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ABSTRACT

We invert time-domain electromagnetic data for the purpose of discriminating between

buried unexploded ordnance (UXO) and non-hazardous metallic clutter. The observed

secondary magnetic field radiated by a conductor is forward modeled as a linear combination

of decaying, orthogonal dipoles. We show via a perturbation analysis that errors in the

measurement of sensor position propagate to non-normal errors on the observed data. A least

squares (L2) inversion assumes normal errors on the data, so non-normal errors have the

potential to bias dipole parameter estimates. In contrast, robust norms are designed to

downweight the effect of outlying (noisy) data and so can provide useful parameter estimates
when there is a non-normal component to the noise.

When positional errors are modeled as independent Gaussian perturbations, we find that

weighted least squares and robust inversions have comparable performance. Both inversion

techniques estimate data uncertainties from observed data, and this has the effect of making the

least squares inversion robust to outliers. However, when simulated errors are correlated, robust

inversion with a bisquare norm provides a marked improvement over L2 inversion. Application

of robust inversion to real data sets from Camp Sibert, Alabama produced an incremental

improvement to the initial L2 inversion, identifying outlying ordnance items and improving
discrimination performance.

Introduction

Estimating model parameters from observed

geophysical data is a crucial step in discriminating

between hazardous unexploded ordnance (UXO) and

benign clutter items. Inversion involves minimizing

some norm of the discrepancies between observed

(dobs) and predicted (dpred) data. The parameters of the

best-fitting model can then be used to infer a target’s

intrinsic properties (size, shape, material composition,

etc.). The least squares (L2) norm is most commonly

chosen as a misfit function

w~ Wd dobs{dpred
� ��� ��2 ð1Þ

with Wd a weighting matrix. When the weightings are

selected to be the inverse standard deviations of the data

(Wii~1=si), then minimization of the L2 norm is

equivalent to maximizing the likelihood function of

the data (Menke, 1989). This assumes that

d obs
i ~d

pred
i zei, ð2Þ

the noise on the data is independent and Gaussian

distributed ei*N 0,sið Þð Þ. While the central limit theo-

rem can be employed to justify the assumption of

Gaussian noise, it is often difficult in practice to

characterize the uncertainties on the data.

Of particular concern when inverting time-domain

electromagnetic (TEM) data for UXO discrimination is

the effect of sensor positional error on the uncertainty in

the data. Bell (2005) showed that reliable parameter

estimation and discrimination from TEM data requires a

relative positional accuracy on the order of 2 cm. This

accuracy can be nominally achieved with laser position-

ing systems, or by deploying sensors in a cued-interroga-

tion mode where measurements are made on a template.

For data that do not meet these requirements, algorithms

have been developed to account for positional error in the

inversion process. For example, Tarokh and Miller

(2007) impose box constraints on positional errors and

then estimate model parameters with a min-max ap-

proach: they maximize the misfit function with respect to

positional errors, and then minimize this same function
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with respect to the model parameters. They show that this

former maximization can be determined by evaluating

the misfit function at the extrema (corners) of the

positional box constraints. Tantum et al. (2008) adopt a

Bayesian approach, treating positional errors as nuisance

parameters and marginalizing these parameters from the

posterior distribution of the model parameters. Both

these approaches provide improvements over conven-

tional least squares minimization, though some addition-

al computational cost is incurred, especially by the

Bayesian approach, which requires Monte Carlo integra-

tion of the posterior distribution.

In this study we further examine the role of

positional error on inversion of TEM data. We first

show that the distributions of data residuals in the

presence of positional error do not follow a Gaussian

distribution. This motivates consideration of robust

norms which are designed to provide reliable parameter

estimates when a proportion of the data is contaminated

with non-Gaussian noise. We carry out simulations to

understand improvements in parameter estimation

afforded by robust estimation in the presence of both

uncorrelated and correlated noise. Finally we apply

robust inversion to real datasets acquired in detection

and cued-interrogation surveys.

