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Interpolation of geophysical data using continuous global surfaces

Stephen D. Billings∗, Rick K. Beatson‡, and Garry N. Newsam∗∗

ABSTRACT

A wide class of interpolation methods, including
thin-plate and tension splines, kriging, sinc functions,
equivalent-source, and radial basis functions, can be
encompassed in a common mathematical framework
involving continuous global surfaces (CGSs). The dif-
ficulty in applying these techniques to geophysical
data sets has been the computational and memory re-
quirements involved in solving the large, dense matrix
equations that arise. We outline a three-step process
for reducing the computational requirements: (1) re-
place the direct inversion techniques with iterative
methods such as conjugate gradients; (2) use pre-
conditioning to cluster the eigenvalues of the inter-

polation matrix and hence speed convergence; and
(3) compute the matrix–vector product required at
each iteration with a fast multipole or fast moment
method.

We apply the new methodology to a regional grav-
ity compilation with a highly heterogeneous sampling
density. The industry standard minimum-curvature al-
gorithms and several scale-dependent CGS methods are
unable to adapt to the varying data density without in-
troducing spurious artifacts. In contrast, the thin-plate
spline is scale independent and produces an excellent
fit. When applied to an aeromagnetic data set with rel-
atively uniform sampling, the thin-plate spline does not
significantly improve results over a standard minimum-
curvature algorithm.

INTRODUCTION

Geophysical data are often collected with an irregular spatial
distribution. For example, in an airborne geophysical survey,
data are collected along roughly parallel transects across the
area of interest. The sample spacing both in-line and cross-line
can vary substantially from inevitable speed and course fluc-
tuations. Added to this irregularity is the tendency to collect
the data at a higher density (by an order of magnitude or more
for magnetics) along lines than between them. After prelimi-
nary processing, current practice usually involves gridding the
data—that is, deriving from the scattered data estimates of the
quantity of interest on a regular grid. The gridding occurs for
two reasons: (1) for visualization and (2) to simplify and speed
up subsequent processing operations.

Gridding has an extensive literature, so this paper does
not conduct a thorough review [see Foley and Hagen (1994)
and references therein]. Rather, we investigate a number of
alternative practices to gridding that have developed in the
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geostatistical, terrain modeling, and applied mathematics ar-
eas and show how they can be unified in a common mathe-
matical framework. These are methods based on fitting con-
tinuous global surfaces (CGSs) to the scattered data, and they
include the dual formulation of kriging (e.g., Matheron, 1980;
Cressie, 1993), tension splines (Mitasova and Mitas, 1993), ra-
dial basis functions (Cheney and Light, 1999), thin-plate splines
(Wahba, 1990; Hutchinson 1993), sinc interpolation (Shannon,
1949), and the equivalent-source method of Cordell (1992).
The close connections between kriging and splines have been
explored by Matheron (1980), Dubrule (1984), Wahba (1990),
and Hutchinson and Gessler (1994), while the connection be-
tween kriging, radial basis functions, and partial differential
equations has been examined by Horowitz et al. (1996).

We are predominantly concerned with 2-D applications,
but our methodology also applies to higher dimension data.
Consider f : Rd→R, a real-valued function of d variables
(observed data), that is to be approximated by some surface
s : Rd→R, given the values { fn= f (xn) : n= 1, . . . , N}, where
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{xn : n= 1, . . . , N} is a set of distinct points in Rd. The surfaces
fitted by each of the techniques described in this paper have
the form

s(x) = p(x)+
N∑

n=1

λn8(x− xn), (1)

where p(x) is a polynomial of low-degree k, or is not present,
λn are a set of weights, and8 is a fixed function from Rd → R.
The approximation in equation (1) is required to satisfy the
interpolation conditions

s(xn) = fn, for n = 1, . . . , N (2)

together with the side conditions
N∑

n=1

λnq(xn) = 0, for all q∈πd
k , (3)

whereπd
k is the space of all polynomials of degree at most k in d

variables. For each of the techniques considered, the fitting of
the weights reduces to solving a linear system whose structure
is always just a slight variation on a generic form. We term this
general framework the CGS framework.

CGSs are well suited to geophysical applications for several
reasons.

1) Many different surface-fitting methods can be encom-
passed within a common algebraic and computational
framework.

