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Recent advances in time-domain electromagnetic (TEM) sensors have dramatically improved discrimination
of buried unexploded ordnance (UXO). In contrast to commercial standard mono-static sensors, the
multi-static, multi-component geometries of next generation TEM sensors provide diverse excitations of a
detected target. Inversion of observed data using the parametric TEM dipole model typically produces
well-constrained estimates that can subsequently be inputted into a discrimination algorithm. In particular,
the principal dipole polarizabilities provide information about target size and shape. Shape is represented by
two transverse polarizabilities orthogonal to a target's axis of symmetry.
Equality of transverse polarizabilities is diagnostic of an axisymmetric body of revolution and so has been
proposed as a useful feature to discriminate between axisymmetric UXO and non-axisymmetric metallic clut-
ter. Here we show that estimated transverse polarizabilities can sometimes be poorly constrained in an inver-
sion of multi-static TEM data. This motivates our development of a regularized inversion algorithm that
penalizes the deviation between transverse polarizabilities. We then develop an extension of the support
vector machine (SVM) classifier that uses all models obtained via regularized inversion to make discrimina-
tion decisions. This approach achieves the best performance of all candidate discrimination algorithms ap-
plied to a number of real data sets.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The 2003 Defense Science Board report on unexploded ordnance
(UXO) projected that a reduction in false alarm rates from 100:1 to
10:1would save $36 billion on remediation projects within the United
States (Delaney and Etter, 2003). This cost reduction was expected to
be achieved by improvements in sensor and data processing technolo-
gies. These goals havebeenmet, and sometimes exceeded, in recent dem-
onstration projects conducted by the Environmental Security Technology
Certification Program (ESTCP) (Billings et al., 2010, Prouty et al., 2011,
Shubitidze et al., 2011, Steinhurst et al., 2010). Advances in electromag-
netic (EM) sensors have been crucial to these successes: the data provid-
ed by multi-static, multi-component EM platforms are much improved
inputs into the inversion and discrimination algorithms applied to this
problem. Fig. 1 compares the geometry and time channels of the com-
mercial standard Geonics EM-61 with two multi-static EM instruments
designed for UXO discrimination. The Time-domain Electro-Magnetic
Multi-sensor Towed Array Detection System (TEMTADS, shown in
Fig. 1b) is composed of an array of 25 horizontal transmitter loops ar-
ranged in a 5×5 grid, with horizontal receivers measuring the vertical
field arranged concentrically to these transmitters (Steinhurst et al.,
2010). The transmitters are fired sequentially and the secondary field
response is recorded in all receivers simultaneously. This configuration
fax: +1 541 488 4606.
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provides a diverse data set which is better able to constrain target pa-
rameters. The MetalMapper sensor (Fig. 1c) has also greatly improved
the reliability of estimated parameters by transmitting orthogonal pri-
mary fields and measuring all components of the secondary field in
multiple tri-axial receivers (Prouty et al., 2011). Both MetalMapper
and TEMTADS systems are deployed in a static (or cued) mode:
previously-detected targets are interrogated with a stationary sensor.
A mono-static sensor such as the EM61 has to be moved to several po-
sitions to illuminate a detected target and success of this process is crit-
ically dependent on accurate geolocation (Tantum et al., 2008, Tarokh
andMiller, 2007). The single static acquisition requiredwhen deploying
TEMTADS or MetalMapper sensors thereby removes the need for accu-
rate geolocation.

In this paper we study parameter estimation with multi-static sen-
sor data. We show that while these data generally support inversion
and discrimination, in some cases parameter estimates can be poorly
constrained. This motivates regularization of the inverse problem and
here we seek models corresponding to targets with axial symmetry.
This property is diagnostic of many UXO and so provides a useful fea-
ture for classifying targets of interest. We investigate methods for
model selection and develop a technique that uses all models from reg-
ularized inversion tomake discrimination decisions.We also extendour
regularized inversion technique to multi-object scenarios to deal with
overlapping target anomalies. Finally, we apply our techniques to data
sets from ESTCP live-site demonstrations and compare discrimination
performance.

http://dx.doi.org/10.1016/j.jappgeo.2012.06.011
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Fig. 1. (a) EM-61, (b) TEMTADS, and (c) MetalMapper sensors for unexploded ordnance detection and discrimination. Top row shows sensor geometry, with solid and dashed lines
indicating receiver and transmitter coils, respectively. Bottom row shows logarithmically-spaced time channels.
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2. Parameter estimation with the dipole model

The time (or frequency) dependent dipole model is essential to
most electromagnetic data processing for UXO discrimination (Bell
et al., 2001b, Pasion and Oldenburg, 2001, Zhang et al., 2003). While
Shubitidze and collaborators have also achieved excellent discrimina-
tion results with more “physically complete” models (e.g. Shubitidze
et al., 2011), our focus in this article is on improving discrimination
with the dipole model in challenging scenarios.