Forward Modeling

We use the dipole model (Bell, 2005; Pasion, 2007)

to predict observed TEM data and to investigate the

effect of positional error on the data and the model

estimated from those data. The secondary magnetic field

is computed as:

Bs r,tð Þ~ m tð Þ
r3

3 m̂m tð Þ:̂rrð Þr̂r{m̂m tð Þð Þ, ð3Þ

with r 5 rr̂ the separation between target and observation

location, and m(t) 5 m(t)m̂(t) a time-varying dipole

moment

m tð Þ~ 1

mo

M tð ÞBo: ð4Þ

The induced dipole is the projection of the primary field

Bo onto the target’s polarizability tensor M(t). The

primary field radiated by a finite transmitter loop can be

computed with the Biot-Savart law and is approximately

dipolar in the far-field. In the analysis of positional errors

presented in the next section we assume, for simplicity, a

dipolar primary field, in which case the above expressions

indicate that the observed data will have a 1
�

r6 de-

pendence. However, for forward modeling and inversion

of sensor data we always use the Biot-Savart law to

accurately compute the primary field.

The polarizability tensor is assumed to be symmet-

ric and positive definite and so can be decomposed as:

M tð Þ~ATP tð ÞA ð5Þ

with A an orthogonal matrix which rotates the coordi-

nate system from geographic coordinates to a local, body

centered coordinate system and

P tð Þ~
P1 tð Þ 0 0

0 P2 tð Þ 0

0 0 P3 tð Þ

0
B@

1
CA ð6Þ

with the eigenvalues ordered by convention so that P1(t)

$ P2(t) $ P3(t). The eigenvalues decay independently in

time and can be parameterized according to:

Pi tð Þ~kit
{b exp {

t

ci

� �
, i~1,2,3: � � � ð7Þ

The parameters ki,bi, and ci are then related to the

intrinsic properties of the target (Pasion, 2007). Another

option is to parameterize the model at each time channel

directly in terms of the instantaneous polarizability

amplitudes Pi(t), with no functional dependence between

polarizabilities at different times.

Decomposing the polarizability tensor with Eq. 5

parameterizes the model in an orthogonal coordinate system

which is assumed to correspond to axial and transverse

coordinates of a target. However, this parameterization

introduces additional nonlinearity into the forward model:

the rotation matrix A is a nonlinear function of target

orientation. Parameterizing the polarizability decay with an

expression such as Eq. 7 also produces a nonlinear

dependence between data and model. A final source of

nonlinearity in the forward model is the 1
�

r6 dependence

arising from the dipolar primary and secondary fields. All of

these nonlinearities complicate the corresponding inverse

problem. Iterative algorithms may converge to local minima

of the chosen objective function and thereby produce model

estimates that are far from the true parameters.

One way to address these complications is to

repeatedly solve a related linear problem. If the target

location is known, then the forward model for the data

at a single time channel is linear in terms of the elements

of M(t), the non-diagonalized polarizability tensor.

Solving this linear problem over a range of proposed

target locations provides a preliminary search of model

space and can help identify local minima of the misfit

and starting models for subsequent nonlinear inversion.

Positional Errors

In this section we provide an analysis of the

distribution of the data when the received signal follows
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a 1
�

r6 decay. We show that the distribution of data

residuals about the true datum has positive skew and so

we might expect to see large positive outliers and non-

normal distributions of residuals.

Consider a datum

d~f rð Þ~ 1

r6
ð8Þ

with r the position vector between sensor and target, and

r its norm. Assume that positional error is a normally

distributed random variable Dr 5 N(0,S), with S the

covariance matrix. For simplicity, assume independent

positional errors with identical variance (s2), so that

S~s2I. Addition of positional error is approximated by

a Taylor series:

f rzDrð Þ~f rð ÞzJDrz
1

2
Drð ÞTHDr ð9Þ

The distribution of a datum about its true value is then

given by p(Dd) 5 p(f(r + Dr) 2 f(r)). We can characterize

this distribution by its moments. The first three

moments are, to leading order,

E Ddð Þ~ 1

2

X3

i~1

q2f

qx2
i

s 2
i !

s2

r8
ð10Þ

E Ddð Þ2
� �

~
X3

i~1

qf

qxi

� �2

s2
i !

s2

r14
ð11Þ

E Ddð Þ3
� �

~3
X3

i~1

qf

qxi

� �2 q2f

qx 2
i

s 4
i

z3
X3

i~1

X
j=i

qf

qxi

qf

qxj

q2f

qxiqxj

s 4
i !

s4

r22
:

ð12Þ

Here xi is the ith basis vector in the chosen coordinate

system. Now for f(r) given by Eq. 8, the third moment is

strictly positive. This implies that the distribution of

residuals has positive skew, i.e., there are larger

magnitude positive outliers than negative outliers. This

is in contrast to the generating distribution of positional
errors, which has zero skew.