2) When a CGS is used to interpolate a geophysical sur-
vey, the resulting surface inherits certain desirable prop-
erties from the basic function. For example, using the
thin-plate spline produces the smoothest surface (mea-
sured in terms of a smoothness functional depending
on second-order derivatives) that passes through all of
the data points. On the other hand, using a sinc func-
tion generates a band-limited surface, which means it has
no power above a certain cutoff frequency. Finally, fit-
ting with a kriging semivariogram gives a surface whose
values are the best linear unbiased estimates of the true
surface that can be obtained from the data.

3) The basic functions do not have to be radially symmetric.
Thus, anisotropy arising from different sampling densities
or the underlying physics can be accommodated within
the CGS framework.

4) In contrast to most currently used methods, the results of
the fit do not depend on the grid size chosen to display
the interpolated image.

5) A CGS expansion is effectively a continuous model of
the data that can be fed into subsequent processing op-
erations, including Fourier transformations and convo-
lutions (Billings and Newsam, 2002). This means there
is no need to grid the data prior to this processing, al-
though of course one would generally still evaluate the
fitted surface on a grid for visualization purposes.

6) Finally, in practice the available data values fn are al-
most always in error, i.e., fn= f (xn) + εn, where εn is
nonnegligible in comparison with the variations in the
true function f (x). Since it makes no sense to try to in-
terpolate noise, and since doing so often produces a very
unstable interpolant, in practice the surface s is usually
constructed so that it only approximately interpolates the

data fn. The quality of the fit to the data is traded off
against some other desirable property in the approxima-
tion, such as smoothness. Fortunately, such smooth ap-
proximations still fall within the CGS framework. Nev-
ertheless, smoothing data brings up a whole new set of
issues, so we restrict our paper to exact interpolation and
postpone discussion of smoothing to a companion paper
(Billings et al., 2002).

The main impediments to applying CGS to geophysical data
to date have been the computational cost of solving the ma-
trix equations that arise in determining the surface and the
cost of subsequent evaluations of the surface. Both problems
arise because the functions 8 that occur in equation (1) are
usually globally supported, i.e., they are nonzero at almost all
points in the plane. With N data points, direct solution requires
O(N3) arithmetic operations and O(N2) storage. Furthermore,
the marginal cost of a single extra evaluation of the fitted sur-
face using equation (1) is O(N) operations. Consequently, once
N gets beyond a few thousand, direct fitting and evaluation be-
come problematic—even on high-end workstations.

Fortunately, recent developments reported by Beatson and
Chacko (2000) and Beatson et al. (2001) help us apply the
methodology to large problems. There are essentially four key
steps in reducing the computational cost of fitting to manage-
able levels:

1) Replace the direct solution methods by suitable iterative
solution methods. This decouples the O(N3) dependence
into the product of the number of iterations, which is at
most O(N), and a factor O(N2) for the work required
at each iteration. This is principally the formation of a
matrix–vector product.

2) Decrease the number of iterations required to O(log N)
or O(1) operations by preconditioning the matrix system.

3) Reduce the cost of a single matrix–vector product to
O(N log N) or O(N) operations by using fast algorithms.

4) Use the same fast algorithms to reduce the marginal cost
of a single extra function evaluation to O(1) operations.

We present the general CGS setting and demonstrate its ap-
plication to geophysics by applying it to some gravity and air-
borne magnetic data sets. In the first section we consider the
problem of scattered data interpolation and discuss why func-
tions of the form of equation (1) with 8(x) radially symmetric
are so promising. We then consider variational problems and
show how the resulting splines fit within the CGS setting. This
is followed by a brief description of kriging, which reveals that
it too can be encompassed by the CGS framework. Next we
consider computing with CGSs. Estimates of operation counts
and memory requirements show that conventional direct ap-
proaches are impractical for even very small geophysical data
sets. Fortunately, recently developed fast evaluation and itera-
tive strategies make possible the application of CGS techniques
to surveys with tens of thousands to millions of points. Finally,
we apply the method to both a gravity and an aeromagnetic
survey.

INTERPOLATION OF SCATTERED DATA

Scattered data-fitting problems in Rd
, d> 1, are inherently

more difficult than those in R1. In addition to interpolation
by CGS, there are several other standard approaches, each
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with their own strengths and weaknesses. Perhaps the two most
commonly used are interpolation by a fixed set of functions
(e.g., polynomials or Fourier series) and interpolation by finite
elements. We briefly compare each of these with CGS fitting
to motivate the latter’s use.