The dipole model provides a simple parametric representation of
the response of a confined conductor. The rate of change of the sec-
ondary magnetic field is computed as

∂Bs

∂t r; tð Þ ¼ p tð Þ
r3

3 p̂ tð Þ⋅r̂ð Þr̂−p̂ tð Þð Þ ð1Þ

with r ¼ rr̂ the separation between target and observation location,
and p tð Þ ¼ p tð Þp̂ tð Þ a time-varying dipole moment

p tð Þ ¼ 1
μo

P tð Þ⋅Bo: ð2Þ

The induced dipole is the projection of the primary field Bo onto
the target's polarizability tensor P(t) (Bell et al., 2001b). Here the ele-
ments of the polarizability tensor (Pij(t)) represent the convolution of
the target's B-field impulse response ˜P tð Þð Þwith the transmitter wave-
form i(t) (Wait, 1982)

Pij tð Þ ¼ ∂
∂t ∫

∞

−∞
P̃ij t′−t

� �
i t′
� �

dt′: ð3Þ

The polarizability tensor is assumed to be symmetric and positive
definite and so it can be decomposed as

P tð Þ ¼ ATL tð ÞA ð4Þ

with A an orthogonal matrix which rotates the coordinate system from
geographic coordinates to a local, body centered coordinate system. The
diagonal eigenvalue matrix L(t) contains the principal polarizabilities
Li(t) (i=1,2,3),which are assumed to be independent of target orienta-
tion and location.

Features derived from the dipole model have been successfully used
to discriminate between targets of interest (TOI) andnon-hazardousme-
tallic clutter. In particular the amplitude and decay of the principal polar-
izabilities provide a simple parameter set for discrimination (Beran et al.,
2011). For a sensorwithN channels, these target features can be comput-
ed as

amplitude ¼
XN
j¼1

Ltotal tj
� �

decay tk; tj
� �

¼ Ltotal tkð Þ
Ltotal tj

� � ð5Þ

with the total polarizability Ltotal(tj) defined as the sumof the polarizabil-
ities at each time channel

Ltotal tj
� �

¼
X3
i¼1

Li tj
� �

: ð6Þ

The decay parameter is a ratio of total polarizabilities at selected
channels. For tk> tj we have decay(tk, tj)b1, so that a larger decay pa-
rameter is diagnostic of a slow decaying total polarizability.

The amplitude and decay parameters are physically meaningful
because, to first order, a confined conductor can be modeled as a simple
LR loopwhich is inductively coupled to transmitters and receivers on the
surface. The current response of this loop is a decaying exponential
which is fully described by an amplitude and time constant (West and
Macnae, 1991). In practice, many larger UXO (e.g. 105 mm projectiles,
81 mmmortars) produce large amplitude, slow decaying polarizabilities
relative to metallic debris. However, at more challenging sites with
smaller items (e.g. 37 mm projectiles, fuzes), amplitude and decay pa-
rameters alone may not be sufficient to reliably discriminate UXO from
clutter of similar size.

The TEM dipole model generalizes the simple circuit model to ac-
count for target shape. A ferrous, prolate (rod-like) targetwith rotation-
al symmetry about its principal axis will produce equal transverse
(secondary and tertiary) polarizabilities (Bell et al., 2001b). For ferrous
items, internal demagnetization is strongly affected by the shape of the
object. The result is that the strength of the induced dipoles along the
semi-minor axes is reduced, so that transverse polarizabilities are smaller
in magnitude than axial polarizabilities.

Most ordnance are composed primarily of steel and can be treated
as bodies of revolution (Bell et al., 2001a, Shubitidze et al., 2002,
Zhang et al., 2003) and so equality of transverse polarizabilities has
been proposed as a useful feature for discriminating between TOI
and irregularly-shaped clutter. However, in practice it has been diffi-
cult to reliably estimate target shape frommono-static TEM data. This
is because single loop, vertical-component transmitters and receivers
often cannot adequately interrogate the transverse response of buried
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Fig. 3. Components of the dipole response over a spherical target (same as in 2) for the
5×5 TEMTADS array. Each subplot shows the received field at all receivers excited by
the corresponding transmitter in the array. Data units for the TEMTADS result from
normalization of the received EMF by the transmitter current.
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targets. Fig. 2 illustrates this effect for a spherical target illuminated
by a mono-static Geonics EM-61 sensor (geometry and time channels
are shown in Fig. 1).