Figure 1 shows the agreement of the moments of
the distribution of residuals computed by simulation

and using the above expressions. It is important to note

that the distribution of residuals at a given location is

determined by the dimensionless ratio of r/s. There is

some disagreement between simulations and the pre-

dicted second and third moments for small r/s, likely

because of contributions of higher order terms. We see

that the data residuals have nonzero mean, with the
mean proportional to the variance of the positional

error (s2) and inversely proportional to target sensor

separation. Similarly, the variance and skew of the

residuals decreases nonlinearly as we increase r or

decrease s. This result suggests that the closer the sensor

is to a target, or the larger the positional error, then the

larger the variance and the more likely we are to

encounter outlying data.

In Fig. 2 we show the distributions of residuals
generated by simulation for a few cases, together with

maximum likelihood estimates of generalized extreme

value (GEV) distributions (Gumbel, 1958). There is a

good correspondence between the empirical and fitted

distributions, however any distribution that can have

nonzero skew will likely provide an adequate fit to the

data residuals. We see that there is significant skew in

the data residual distribution for r/s 5 30, but the
distribution is effectively normal for r/s 5 100. The

former case can be interpreted as the distribution of

residuals we might expect for a target 30 cm directly

Figure 1. Dependence of the first three normalized moments of the data residuals on the ratio of target-sensor separation

(r) and positional standard deviation (s). Moments are normalized by the true datum (d). Points indicate Monte Carlo

simulations, solid lines are predictions for moments given by Eqs. 10 to 12.
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below the sensor, with a 1-cm standard deviation on

positional error.

Noise in observed data is not limited to positional

error. Other sources such as orientation error, cultural

noise, and instrument noise will also contribute addi-

tively to the observed data. While many of these noise

sources are likely non-normally distributed as well, their

superposition will tend towards a normal distribution.

However, individual noise sources may dominate a

particular datum and thus cause large deviations. For

example, if the sensor quickly traverses uneven topog-

raphy that cannot be adequately sampled by a

positioning system, then these data will have relatively

large deviations from their true values and may have

undue influence on inversion with a least squares norm.

Furthermore, if errors are correlated, then the central

limit theorem does not apply and a Gaussian error

distribution will not be a valid assumption. Finally,

accounting for non-dipolar effects in the near field of a

transmitter loop yields a secondary field response that

decays slower than the 1
�

r6 dependence assumed in the

preceding analysis (see Nabighian (1979) for a compar-

ison of fields radiated by a dipole and by an arbitrary

loop source). The skew of the distribution of residuals in

Eq. 12 is therefore increased relative to a dipolar

primary when the target is in the near field (i.e., a

distance less than the characteristic dimension of the

transmitter). In the following section we therefore

investigate inversion with robust norms.

Robust Norms

Robust inversion algorithms in the geophysical

and statistical literature modify the misfit function so

that outlying data have down-weighted contributions to

the total misfit. In the context of geophysical inversion,

Farquharson and Oldenburg (1998) have demonstrated

the use of various robust norms for measuring both data

misfit and model norm. Here we follow their description

of an iterative approach to minimizing these norms for

linear and nonlinear inverse problems. Consider the

norm

w~r xð Þ ð13Þ

with

x~Wd dobs{dprod
� �

ð14Þ

the weighted discrepancy between observed and predict-

ed data, and r(x) defining some norm on this vector

(e.g., r xð Þ~xTx for the L2 norm). For a linear problem,

we can write dpred 5 Gm, with G the forward modeling

matrix mapping from model to data. Now to minimize w

with respect to the model vector m we have:

qr
qm

~
qr
qx

qx

qm

~BTRx

ð15Þ

with

R~diag
dr

dx

�
x

� �
ð16Þ

and

Bij~
qxi

qmj

: ð17Þ

For a linear forward problem then:

dw

dm
~BTRx~GTWdRWd dobs{Gm

� �
: ð18Þ

Setting the above expression equal to zero and solving

for m yields an expression identical to that in a standard

least squares problem, except for the presence of R.