First, interpolation by a fixed set of functions is often unsta-
ble and computationally expensive. Consider the situation of
trying to interpolate the data values fn given at distinct points
xn with a linear combination of functions gn. This technique
requires solving the following linear system for the function
coefficients λn:

g1(x1) g2(x1) · · · gN(x1)
...

...
...

...

g1(xN) g2(xN)
... gN(xN)



λ1

...

λN

 =


f1

...

fN

 . (4)

For irregular distributions of data points, this system is often
numerically unstable; moreover, the surfaces produced are of-
ten highly oscillatory. The problem is exacerbated when the
configurations contain large data-free areas, as often occurs
in geophysics. One source of instability is the relatively large
number of configurations of points xn for which the matrix in
equation (4) will be rank deficient. Another is that most bases
of fixed functions are constructed to have relatively uniform
approximation properties over some region. Thus, they are un-
able to easily produce interpolants that are well adapted to a
locally varying data density. Finally, for most standard basic
functions gn, equation (4) can usually be solved cheaply only
when the points xn lie on a regular grid.

In contrast, by siting a basic function at each data point,
CGSs automatically adjust to varying data density. As a result,
the matrices appearing are far less likely to be rank deficient,
and the surface usually oscillates less wildly between nodes.

Finite-element approximations are also automatically adapt-
able to regular grids, rarely suffer from rank deficiency, and are
efficient to compute. However, they are perhaps less adaptable
than CGSs to data sets with large data-free regions [see Carr
et al., (2001) for examples of how radial basis functions extrap-
olate across data-free regions]. Moreover, finite-element con-
structions are not natural interpolants in the sense that they
minimize some natural measure of smoothness such as the
quadratic penalty for the thin-plate spline over a large func-
tion space. Of course, they can approximate the solution to
such minimization problems by carrying out the minimization
over interpolants from a finite-element subspace of the appro-
priate Beppo-Levi space rather than over all interpolants in the
whole space. For these reasons we feel that CGS interpolants
are a worthy alternative to finite elements for geophysical in-
terpolation problems. In particular the CGS framework is rich
enough to include interpolants defined by a variety of natural
formulations of the properties a good interpolant should have.

Radial basis function approximation

Let us temporarily restrict attention to the special case of ra-
dial basis functions in which8(x)=φ(‖x‖) is radial, where ‖·‖
denotes the Euclidean norm. Equation (1) then has the form

s(x) =
N∑

n=1

λnφ(‖x− xn‖)+
K∑

j=1

a j qj (x). (5)

Here, {qj } are a basis for the space of polynomials πd
k and

{a j } are the corresponding coefficients. If this expansion is
to satisfy the constraints specified in equations (2) and (3),
then the coefficients must satisfy a linear system of N+ K
equations N+ K unknowns. This may be written as[

A P

PT 0

][
λ

a

]
=
[

f

0

]
, (6)

with Amn=φ(xm− xn), Pnj =qj (xn),λ= (λ1, λ2, . . . , λN)T , a=
(a1, a2, . . . , aK )T , and f= ( f1, f2, . . . , fN)T .

We next briefly review some important properties of the sys-
tem in equation (6). When we refer to the whole system in
equation (6), we use C for the matrix, µ for the CGS weights
and the polynomial coefficients together, and z for the data
plus the additional zeroes. The matrix in equation (6) is sym-
metric but in general is not strictly positive definite (i.e., it does
not satisfy the conditionsµT Cµ> 0 for all nonzero)µ∈RN+K ).
The solvability of this matrix system depends on the nonsingu-
larity of the the matrix, which holds for a wide choice of func-
tions φ(x) and polynomial degrees k. One sufficient condition
(Micchelli, 1986) consists of mild restrictions on the distri-
bution of the centers together with the basic function φ be-
ing strictly conditionally positive definite of degree k. That is,
λT Aλ> 0 for all λ 6= 0 such that PTλ= 0. Here the restriction
on the centers is that no nontrivial polynomial of degree k van-
ishes at all points xn [that is, q∈πd

k and q(xn)= 0, n= 0, . . . , N
together imply q(x)= 0 for all x]. This condition on the geom-
etry of the nodes is almost always satisfied. For example, for
polynomials of degree 1 and R2, it means there is no single line
passing through all of the nodes. Cheney and Light (1999) are
a good reference for these and other properties of radial basis
functions.

