving waves. Hence, the present
formulation cannot be applied to the reflection tomography problem. However,
current efforts to generalize finite-difference computation methods to reflection
traveltimes (e.g., Podvin and Lecomte, 1991) are encouraging. The introduction
of constraint information into traveltime tomography is a responsible way to
address the nonuniqueness inherent in this nonlinear inverse problem.
Constraining information may arise from known geological or geophysical
properties of the subsurface velocity medel (i.e., from outcrops or borehole
logs). Alternately, constraints may derive from a desire to impose certain
reasonable attributes, like flatness or smoothness, on the constructed modei. Our
method of incorporating constraints into the mathematical inversion procedure
is adaptable to either viewpoint. Linear equality constraints are applied directly
to the constructed model, rather than to a model perturbation, and are satisfied

GP2 2/3-6



274 ALDRIDGE & OLDENBURG

in the least squares sense. Our examples illustrate the imposition of flattening
constraints, prescribed base models, and borehole velocities in the reconstruction
of a smoothly varying interwell velocity field. Inclusion of this information
allows the solution of an inverse problem that is otherwise strongly
underdetermined.
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