In the case of a sphere all polarizabilities are equal, and so here we
define the primary, axial polarizability as aligned along the z axis. The
corresponding induced field is maximal when the sensor is directly
over the target. However to excite the transverse (x and y) responses
of the target the sensor must be positioned with a horizontal stand-off
from the target. Assuming an approximately dipolar field radiated from
transmitter and target, the secondary field (Eq. (1)) decays as 1/r6 with
increasing sensor–target separation r. For this reason, the axial polariz-
ability response dominates the measured data in Fig. 2. Data which are
sensitive to transverse polarizabilities therefore tend to have low signal
to noise, particularly for vertically-oriented targets. This geometric effect
is exacerbated by the reduced amplitude of transverse polarizabilities for
ferrous ordnance. These factors confounded early attempts to estimate
target shape from mono-static sensors (e.g. Bell et al., 2001b).

Multi-static TEM sensors designed for UXO detection have helped
address these limitations. Fig. 3 shows the components of the dipole
response for the TEMTADS sensor over the same target as in Fig. 2.
The data received for transmitters immediately adjacent to the center
transmitter are primarily sensitive to a combination of the transverse
excitations. Inversion of these data therefore produces better con-
strained estimates of transverse polarizabilities than can be obtained
withmono-static sensor data. This is illustrated in Fig. 4, which compares
polarizabilities estimated fromEM-61,MetalMapper, and TEMTADS data
acquired over the same 37 mm projectile. Here we quantify the discrep-
ancy between transverse polarizabilities with the asymmetry parameter

ς ¼ 1
N

XN
i

L2 tið Þ−L3 tið Þð Þ=L2 tið Þ: ð7Þ

The estimated polarizabilities at each channel are sorted so that
L1≥L2≥L3, implying ςb1. An ideal axisymmetric target with equal
transverse polarizabilities will have ς=0. For the example in Fig. 4
the cued sensors produce a significantly smaller asymmetry parame-
ter than the EM-61 (paired t-tests, 95% confidence level).

We note, however, that at late times the transverse polarizabilities
estimated from TEMTADS and MetalMapper data begin to diverge
due to decreased signal to noise. This effect is exacerbated when the
cued sensors are not properly positioned directly over the target. In
Fig. 5 we show two inversion results for MetalMapper data acquired
over a 37 mm projectile. In the first data collection the target is
near the edge of the sensor and the resulting transverse polarizabil-
ities are poorly constrained. Repositioning the sensor over the target
in Fig. 5(b) significantly reduces the estimated asymmetry.
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Fig. 2. Components of the dipole response over a target positioned at r=[0, 0,−0.3]m
for the EM-61. Predicted data are a linear combination of axial and transverse re-
sponses, here for a spherical target with polarizabilities Li=1, i=1,2,3. Excitation of
transverse responses requires a horizontal standoff, resulting in a lower SNR than for
axial excitation.
While multi-static sensors can greatly improve the reliability of
estimated polarizabilities, we conclude from the preceding examples
that challenging scenarios with low SNR can still result in poorly con-
strained secondary polarizabilities that will confound an algorithm
that incorporates these parameters to make discrimination decisions.

Here we investigate techniques for explicitly constraining transverse
polarizability estimateswhen invertingmulti-static sensor data. An obvi-
ous and viable approach to this problem is to simply reparameterize the
dipole model so that secondary and tertiary polarizabilities are equal.
Practical use of this axisymmetric dipole model is motivated by the ana-
lytic response of a spheroid and by successful fits to high-fidelity test
stand data acquired over real axisymmetric targets (Pasion, 2007). Of
course, this model will not provide a good fit to data acquired over a
non-axisymmetric target with three unique polarizabilities.

A data processing approach which has been proposed to handle
this ambiguity is to fit each target using both axisymmetric and non-
axisymmetric (i.e. unequal transverse) dipole parameterizations and
then to compare the fits to the observed data (Pasion, 2007). The non-
axisymmetric parameterization has more degrees of freedom that can
be used to fit observed data and so generally provides a lower misfit
than the axisymmetric dipole parameterization. The problem is then
to determine what constitutes a significant difference in data misfit for
the two competing parameterizations. Model selection criteria can be
used to select the most parsimonious model parameterization which
can explain the data (Hastie et al., 2001).