Finally, 3-D perspective plots of some of the particular
basic functions. 8(x) considered in this paper are shown
in Figure 1. They include thin-plate spline, ‖x‖2 log(‖x‖);
Gaussian, exp(−c‖x‖2); multiquadric, (‖x‖2+ c2)+1/2; inverse
multiquadric, (‖x‖2+ c2)−1/2; tension spline [see equation
(10)]; and sinc function, sinc(cx) sinc(cy), where c is a positive
constant. The plots show that several basic functions (splines
and multiquadric) are unbounded as ‖x‖ approaches infinity.
Hence, one might expect that these8s are bad approximators.
However, suitable finite combinations of shifts of 8 can be
shown to form highly peaked kernels with rapid decay at infin-
ity, so the growth does not preclude good approximation prop-
erties. Indeed, the variational characterizations discussed be-
low show that CGSs have excellent approximation properties.

GENERALITY OF CGSS

We now return to the more general form of interpolation
specified in equations (1)–(3) with a (possibly) nonradial basic
function. Many surface-fitting methods with their associated
basic functions, including thin-plate splines, tension splines, and
kriging semivariograms, are defined naturally as the solution
of certain variational problems. These arise through defining a
reasonable penalty functional J(s) (almost always a quadratic
function of s) and then choosing the fitted surface to be the
solution of the constrained optimization problem:

min J(s) subject to s(xn) = fn : n = 1, . . . , N. (7)
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For quadratic functionals, this problem has a linear solution
that can usually be shown to be of CGS form. Let’s review some
of the more widely used examples of interpolation methods
defined in this way.

Thin-plate splines

As already noted, choosing J(s) to emphasize smoothness
gives rise to some particularly useful and well-performing fami-
lies of spline interpolants. Duchon (1976) characterizes the sur-
faces associated with a general family of smoothness measures,
which in two dimensions have the form

J(s) =
∫

R2

m+1∑
i=0

(
m+ 1

i

)(
∂m+1S

∂xi ∂ym+1−i

)2

∂x ∂y. (8)

In particular, he shows that the corresponding basic func-
tion is φ(‖x‖)=‖x‖2m log(‖x‖). For m= 1 the resulting inter-
polant is the usual thin-plate spline, so called because it is a
mathematical model of the physical surface that a thin metal
plate would adopt if it were appropriately constrained to pass
through the data points. The presence of polynomial terms
in smoothing splines is a natural consequence of the form of
the smoothness constraint in equation (8). For example, with
m= 1 the derivatives annihilate constants and linear polynomi-
als, so these can be included without affecting the smoothness
measure.
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(a) Thin-plate spline (b) Multi-quadric

(c) Inverse multi-quadric (d) Gaussian

(e) Sinc function (f) Tension spline

FIG. 1. (a) Thin-plate spline. (b) Multiquadric (c= 0.1). (c) In-
verse multiquadric (c= 0.1). (d) Gaussian (c= 1). (e) Sinc func-
tion and (1x=1y= 0.5). (f) tension spline (ϕ= 1000).

Smoothing splines have been used extensively for interpo-
lating and smoothing data [see Wahba (1990) and references
therein]. Geophysicists are familiar with equation (8) for m= 1
because it also occurs in the discrete minimum curvature algo-
rithm of Briggs (1974) (referred to as Minq) that is widely used
for gridding. Minq, in fact, constructs a discrete interpolant
based on minimizing a finite difference approximation to
equation (8). Thus, it generates a discrete approximation to
the true continuous thin-plate spline interpolant.

Tension splines

When fitting a thin-plate spline to 2-D data that contain re-
gions with rapid change of gradients, the thin-plate’s stiffness
may result in overshoots. Smith and Wessel (1990) include a
tension parameter in the minimum curvature equations that
eliminate these overshoot problems. In a variational setting
Mitasova and Mitas (1993) modify equation (8) so it includes
additional derivative constraints:

J(s) =
∞∑

k=0

∑
a:|a|=k

Ba

∫
R2

(
∂ |a|s

∂xax∂yay

)2

∂x ∂y, (9)

where a= (ax , ay), |a| = ax + ay, and Ba= |a|!δ−2|a|/
[ax!ay!(|a| − 1)!] if a 6= 0 and Ba= 0 otherwise. The pa-
rameter δ is known as a generalized tension parameter, and
it controls the shape of the interpolated surface. When δ is
small, the higher order derivatives dominate and the resulting
surface resembles a thin-plate spline. Conversely, when δ is
large, the lower order derivatives dominate and the surface
resembles a thin membrane stretched to fit the data points.