This matrix depends upon x the weighted residual, and

so is a function of the model m. Hence, minimization of

an arbitrary norm becomes a nonlinear problem even

when the forward problem is linear. This nonlinearity

Figure 2. Distributions of relative residuals (Dd)/d for increasing r/s.
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can be circumvented with the ‘‘iteratively reweighted

least squares’’ (IRLS) algorithm, which iteratively

updates the model with the following procedure:

1. Set Rii~1 and solve for m with Eq. 18.

2. Update the elements of R (Eq. 16) using the current

estimate of m.

3. Recompute m and iterate from step 2 until conver-

gence.

For a nonlinear forward problem dpred 5 F(m), we

can use the linearization

F mzdmð Þ&F mð ÞzJ dm ð19Þ

to derive an expression for the model perturbation dm at

each iteration, with the sensitivity matrix J taking the

place of the forward modeling operator G in Eq. 18.

IRLS provides a general procedure for minimizing a

norm, Table 1 summarizes a number of norms that

appear in the literature.

Figure 3 compares these norms as a function of

x and also shows the resulting weightings Rii. The

bisquare norm is unique amongst the norms considered

here in that it has the capability to completely disregard

outlying data (Rii~0 for xij jwk). However, some care

must be taken in initializing IRLS for the bisquare

norm, since the algorithm is not guaranteed to converge

for this norm (Marrona et al., 2006). This is evident in

Fig. 3 which shows that if the starting model generates

predicted data that is far from the observed data, then

the bisquare misfit function has no curvature and

cannot converge to the global minimum of the misfit.

We find that initializing IRLS with the least squares

solution works well in this application.

A practical question when applying robust norms

is specification of the parameters of the norm (e.g.,

parameter k in Table 1). In overdetermined inversion,

norm parameters are usually set based upon consider-

ation of the variance of the model estimate when the

data are normally distributed. When solving a linear

inverse problem, the model covariance at the IRLS

solution is

cov mð Þ~ GTWT
dRWdG

� �{1
: ð20Þ

Referring to Fig. 3, we see that the weightings R for

robust norms are always less than or equal to the

weightings for the L2 norm, for which R is the identity.

This implies that the model variance will always be

greater when carrying out robust versus L2 estimation if

the data are normally distributed. The ratio of L2

estimator variance to robust estimator variance is called

estimator efficiency. Recommended values of norm

parameters are then set to achieve 95% efficiency

(Marrona et al., 2006).

Table 1. Example norms used for robust inversion.

Norm r(x)

Huber x2, |x| # k

2k|x|-k2, |x| . k

Eckblom (x2 + k2)p/2

Bisquare (Tukey) k2/6[1-(1-(x/k)2]3, |x| # k

k2/6, |x| . k

Figure 3. Left: comparison of norms as a function of x, the weighted discrepancy between observed and predicted data.

Right: weightings (Rii) applied to data for IRLS minimization of robust norms. For all norms k = 1, and P = 1 for the