In this work we instead apply regularization techniques to con-
strain the polarizabilities estimated from TEMTADS and MetalMapper
data sets. Constraints on model parameters are typically applied in
the form of parameter bounds, here we will impose an additional
constraint in the form of a penalty on unequal transverse polarizabil-
ities. This approach provides us with a continuum of possible models
between constrained and unconstrained models (or, equivalently, be-
tween axisymmetric and non-axisymmetric dipole parameterizations).
We investigatemethods for selecting amodel, or set ofmodels, from reg-
ularized inversion. Finally, we show applications to data sets from ESTCP
demonstrations at San Luis Obispo (SLO), CA, and Camp Butner, NC.

3. Regularized inversion

When solving parametric inverse problems, it is often sufficient to
minimize a data norm quantifying the misfit between observed and
predicted data

ϕd ¼ Wd dobs−dpred
� �2 ð8Þ

with dpred=F(m) generally a nonlinear functional of the model m,
and Wd a weighting matrix accounting for estimated errors on the
data. Assuming Gaussian errors on the observed data, minimization
of Eq. (8) yields a maximum likelihood estimate of the model parame-
ters (Menke, 1989). Additional prior information can be incorporated

image of Fig.�2
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in the inversion via parameter bounds (e.g. positivity) or by constructing
amodelwhichhas specifiedproperties. In the latter case, the optimization
problem can be solved byminimizing the norm (Oldenburg and Li, 2005)

minϕ ¼ ϕd þ βϕm: ð9Þ

where the regularization parameterβ controls the trade-off between data
and model norms. The model norm ϕm is a regularizer that ensures that
the recovered model has, for example, a minimum deviation from some
prior reference model. Aliamiri et al. (2007) employed a regularization
of this form for estimation of dipole model parameters, with the regular-
ization parameter fixed a priori. An even stronger regularization of the in-
verse problem is developed in Pasion et al. (2007): theyfix polarizabilities
at library values for each ordnance class. They then fit the observed data
for target location and orientation and use the data misfit as a metric
for ranking targets. This requires multiple inversions of each anomaly
(one for each ordnance class) and cannot be easily generalized to multi-
object scenarios.

Here we instead apply a regularizer which addresses the problem
of poorly constrained transverse polarizabilities. In the case of the di-
pole model, an appropriate model norm which penalizes differences
in secondary and tertiary polarizabilities is

ϕm ¼ L2−L3ð Þ2
¼ jjWmmjj2 ð10Þ
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Fig. 5. Top row: estimated polarizabilities for two soundings with the MetalMapper
over the same 37 mm projectile (a different 37 mm than in Fig. 4). Bottom row: esti-
mated target locations (blue circles) for these soundings, relative to the sensor. Black
squares indicate receivers and red dashed lines are transmitters.
with Wm a model weighting matrix acting as a differencing operator
on the appropriate elements of themodel vectorm. For a linear forward
modeling (dpred=Gm) with fixed β, the model estimate is obtained by
solving the system (Oldenburg and Li, 2005)

GTWT
dWdGþ βWT

mWm

� �
m ¼ GTWT

dWdd
obs

: ð11Þ

In practice, the inverse problem can be solved by minimizing Eq. (9)
over a range of β values, beginning with a large value of β and progres-
sively decreasing (or “cooling”) this parameter (Oldenburg and Li,
2005). When regularizing overdetermined problems the model has lim-
ited degrees of freedom with which to fit the data and so the β cooling
procedure will stall at a model corresponding to the unconstrained
(β=0) solution. This is in contrast to the underdetermined inverse prob-
lem,where continued decrease of the regularization parameter eventual-
ly introduces spurious model structure.

Following on the works of Shubitidze et al. (2007) and Song et al.
(2011), we use a sequential inversion approach that decouples esti-
mation of target location and dipole polarizabilities. The predicted
data can be expressed as

dpred ¼ G rð ÞmP: ð12Þ

Here the model mP is composed of the six unique elements of the
symmetric polarizability tensor P at a single time channel

mP ¼ Pxx; Pxy; Pxz; Pyy; Pyz; Pzz

h iT
: ð13Þ

The forward modeling matrix is

G rð Þ ¼

Bx
sB

x
p

Bx
sB

y
p þ By

s B
x
p

Bx
sB

z
p þ Bz

sB
x
p

By
sB

y
p

By
s B

z
p þ Bz

sB
y
p

Bz
sB

z
p

2
666666664

3
777777775

T

ð14Þ

with Bp the primary field at the target and Bs the secondary field at
the receiver, with all fields implicitly dependent upon target (r)
and sensor location. Superscripts denote the x,y,z components of
the respective fields. We then solve the regularized inverse problem
as follows:

1 Solve an inverse problem for target location r. The model is related
to the predicted data via the nonlinear functional

dpred ¼ F r½ � ¼ G rð ÞG† rð Þdobs
: ð15Þ

with G† denoting the pseudo-inverse. We estimate r by minimiza-
tion of Eq. (8) using an iterative Gauss–Newton algorithm.
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2 Solve the linear inverse problem for the unique elements of the po-
larizability tensor (mP) at all time channels using the location
obtained at the previous step.