Mitasova and Mitas (1993) show that the function that min-
imizes J(s) subject to interpolating the data can be cast as a
CGS expansion with the basic function

φ(‖x‖) = 2 ln
(
δ‖x‖

2

)
+ E1

(
δ2‖x‖2

4

)
+ γ, (10)

where E1(·) is the exponential integral function of the first kind
and γ = 0.5772 . . . is Euler’s constant. In the limit of ‖x‖→ 0,
the logarithmic term and Euler’s constant cancel with the ex-
ponential integral so that the definition of φ can be extended
by continuity to φ(0)= 0.

Kriging

Kriging is a geostatistical technique that has its roots in the
estimation of ore grade at an arbitrary location from discrete
samples in an orebody (e.g., Krige, 1951; Matheron, 1963). In
kriging it is assumed that the ore grade f (x) is a realization
of a stochastic process, which in universal kriging (also called
kriging with a trend) typically takes the form

f (x) = p(x)+ z(x), (11)

where z(x) is assumed to be a zero-mean, second-order sta-
tionary stochastic process, while p(xn) represents low-order
polynomial drift in the data. The second-order stationarity as-
sumption implies that the second moment of z(x+ h)− z(x)
does not depend on absolute position x but only on separation
h. That is,

var [z(x+ h)− z(x)] = 2V(h), (12)
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where var[z]=E[z2]−E[z]2 is the variance, E[z] is expected
value of z, and V(h) the semivariogram [2V(h) is the vari-
ogram]. This definition of the variogram allows anisotropy, al-
though in practice V(h) is often assumed radial.

Kriging now calls on this statistical description of the prob-
lem to provide a well-defined estimate of the unknown ore
grade at an arbitrary location x from the samples f (xn) col-
lected at the discrete set of points xn. The kriging estimate s(x)
is taken to be the best linear unbiased estimate of the random
variable f (x) obtainable from a weighted linear sum of the
sample data, i.e.,

s(x) =
N∑

n=1

λn(x) f (xn). (13)

This is a linear inverse problem where the weights λn(x) must
be chosen to ensure the estimate is unbiased and optimal.
The solution is unbiased only if the expectation is zero, i.e.,
E[s(x)− f (x)]= 0, which is equivalent to the interpolation
condition satisfied by splines. The optimal solution is now found
by minimizing the penalty function:

J(s) = Var[s(x)− f (x)]. (14)

The J(s) here is the equivalent in kriging of the penalty func-
tions for thin-plate and tension splines given in equations (6)
and (7), respectively.

The formal equivalence between splines and kriging has
been known for some time (Matheron, 1980) and has been
examined extensively in the literature (e.g., Dubrule, 1984;
Wahba, 1990; Hutchinson and Gessler, 1994). Matheron (1980)
shows that the optimality condition in equation (14) implies
that the universal kriging estimate s(x) is given by

s(x) = p(x)+
N∑

n=1

λnV(x− xn), (15)

where the polynomial p(x) corresponds to the order of drift of
the data. This is analogous to the CGS expansion in equation
(1), with the basic function8(x) replaced by the semivariogram
V(x). The requirement that the solution be unbiased leads to
an equivalent set of conditions on the weights as equation (3)
for CGSs. Solution of the kriging equations is then equivalent
to equation (6) for CGSs, which in the kriging literature is
referred to as the dual form of kriging. The semivariograms
are always selected to satisfy a strictly conditional negative
definite constraint, which is sufficient to ensure that the linear
system has a unique solution (Myers, 1988).

The dual form of kriging is often presented with a general-
ized covariance function in place of the semivariogram (e.g.,
Matheron, 1980). This makes the matrix system positive defi-
nite instead of negative definite. The second-order stationary
random field model of equation (11) is usually replaced with
a more general model based on intrinsic random functions of
order k, or IRF-k (e.g., Matheron, 1980). The basic idea is to
linearly filter the drift terms from the data, for these can cause
bias in the estimation of the semivariogram by traditional meth-
ods. An IRF-0 is equivalent to the stationarity condition in
equation (11), with the generalized covariance function K (x)
and the semivariogram related by K (x)=−V(x). When k> 0,
the relationship between the variogram and the generalized

covariance function is more complicated (see, e.g., Cressie,
1993).