Eckblom p norm.
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Simulations

To investigate the effect of robust norms on

parameter estimation from EM data, we first consider

solution of the inverse problem by repeatedly solving the

linear problem for the elements of the non-diagonalized

polarizability tensor over a range of target locations. We

simulate data sets for a monostatic TEM sensor over

two targets, in both horizontal and vertical orientations,

with polarizabilities of comparable magnitude. One

target is axisymmetric and is approximately the size of

a mortar baseplate from the Camp Sibert, Alabama

ESTCP demonstration study (see Fig. 9). For an

axisymmetric target, we expect secondary and tertiary

polarizabilities to be equal (P2(t) 5 P3(t)). The second

target is slightly smaller and non-axisymmetric and is

representative of clutter encountered at the same site. In

this example, we simulate positional errors as indepen-

dent Gaussian perturbations to the sensor locations with

a standard deviation of 5 cm. We select a relatively large

positional error here to investigate the performance of

various norms when positional accuracy does not meet

the data quality requirements in Bell (2005). Back-

ground noise is simulated as 1 percent plus a 5 mV floor

Gaussian noise. Stations are spaced uniformly at 20 cm

between lines and 20 cm along lines, and only data that

are twice the noise floor are used in each inversion. We

choose a relatively sparse along line sampling in this case

to allow comparison with the results for independent

positional error in Tarokh and Miller (2007).

Figure 4 shows an example realization of data

over a single target, as well as fits predicted by each

norm. As expected from the preceding analysis of

positional errors, large positive outliers correspond to

large magnitude data close to the target. Figure 5 shows

the results of these simulations for 50 realizations of

positional and background noise, with each point

representing the minimum misfit model identified in

the scan of target positions. We present the least squares

and bisquare norms only, other robust norms in Table 2

had comparable performance to the bisquare norm. We

see that there is no significant improvement in our

ability to discriminate between targets provided by the

robust norm relative to conventional least squares when

errors are independent.

The difference in the distributions of polarizabil-

ities for horizontal versus vertical targets in Fig. 5 is a

result of the positive correlation between polarizability

strength and target depth. When a target is oriented

horizontally, the data are more sensitive to the

transverse (secondary and tertiary) polarizabilities. The

difficulty in constraining target depth is therefore

manifested as a positive correlation between depth and

transverse polarizabilities for horizontal targets. For a

vertical target, the data are more sensitive to the

primary, axial polarizability, so that the correlation

between target depth and transverse polarizabilities is

reduced. We also note that the clustering of parameter

estimates in Fig. 5 is a function of scanning over a

discrete set of target depths; scanning over a finer range

of target locations will produce more continuous

parameter distributions.

These results seem inconsistent with previous

research in Tarokh and Miller (2007), which found that

a robust minimax inversion technique provides marked

improvement of conventional least squares for indepen-

dent positional error. We note that in Tarokh and Miller

(2007) the authors did not weight their L2 inversion with

Figure 4. Fits (dashed line) to synthetic data (dots) for a single realization of noise. True data are shown as a gray

solid line.
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an estimated standard deviation. In contrast, here we

estimate a standard deviation for each datum as a

percentage of the observed datum (5% in this case) plus

a floor. This is especially crucial for inversion of TEM

data, where the exponential decay of data requires a

weighting, which ensures that large amplitude early time

data do not dominate the misfit. Hence, even when

minimizing the L2 norm we essentially carry out a single

iteration of IRLS, so that we expect the weighted L2 to

be robust to outliers, which might have a significant

impact if no reweighting is employed. To illustrate this

effect, we compute the sensitivity curves of the

unweighted L2, weighted L2, and bisquare estimators

for the simple problem of estimating the mean of a
random data set (x1, x2, . . . xN) contaminated by a

single outlying datum xo. The sensitivity curve shows the

bias in the estimated parameter

bias m̂ð Þ~m̂ x1, x2, . . . xN, xoð Þ{m̂ x1, x2, . . . xNð Þ ð21Þ

as a function of the location of the outlying datum

(Marrona et al., 2006). Figure 6 shows sensitivity curves

estimated from 100 realizations of Gaussian data, with

N 5 100 data in each realization. We see that while the

bias in the L2 estimator increases linearly with outlier
location, the weighted L2 estimate is able to control the

bias by downweighting outliers. As expected, the

Figure 5. Effect of independent positional error upon L2 and bisquare secondary polarizability estimates (P2, P3) for two
targets (dots and crosses). Dots are parameter estimates for an axisymmetric target with true transverse polarizabilities P2

= 10, P3 = 10, and crosses are parameter estimates for non-axisymmetric target with P2 = 10, P3 = 5. True target

parameters are shown as open circles. Top row is for targets with primary polarizability oriented horizontally; bottom row

is for targets with primary polarizability oriented vertically.
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bisquare estimator ignores large outliers so that there is

zero bias in the estimate when xo is far from m.