3 Compute the eigenvalues of the polarizability tensor at each time
channel using joint diagonalization (Cardoso, 1996). This algorithm
returns a single eigenvector matrix for all channels, corresponding
to a fixed target orientation. The eigenvalues at each time channel
are then an initial estimate of principal polarizabilities. The eigen-
vectors correspond to the columns of the Euler rotation matrix A
in Eq. (4). To estimate the orientation angles we then minimize
the least squares difference (Frobenius norm) between the eigen-
vector matrix and a Euler rotation matrix parameterized by orien-
tation angles (ϕ,θ,ψ).

4 We now address the problem stated at the beginning of this section
where we solve for polarizabilities using a constrained approach. At
each time channel we solve a linear regularized inverse problem
for principal polarizabilities, at a fixed orientation. The model at
each time channel is

mL tj
� �

¼ L1 tj
� �

; L2 tj
� �

; L3 tj
� �h iT

: ð16Þ

At each time channel we obtain a set of models corresponding to
the solution of Eq. (11) over a range of βs.

We minimize Eq. (9) starting from an initial, large value of β. The
regularization parameter is initialized so that the term βϕm≫ϕd at
the initial model obtained in step 3. We then lower the regularization
parameter by a cooling factor κ (e.g. κ=0.5) and solve Eq. (11) at the
new β value. This procedure is repeated until the relative change in
the model parameters achieves some tolerance �.

We remark that the sequential inversion approach is very fast relative
to an “all-at once” algorithm that tries to estimate polarizability parame-
ters at all time channels simultaneously. Because the time channels are
inverted separately in the sequential method, the relative weighting of
time channels via estimated errors in the data weighting matrix (Wd)
is less critical. In this implementationwe assume a constant standard de-
viation for all data at each time channel, so thatWd is just a linear scaling
of the data misfit. Since each time channel is inverted separately at the
estimated source location, parallel processing can greatly reduce compu-
tation time.

4. Multi-object regularized inversion

Any practical inversion algorithm for UXO discrimination must con-
sider overlapping responses from multiple targets. Our focus in this
paper is on estimation of regularized models and their subsequent ap-
plication in identifying targets of interest, and so here we only briefly
describe our regularized multi-object inversion algorithm.

Song et al. (2011) augments the model vector with multiple di-
pole sources and simultaneously estimates locations for all sources,
followed by estimation of all polarizabilities. Applying regularized in-
version at this second step would require separate model norm terms
for each object, and careful balancing of these terms via separate regular-
ization parameters. We pursue amore straightforward route and decou-
ple the regularized inversions into a series of single object inversions, as
follows.

We first estimate locations for two dipole sources simultaneously
as in Song et al. (2011). The predicted data are then a superposition of
the data predicted by dipoles at locations ri

dpred ¼ dpred r1ð Þ þ dpred r2ð Þ: ð17Þ

Fig. 6 compares (unregularized) single and two-object inversion
results for a TEMTADS data set acquired over 37 mm projectile and
clutter items at Camp Butner. Note that the 115 raw TEMTADS chan-
nels have been averaged in windows of length 5 to speed processing.
In this example the two-object inversion recovers a set of polarizabil-
ities that are in much better agreement with 37 mm library values
than the single object result.

Despite this improvement, we note that the estimated secondary
polarizabilities for this target are poorly constrained at late times; sub-
sequent regularized inversion at the corresponding source locations can
address this ill-conditioning. We carry out separate regularized inver-
sions at these locations, with each regularized inversion fitting the re-
sidual data that cannot be predicted by the other dipole. That is, the
observed data sets for estimation of target polarizabilities for the two
objects at fixed locations ri are

dobs r1ð Þ ¼ dobs−dpred r2ð Þ
dobs
2 r2ð Þ ¼ dobs−dpred r1ð Þ: ð18Þ

This is similar to the “iterative residual fit” (IRF) technique inves-
tigated in Bell (2006). This method alternates between single object
inversions, decoupled as in Eq. (18). They estimate a target's model
parameters (location and polarizabilities) with the other target's pa-
rameters held constant. The alternating inversions terminate when
both model vectors stop changing over successive iterations. Bell
(2006) found that the IRF method was less reliable than a “double
happiness” approach that estimated all target parameters simultaneously.
Our implementation is a hybrid of the sequentialmulti-object inversion in
Song et al. (2011) and the IRF: we estimate target locations simulta-
neously, then decouple estimation of polarizabilities using Eq. (18).
Our discrimination results, presented in Section 7, indicate that this is
a viable approach.