Often the semivariogram is defined as

V(x) = co[1− δ(‖x‖)]+ Vo(x), (16)

where Vo(x) is continuous, δ(‖x‖) is defined by δ(‖x‖)= 0 if
‖x‖ 6= 0 and δ(0)= 1, and co is the so-called nugget effect. A
nonzero nugget variance arises from both random variation as
a result of measurement error and fine-scale variability in the
surface not modeled by the semivariogram. Dubrule’s (1984)
equation (3) gives a suitable form of the dual kriging equations
for this situation. Namely, he fits with covariance −Vo(x) and
adds a smoothing term co to the diagonal entries of an appropri-
ate matrix. With a zero nugget the kriged surface gives an exact
interpolation, while including a nonzero nugget smoothes the
data rather than interpolates it.

Interpolating potential fields

Cordell (1992) has developed an equivalent source method
to interpolate point measurements of a potential field. Given
data at points xn on the surface, this involves postulating the
existence of point sources of unknown strengths λn at each
of these locations at depths zn. The strengths are then deter-
mined so the resulting potential field interpolates the available
data. When all equivalent sources are placed at the same depth
zn≡ z, the method can be seen to be a 2-D CGS interpolation
with the following kernel:

8(x, y) = 1
(x2 + y2 + z2)1/2

. (17)

This basic function is known as an inverse multiquadric in
the radial basis function literature. If the sources are at dif-
fering depths, then the interpolation problem involves three
dimensions.

Interpolation on differing grids

So far we have chosen the centers for the CGS expansion
to be the nodes where samples are available. This is a natural
choice, but it is not essential; our general ideas can still be
applied to solve the more general interpolation problem of
choosing a polynomial and weights λn so that

fm = p(xm)+
N∑

n=1

λnφ(xm − yn), (18)

where the N centers yn differ from the N sampling points xm.
An example of this occurs when we want to construct a band-
limited interpolant. A function is band-limited if it has no fre-
quency content above a certain cutoff frequency uc. Shannon’s
sampling theorem (Shannon, 1949) states that it is possible
to reconstruct a 2-D band-limited function from its samples
fmn= f (xmn) at the points xmn= (m1, n1), where 1= 1/2uc,
through the interpolant

f (x, y) =
∞∑

n=−∞

∞∑
m=−∞

f (n1x,m1y) sinc
(

x − n1x

1x

)
× sinc

(
y−m1y

1y

)
. (19)

Downloaded 31 Jan 2012 to 137.82.25.106. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Interpolation Using CGS 1815

In practice samples are often not available on the regular grid
xmn, so unknown function values fmn at these points must be
solved for as though they were unknown weights in a CGS
expansion with the basic function

φ(x, y) = sinc
(

x

1

)
sinc

(
y

1

)
. (20)

This now becomes a special instance of the general interpola-
tion problem in equation (18) (as long as the number of samples
is taken to be the same as the number of gridpoints).

When the nodes xm differ from the centers yn, the linear
system produced by equation (18) is no longer symmetric.
In this case some of the iterative methods discussed in the
next section can no longer be used. Nevertheless, the basic
idea outlined there still holds: by combining iterative meth-
ods with appropriate preconditioners and approximations to
the basic function, the system can still be solved in O(N)
operations.

SOLVING THE INTERPOLATION EQUATIONS

The basic functions forming most CGSs (e.g., standard
splines and semivariograms) are zero only at a few exceptional
points; most geophysical data are collected with irregular spa-
tial sampling. So the matrix in equation (6) is usually full (i.e.,
has relatively few zero entries) rather than sparse and has none
of the special structures (such as being banded) that are nor-
mally exploited in calculating fast solutions of linear systems.
Thus, solution of the interpolation equations by direct methods
or even simple iterative methods requires O(N3) operations
and O(N2) storage.

The O(N3) scaling means that CGS-type interpolations have
generally been restricted to at most a few thousand points and
have often used a restricted number of nodes to further re-
duce the computational load (e.g., Bates and Wahba, 1982;
Hutchinson, 1993). Consider the implications of this scaling
as computer hardware improves. Assume that we can solve
a problem of size N in some acceptable timeframe t on one
computer and then obtain access to a computer that is an or-
der of magnitude (ten times) faster. In the same time on this
computer, we can solve a problem that is 101/3∼ 2.2 times big-
ger. That is, for each tenfold increase in computer speed, we get
slightly more than a doubling of the size of the problem that can
be solved in an acceptable timeframe. Direct methods require
that at least half of the matrix will need to be stored (because
it is symmetric) in memory. For a problem with 10 000 points
stored in double precision, this requires 382 Mbytes of memory.
For a 20 000-point problem, the memory requirements escalate
to 1.49 Gbytes. And for 40 000 points, 6 Gbytes are required.
Clearly, significant improvements in computational scaling and
memory requirements need to be made before the technique
can be feasible for large problems.