In the above simulations, we considered positional

errors to be independent. In practice, this assumption

may not necessarily hold. For example, transient noise

sources may cause neighboring data to deviate system-

atically from their actual position, so that positional

error must be treated as correlated. To understand the

effect of correlated noise on parameter estimation, we

repeat the above simulations with correlated noise

added as follows:

1. Background Gaussian noise is added to the true data

for each target.

2. Along each line, data exceeding the noise floor are

identified.

3. A positive shift is then added to a number, ne of

adjacent points exceeding the noise threshold. This

simulates a correlated error, possibly caused by

correlated positional error, though in this case the

shift is generated deterministically as a percentage of

the largest perturbed datum, rather than as a random

perturbation on position. An additional random

Gaussian error is added to each shifted datum, with

standard deviation defined as 5% of the shift (we do

not expect all points to be shifted by the same

amount in the presence of a correlated error).

4. For subsequent realizations, correlated errors are

then added to all sets of adjacent ne points along all

lines (the larger ne, the fewer perturbations along

each line).

Given a noise realization computed in this manner,

we then re-estimate the standard deviation of each

datum as a percentage of the noisy datum, as discussed

above. These standard deviations then define the

elements of Wd, the data weighting matrix for inversions

carried out with L2 and robust norms. These simula-

tions are motivated by the observation that the

robustness of an estimator can be measured as a

function of the proportion of data e that is contami-

nated by non-Gaussian noise (Marrona et al., 2006).

Figure 7 shows the resulting distributions of target

parameters when ne is 5 and 10. These correspond to

correlated error applied to 2% and 4% of the data used

in each inversion, respectively. The two cases for ne are

not shown separately here, but increasing the proportion

of data contaminated with correlated noise increases the

spread in L2 estimates, while robust norms are able to

maintain a relatively constant performance. The bis-

quare norm provides an appreciable improvement over

the L2 norm in terms of overlap between parameters for

the targets considered, and so we might expect an

improvement in parameter estimation and discrimina-

tion when inverting real data contaminated with

Table 2. Comparison of bootstrapped performance
metrics for robust vs. L2 inversion applied to Camp

Sibert TEM datasets. AUC denotes ‘‘area under the

receiver operating curve’’, with AUC = 1 indicating

perfect performance. FAR denotes ‘‘false alarm rate’’,

with FAR = 0 indicating perfect performance.

Sensor

L2 Robust

AUC FAR AUC FAR

EM61 0.973 0.297 0.976 0.156

MTADS 0.997 0.111 0.999 0.007

EM63 0.999 0.001 1.000 0.000

Figure 6. Sensitivity curves of estimates of the sample mean obtained from realizations of N = 100 Gaussian data

contaminated with a single outlier xo.
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correlated noise. Consistent with the recommendation in

Marrona et al. (2006), we also find that the bisquare
provided tighter parameter distributions than the other

robust norms considered in Table 2. Figure 8 shows an

analogous result to Fig. 4, illustrating how correlated

noise skews the L2 estimate while the robust estimate

can effectively ignore these contaminated data.

Application to Real Data

To study the effect of robust parameter estimation

upon discrimination, we consider inversion of three

TEM data sets acquired at Camp Sibert, Alabama

(Billings, 2008). Data were collected with a Geonics

EM61 sensor, the MTADS towed array of three EM61

sensors, and a Geonics EM63 sensor deployed in a cued-

interrogation mode. Further description of these sensor

platforms can be found in Billings (2008). The primary

targets of interest at this site were 4.20 mortars; Fig. 9

shows representative items from target classes encoun-

tered at this site.