5. Model selection

A final model that balances the trade-off between model and data
norms can be selected based upon achieving some target data misfit
(discrepancy principle). Alternatively, the L-curve criterion identifies a
model corresponding to the point of maximum positive curvature on
a logarithmic plot of data misfit versus model norm (Hansen, 1997).
This method is less sensitive to estimates of measurement errors and
Farquharson and Oldenburg (2004) found it to be quite robust when
inverting real electromagnetic data sets.

Fig. 7 shows a regularized inversion result for channel 1 of Meta-
lMapper data acquired over the 37 mm projectile presented in Fig. 5(a)
(recall that the sensor is poorly positioned over the target for this
sounding). As the regularization parameter β is decreased, the objective
function ϕ in Eq. (9) is dominated by the data misfit term and the
secondary and tertiary polarizabilities diverge to their unregularized
values, with the primary polarizability unaffected by the regularization.
Applying the standard L-curve criterion in Fig. 5(a) yields a model with
unequal transverse polarizabilities, similar to the unregularized model.
In order to bias ourmodel selection towardmore axisymmetric objects,
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we instead select the point of maximum negative curvature on the
L-curve, as shown in Fig. 7.

Applying this modified criterion across all time channels yields a
significant reduction in estimated asymmetry for this target (Fig. 8),
relative to an unregularized inversion. Also shown in Fig. 8 is a compar-
ison of unregularized and regularized models for a non-axisymmetric
clutter item. Regularization reduces the estimated asymmetry, but at
early time channels the secondary and tertiary polarizabilities are not
equal, as expected for this target. At late times, however, the SNR is re-
duced and the data cannot constrain target shape. In this case the regu-
larized inversion defaults to axisymmetric models. We also remark that
because regularization is applied to each channel separately, there is still
some jitter in the estimated polarizabilities, especially at late times. This
can be addressed by adding an additional term to themodel norm to en-
force smoothness between channels. However, a computational advan-
tage of our inversion algorithm is parallel processing of time channels
and a smoothness term will preclude this strategy.

6. Using regularized models in discrimination

As an alternative to conventional model selection with the L-curve
criterion, we also consider discrimination using all models obtained
in regularized inversion. To account for the relative quality of the fit
10
−1

10
0

10
1

10
−2

10
0

10
2

37 mm, Unregularized: ς=0.48 

P
ol

ar
iz

ab
ili

tie
s 

(a
rb

.)

10
−1

10
0

10
1

10
−2

10
0

10
2

37 mm, Regularized:ς=0.02 

Time (ms)

P
ol

ar
iz

ab
ili

tie
s 

(a
rb

.)

10
−1

10
0

10
1

10
−2

10
0

10
2

Clutter, Unregularized: ς=0.68 

10
−1

10
0

10
1

10
−2

10
0

10
2

Clutter, Regularized: ς=0.32 

Time (ms)

L1

L2

L3

Fig. 8. Comparison of regularized and unregularized polarizability models for an axi-
symmetric 37 mm projectile and a non-axisymmetric clutter item. Polarizabilities are
estimated from MetalMapper data sets acquired at Camp Butner. Regularized models
are selected using L-curve criterion.
to the data, for the jth model at channel ti (here denoted mj(ti)), we
compute the likelihood

p mj tið Þ
� �

¼ exp −
ϕd mj tið Þ

� �
−ϕmin

d tið Þ
ϕmin
d tið Þ

0
@

1
A ð19Þ

with ϕd
min(ti) the minimum data misfit obtained over all models at

channel ti, i.e.

ϕmin
d tið Þ ¼ min

k
ϕd mk tið Þð Þ: ð20Þ

The model likelihood is a monotonic transformation of the data
misfit ϕd to a probability.