Brief overview of iterative methods

The rough calculations in the last paragraph show that direct
methods are unfeasible for N greater than a few thousand, even
on high-end workstations. The key to reducing arithmetic op-
eration and memory requirements is the use of iterative meth-
ods. Solution by an iterative method decomposes the operation
count into the product of two factors: the number of itera-

tions times the cost per iteration. The former is determined by
the rate of convergence of the iterative method, while in most
methods the latter is determined by the cost of a matrix–vector
multiplication.

To give some insight into how both these costs can be re-
duced, we briefly review the application of iterative methods
to the solution of equation (6). We can write this as Cµ= z,
where

C =
[

A P

PT 0

]
, µ =

[
λ

a

]
and z =

[
f

0

]
. (21)

Classical iterative methods, such as those of Jacobi, Gauss-
Seidel, or Richardson, produce iterates of the form

µm = Bµm−1 + b, (22)

where the matrix B and vector b are derived in some fashion
from C and z (e.g., by matrix splitting).

In fitting CGSs, however, these iterative solvers are outper-
formed by Krylov subspace methods; a review of these meth-
ods and their convergence properties can be found in Kelley
(1995). At the mth iteration a Krylov subspace method draws
its next update µm from the affine space Gm=µ0 +Km, where
Km is the Krylov subspace:

Km = span
{
r0,Cr0, . . . ,Cm−1r0

}
. (23)

Here, r0= z − Cµ0 is the residual left by the initial guess µ0

(often µ0 is just taken to be zero, so that Gm=Km). The two
best-known Krylov subspace methods are the conjugate gra-
dient method (Hestenes and Steifel, 1952) and generalized
minimization of residents (GMRES) (Saad and Schultz, 1986).
In conjugate gradients µm is the solution of the minimization
problem

min
µ∈Gm

1
2
µT Cµ− µT z, (24)

while in GMRES µm is instead chosen to solve

min
µ∈Gm

‖Cµ− z‖2. (25)

We shall consider some particular issues in applying these two
methods to CGS interpolation in slightly more detail later. For
now, however, we focus on the key features that determine their
operation count: the number of iterations required to reach an
acceptable solution and the work required per iteration

Convergence rates for Krylov subspace methods

We begin with the classic bounds (see, e.g., Kelley, 1995) on
convergence rates for the simple iterative method in equation
(22). If B is symmetric and positive definite, then

‖µm − µ∗‖ ≤ ‖µ0 − µ∗‖vmax(B)mvmax(B)
vmin(B)

, (26)

where µ∗ is the exact solution and vmax(B) and vmin(B) are the
largest and smallest eigenvalues of B. This algorithm does not
converge in a finite number of steps; rather, the error bound
reduces by a constant factor at each step.

Clearly the bound depends heavily on the distribution of
the eigenvalues of B, and B is usually chosen to have a good
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distribution. One strategy for achieving this is to precondition
the system Cµ= z by replacing it by the system

(CD)γ = z and µ = Dγ, (27)

where D is an approximation to C−1 that can be easily com-
puted. This type of strategy is known as right preconditioning.
The design of good preconditioners is almost as much an art
as a science (see, e.g., Dyn et al., 1986; Beatson et al., 2001).
In particular, the price paid for ensuring can D can be easily
computed is that while most of the eigenvalues of CD are close
to one, there are always a few outliers. This limits the effec-
tiveness of preconditioning for accelerating classical iterative
schemes but is not a problem for Krylov subspace methods.

To see how preconditioning combined with Krylov subspace
iteration rapidly accelerates convergence, we first note that
the dimension of the subspaces Km increases by one with each
iteration. Thus, by N+ K iterations, Km will eventually span the
full space of all possible solutions and, in contrast to classical
iterative techniques, the methods will, in theory, converge in
at most N+ K iterations. To see how preconditioning reduces
this to O(1), we note the following bound for the conjugate
gradient method (see, e.g., Kelley, 1995). After m iterations
the error in the solution is bounded by

‖µm−µ∗‖C ≤ ‖µ0−µ∗‖C min
p∈πm:p(0)=1

max
v∈σ (C)

|p(v)|, (28)

where µ∗ is the exact solution ‖µ‖c=
√
µT Cµ and where σ (C)

is the set of eigenvalues of C. If the eigenvalues vm of C are
clustered so there exists an M such that vm∼ 1 for all m>M ,
then choosing the polynomials pm to have the form

pm(v) = (v1 − v)(v1 − v) · · · (vM − v)(1− v)m−M

v1v2 · · · vM
(29)

establishes an upper bound for equation (28). In practice ob-
served performance usually follows this bound: in the early
steps each iteration solves for a component of the solution cor-
responding to one of the outlying eigenvalues. Once the outly-
ing components have been identified, just a few more iterations
suffice to refine the solution to the accuracy desired. A similar
bound and result hold for GMRES.