In this case target location is not known, and so we

solve a nonlinear inverse problem for target location,

orientation, and polarizability parameters. For the

EM63 data, we parameterize each polarizability decay

according to Eq. 7, while for EM61 data sets we recover

Figure 7. Effect of correlated noise upon L2 and bisquare secondary polarizability estimates (P2, P3) for two targets
(dots and crosses). Dots are parameter estimates for an axisymmetric target with true transverse polarizabilities P2 = 10,

P3 = 10, and crosses are parameter estimates for non-axisymmetric target with P2 = 10, P3 = 5. True target parameters

are shown as open circles. Top row is for targets with primary polarizability oriented horizontally; bottom row is for

targets with primary polarizability oriented vertically.
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instantaneous polarizability amplitudes at each time

channel. We find that the nonlinearity of the forward

problem produces local, suboptimal minima of the

misfit function, and so we select a set of starting models

that adequately explore the misfit surface as follows:

1. We perform a scan over target location and depth,

solving the linear problem for the polarizability

tensor, as in our analysis of synthetic data.

2. To define N (e.g., 10) starting models for subsequent

nonlinear inversion, we identify the minimum misfit

model in each of N 2 1 depth intervals, ranging from

z 5 0 m to z~zmax, a maximum target depth (here

zmax~1:2 m). An additional Nth starting model is

specified as the best fitting model at the surface (z 5

0 m).

3. We then solve each of the N nonlinear inverse

problems using the set of starting models, and select

the minimum misfit model. The final model is

parameterized in terms of target location, orienta-

tion, and the eigenvalues of the polarizability tensor

at each time channel.

Application of a robust norm in this procedure can

occur at several stages. For example, we might apply a

robust norm to the linear problem in step 1 as well as for

the nonlinear problem at step 2. We have tried several

approaches and found that the most computationally

efficient is to solve both the linear and nonlinear

problems first with the L2 norm, and then subsequently

apply the bisquare norm at 95% efficiency, using the

final L2 models as starting models for the robust

inversion. We do not repeat all N inversions with the

robust norm, rather we identify the unique models

obtained in the initial L2 inversion, where uniqueness is

determined by the depth of the target. That is, we

identify all final models with similar depths (say, within

5 cm of each other), and then use the best fitting model

from each subset to initialize a refit with the robust

norm.

Based upon recommended practice in Marrona et

al. (2006) for robust linear regression, for each robust

refit we also re-scale the uncertainties at each time

channel based upon the residuals predicted by the L2

inversions. The scaling ci on the ith time channel is the

median absolute deviation (MADN) of the residuals

from the L2 inversion

ci~MADN xið Þ, ð22Þ

with xi as defined in Eq. 14 and

MADN xð Þ~ 1

0:675
Median x{Median xð Þj jð Þ: ð23Þ

The MADN is a robust estimate of the standard

deviation, with the normalization factor ensuring

that the expected MADN equals one for x , N(0,1)

(Marrona et al., 2006). In this application, the rescaling

ensures that all time channels have approximately equal

contributions to the bisquare misfit, at least for the data

predicted by the starting model taken from the weighted

L2 inversion. Without the scaling, we found that later

time channels can sometimes be overemphasized by the

bisquare norm, leading to an inadequate fit at early

times.

Figure 10 compares features extracted from Camp

Sibert EM63 data using L2 and robust inversions. The

feature space selected for discrimination is spanned by

parameters related to the amplitude and decay of the

induced polarizability, both normalized to zero mean

Figure 8. Fits (dashed line) to synthetic data (dots) for a single realization of correlated noise. True data is shown as a

gray solid line.
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and unit standard deviation. The feature space for the

robust inversion is qualitatively very similar to that of
the L2 inversion. This is perhaps unsurprising, since the

data are acquired along tightly spaced lines with robotic

total station positioning and therefore can be expected

to yield reliable parameter estimates regardless of the
misfit function. To understand the benefit of robust

inversion, we highlight three targets in Fig. 10. Target 1

Figure 9. Representative items from Camp Sibert target classes. Clockwise from top left: 4.20 mortar (UXO class),

partial mortar (Partial class), mortar fragment (OE class), cultural debris (Culture class), mortar base-plate (Base class).
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b

a

Figure 10. Comparison of features estimated from Camp Sibert EM63 data with L2 (a) and robust (bisquare) (b) norms.