We remark that since the argument in Eq. (19) is small, the model
likelihood is approximately

p mj tið Þ
� �

≈ 1−
ϕd mj tið Þ

� �
−ϕmin

d tið Þ
ϕmin
d tið Þ

¼ 1−relative misfit

ð21Þ

with relative misfit used to compare models in Lhomme et al. (2008).
This form of model likelihood is somewhat arbitrary; rigorous calcu-
lation of model likelihoods (or posterior probabilities) requires a full
uncertainty appraisal. However, we will show in Section 7 that incor-
porating the relative quality of the data fit via the model likelihood is
beneficial to discrimination.

Wenowconsider discriminationwith a nonlinear support vectorma-
chine (SVM) using our regularized inversion models and corresponding
likelihoods (seeHastie et al., 2001 or Burges, 1998 for a full description of
the SVM). The decision function for the SVM is

ytest ¼ wTK xtrain;xtest
� �

þ b0 ð22Þ

with K a kernelmatrix, w a (sparse)weight vector, and b0 a constant bias
term. For a radial basis function

Kij ¼ exp −ν xtrain
i −xtest

j

��� ���2
� �

ð23Þ

with xitrain and xjtest the ith training and jth test vectors, respectively. The
parameterν controls thewidth of the kernels. For discriminationwith po-
larizabilities, the elements of these feature vectors are log-transformed
primary, secondary, and tertiary polarizabilities at a subset of the available
time channels, i.e.

xtest
j ¼ F m½ �: ð24Þ

Expanding the norm in Eq. (23) in terms of the elements of train-
ing and test vectors, the kernel matrix can be expressed as

Kij ¼ ∏
N

k¼1
exp −ν xtrainik −xtestjk

� �2
� �

: ð25Þ

When consideringmultiplemodels from a regularized inversion, the
kth element of the jth test vector hasmultiple values, denoted xjkl

test, with
corresponding likelihoods p(xjkltest) from Eq. (19). For discrimination, we
select the element for which the term

κ ijkl ¼ exp −ν xtrainik −xtestjkl

� �2
� �

p xtestjkl

� �� �
ð26Þ
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is maximized. The elements of the kernel matrix are then

Kij ¼ ∏
N

k¼1
max

l
κ ijkl ¼ ∏

N

k¼1
max

l
exp −ν xtrainik −xtestjkl

� �2
� �

p xtestjkl

� �� �
: ð27Þ

The preceding computations compare all possible values of a test
vector with a given training vector and retain the test vector elements
which are “closest” (in the sense of the radial basis function) to that
training vector. The weighting by model likelihoods acts to penalize
vectors (models) which may agree with a training vector but which do
not fit the observed data.

7. Results

We processed cued MetalMapper and TEMTADS data sets acquired
during ESTCP demonstrations at San Luis Obispo (SLO) and Camp
Butner. All targets in each data set were inverted with unregularized
and regularized algorithms and with single and two-object models.
We then classified each target on the basis of the model from single or
two-object inversions which are predicted as most likely to be a UXO
by a given discrimination algorithm.

At SLO, the discrimination task was to identify seeded targets rang-
ing in size from 4.2 in. mortars down to 60 mm mortars (Fig. 9a). For
this site training data were provided by ESTCP and comprised a random
Fig. 9. Targets of interest for ESTCP demonstrations at SLO and Camp Butner.
sample of 174 detected targets. Targets of interest at Camp Butner
ranged from large 105 mm projectiles down to 37 mm projectiles
(Fig. 9b). Beyond test pit measurements of individual items from each
class of TOI, no training data were initially available for classifier train-
ing. For each data set at Camp Butner, we requested ground truth for a
small number (b50) of targets in order to characterize the distributions
of TOI and non-TOI polarizabilities. A description of the procedure used
to select training data is given in Pasion et al. (2011). Note that for
(labeled) training feature vectors we use only the minimum misfit
models for classifier training and prediction with Eq. (27).

In Fig. 10 we compare the performance of a number of different
algorithms applied to the SLO MetalMapper data:

• Primary polarizabilities (pols): SVM using estimated primary polar-
izabilities from unregularized inversions.

• All pols (unregularized): SVM using all polarizabilities (primary,
secondary and tertiary) from unregularized inversions.

• All pols (L-curve): SVM using all polarizabilities from regularized in-
versions. A single model is selected using the modified L-curve crite-
rion described in Section 5.

• All pols (unweighted): SVM using all polarizabilities from regularized
inversions. All models are inputted into discrimination, regardless of
fit quality.

• All pols (weighted): SVM using all polarizabilities from regularized
inversions. All models are inputted into discrimination, with model
likelihoods used to weight the SVM decision function (Eq. (27)).