Contour indicates output of quadratic discriminant analysis classifier required to find all ordnance items in the
feature space.
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is a 4.20 mortar that was identified in subsequent

processing to have a single line of data with large

positional errors (Fig. 11). When these data are included

in the L2 inversion, the best fitting model places the

target at z 5 0 m, and the estimated feature vector is an

outlier to its class. Robust inversion determines that a

better fit exists at a depth of approximately z 5 0.4 m

and the resulting feature vector lies well within the class

distribution. In this example, robust inversion correctly

reweights the data so that the minimum at depth

becomes the global minimum (Fig. 11(b)), and a better

fit to the observed data is obtained (Fig. 11(c)). Targets

2 and 3 are both scenarios where robust inversion

remains in the same neighborhood as the optimal L2

model. For target 2 (a base-plate), robust inversion

moves the feature vector closer to the class mean,

whereas for target 3 (a mortar) the feature vector moves

slightly away from the class mean. In the case of

ordnance related scrap and culture, we do not expect

robust inversion to provide an improvement in cluster-

ing in the feature space, since these targets are highly

physically variable. For targets with consistent physical

properties (UXO and base-plates), we find that robust

inversion decreases the variance of parameter distribu-

tions. Figure 10 shows a contour of a quadratic

discriminant analysis classifier trained in each feature

space to discriminate between 4.20 ordnance items and

all other target classes (partials, base-plates, etc.). The

contour corresponds to the location in the feature space

where all ordnance items are identified by the classifier.

A second application of robust inversion is shown

in Fig. 12, which considers inversion of MTADS EM61

data acquired in a detection mode survey during the

Camp Sibert geophysical prove-out. We again see that

robust inversion brings the highlighted outliers closer to

their respective class distributions.

Table 2 summarizes the discrimination perfor-

mance improvements gained by applying robust inver-

sion to Camp Sibert TEM data sets. We use a

r

Figure 11. Comparison of fits for ordnance target from

Camp Sibert EM63 data. a) Gridded EM63 data. Data

locations are shown as points. Line 1 has probable

positional errors. b) Relative misfit as a function of depth
for inversion of observed EM63 data with L2 and robust

norms. The relative misfit is computed so that the

minimum misfit model has relative misfit equal to zero.

c) Predicted data from L2 and robust inversions. Circles

and squares indicate observed data for lines 1 and

2, respectively.
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a

b

Figure 12. Comparison of features estimated from Camp Sibert MTADS data with L2 (a) and robust (bisquare) (b)

norms. Contour indicates output of quadratic discriminant analysis classifier required to find all ordnance items in the
feature space.
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bootstrapping algorithm to estimate metrics of discrim-

ination performance for quadratic discriminant analysis

(Beran and Oldenburg, 2008). We have also included

results for the EM61 cart data in this table, though for

brevity we have not shown the corresponding feature

spaces from L2 and robust inversions of these sensor

data. We see an improvement in discrimination perfor-

mance as we move from a detection mode survey with a

single sensor (EM61) to an array of sensors (MTADS)

to a cued-interrogation survey (EM63). In all cases,

robust inversion with the bisquare norm improves

expected discrimination performance versus weighted

L2 inversion.

Conclusions

In this work we have applied robust norms to

estimation of parameters from time-domain electromag-

netic data. When positional errors are modeled as

independent Gaussian perturbations, we find that least

squares and robust inversion have comparable perfor-

mance. Both inversion techniques estimate data uncer-

tainties from observed data, and this has the effect of

making the least squares inversion robust to outliers.

However, when simulated errors are correlated, robust

inversion with the bisquare norm provides a marked

improvement over L2 inversion. Application of robust

inversion to real data sets produced an incremental

improvement to the initial L2 inversion, identifying

outlying ordnance items and generally tightening

parameter distributions in the feature space.

When applying robust norms, we assume that the

errors on the data are uncorrelated and non-normally

distributed. In simulations, however, we found that

robust norms can perform well when errors are

correlated. An alternative approach to handling corre-

lated errors is to introduce off-diagonal terms in the

data covariance. For example, Dosso et al. (2006)

iteratively update the data covariance using the data

residuals predicted by the current model estimate. This

seems very similar to the IRLS procedure employed

here, and comparison of these techniques is an avenue

for future research.
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