Here discrimination with only primary polarizabilities is the base-
line algorithm for processing MetalMapper data: no shape information
is included in this algorithm. Also shown for comparison in Fig. 10 is the
ROC derived from EM-61 data acquired over the same targets. For this
sensor our discrimination algorithm is a threshold on the decay param-
eter (Eq. (5)). This represents the optimal classification performance
attained for the EM-61 data at this site (Nelson et al., 2010).

Discrimination with the MetalMapper primary polarizabilities pro-
vides a dramatic improvement in discrimination performance relative to
the EM-61. Late-time information (>5 ms) supplied by theMetalMapper
(and TEMTADS) is particularly useful for discriminating between small
ordnance (e.g. 60 mm) and clutter of similar size.

The shape information encoded in the transverse polarizabilities can
provide an improvement in discrimination performance over the base-
line approach. However, these parameters are sensitive to noise and
without regularization the last target of interest occurs relatively late
in the dig list (Fig. 10). Selecting a single regularized model using the
L-curve criterion reduces the false alarm rate, but this method also has
difficulty finding the last few targets of interest in the dig list. For low
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Fig. 10. Receiver operating characteristics (ROCs) for discrimination algorithms applied
to SLO MetalMapper data, see text for an explanation of each algorithm. ROC derived
from EM-61 data acquired over the same targets is also shown. Markers indicate the
point on each ROC at which all targets of interest are found.
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SNR targets the Tikhonov curve has a small curvature and it becomes
difficult to accurately identify the L-curve criterion. The weighted SVM
achieves the best discrimination performance for algorithms applied
to the SLOMetalMapper data. The benefit of weighting by model likeli-
hoods is illustrated in Fig. 10 by the reduction in false alarm rate relative
to using unweighted models.

Fig. 11 summarizes the performance of nonlinear support vector
machines using regularized and unregularized test polarizabilities
on both SLO and Camp Butner data sets. For clarity we show a subset
of algorithms presented in the previous figure, the results in Fig. 10 are
representative of all test cases. For the data sets considered in Fig. 11, reg-
ularization consistently decreases the false alarm rate relative to using all
(primary, secondary and tertiary) unregularized polarizabilities. For SLO
and Camp Butner MetalMapper data sets the regularized method
achieves the maximal area under the ROC (AUC) and a false alarm rate
(FAR) comparable to discrimination using only primary polarizabilities.
For the TEMTADS data sets, discrimination with regularized inversion
achieves a FAR comparable to discrimination with primary polarizabil-
ities. The performance for the Camp Butner TEMTADS data is relatively
insensitive to the discriminationmethod, with the regularized algorithm
producing a slightly lower FAR than the other approach. These data
were acquired with careful in-field quality control so that sensor po-
sitioning and data SNR consistently support reliable estimation of di-
pole model parameters and no additional benefit is derived frommodel
regularization.

8. Conclusions

We have applied a regularized inversion algorithm that penalizes
the deviation between transverse polarizabilities in the TEM dipole
model. Rather than selecting a singlemodel from this inversion process,
we input all models into a support vector machine classifier. This corre-
sponds to test feature vectors with multiple values for each element.
We compare the elements of each test vector with the training data
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Fig. 11. Receiver operating characteristics (ROCs) for support vector machines applied to cu
acquired over the same targets are also shown. Markers indicate the point on each ROC at
and retain the model value which best corresponds to a given training
vector. We also penalize the match of test and training vectors by the
likelihood that the model fits the observed data. In applications to real
data sets this technique outperforms discrimination using models se-
lected from regularized inversion using an L-curve criterion.

We find that the regularized method with model weighting can im-
prove initial performance on high SNR targets with well-constrained
transverse polarizabilities. The method also prevents the occurrence
of outlying TOI that arise when we use unregularized parameters to
rank all targets. This produces a receiver operating characteristic with
a large area under the curve and a final false alarm rate that is compara-
ble to that obtainedwhenwe rely on primary polarizabilities throughout
the dig list. While we have focused on support vector machines for clas-
sification, the model weighting approach developed here can be readily
extended to any kernel based classifier, e.g. the relevance vectormachine
(Tipping, 2001).

A viable alternative to the approach presented here is to begin rank-
ing well-constrainedmodels using all polarizabilities, and then to switch
to primary polarizabilities for ranking of lower SNR targets. This can pro-
duce similar results to the algorithms developed here, but requires judg-
ment from an analyst to decide when to switch between feature sets. In
contrast, discrimination with weighted models from regularized inver-
sion introduces no additional tuning parameters into the discrimination
process.
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