Good preconditioners typically produce matrices CB in
which the number M of outlying eigenvalues is a constant size
independent of the dimensions of C. Moreover, the number of
iterations required beyond M to reach a sufficiently accurate
solution on the clustered eigenvalues is also independent of the
problem size. Thus, the number of iterations that Krylov sub-
space methods take to converge is independent of the problem
size.

To illustrate the clustering of eigenvalues that results from
applying the domain decomposition preconditioner, we ana-
lyzed a small synthetic problem consisting of a 20× 20 uni-
form grid in the unit square. Since the bounds on conver-
gence of GMRES depend on eigenvalue clustering, we plot
1+ relative radius versus index where the relative radius is
|eigenvalue− central value|/|central value|. The central value
is taken as 1 for the preconditioned matrix and as the me-
dian eigenvalue for the unpreconditioned matrix. The semilog
plot in Figure 2 shows that the eigenvalues of the unprecondi-
tioned matrix are smeared across several orders of magnitude.

Hence, for this matrix GMRES can be expected to converge
very slowly. In contrast, the eigenvalues of the preconditioned
matrix are clustered about 1, with the farthest away being at
a distance less than 0.18 from 1. Hence, the known bounds on
the convergence of GMRES guarantee that GMRES iteration
with this matrix will converge extremely quickly.

Matrix–vector products

To generate the next basis vector of the Krylov subspace
Km, the matrix–vector product Crm must be computed at
each step. Computing this directly requires O(N2) opera-
tions, while the marginal cost of computing the approxima-
tion s(x) at a single point by direct evaluation of equation
(1) is O(N) operations. In addition, if the matrix C is pre-
computed and stored, the memory requirements also scale
as O(N2). To get the total cost of an iterative method down
to O(N) operations, these costs must be reduced to O(N)
operations.

Fortunately, recent work (e.g., Beatson and Newsam, 1998)
has shown that for almost all of the standard basic functions
φ(x), it is possible to compute the product Aλ [equation (6)]
in O(N) operations. These methods were first developed for
functions φ that were potentials in problems such as simula-
tions of the motion of millions of stars under their own grav-
itational fields. Where x is well separated from a cluster of
points {xn : n= 1, . . . , N}, the asymptotic expansions available
for potential functions can be used to accurately approximate
far-field contributions of the form

N∑
n=1

λnφ(x− xn) (30)

as the sum of a small number of standard functions. Clever use
of tree structures and translation formulas lets us group clusters
into larger clusters and merge the associated approximations,
with the ultimate result of reducing the operation count for
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FIG. 2. Semilog plot of |eigenvalue− central value|/|central
value| for a test 20× 20 2-D grid covering the unit square for the
unpreconditioned and domain decomposition preconditioned
matrices. The central value is taken as 1 for the preconditioned
matrix and as the median eigenvalue (2.37e-3) for the unpre-
conditioned matrix.
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computing a very accurate approximation of Aλ in O(N log N)
or even O(N) operations.

This approach culminates in the fast multipole method de-
scribed in Greengard and Rokhlin (1987). The method can be
extended to efficiently evaluate CGS sums for many basic func-
tions φ that are not, on the face of it, potential functions. For
example, Beatson and Newsam (1992) show that the fast mul-
tiple method can be used to evaluate sums of thin-plate splines.
Unfortunately, for each newφ that has a far-field expansion, the
formulas and error bounds used to set up the expansions and
translations underlying the method need to be rederived, re-
quiring substantial recoding. Moreover, many basic functions
do not have suitable asymptotic expansions.

To overcome these problems Beatson and Newsam (1998)
evolve the original fast multipole method into a fast moment
method (see also Beatson and Chacko, 2000). This approach
can easily accommodate changes of the basic function φ. Us-
ing it with a new φ usually requires coding only a one- or two-
line function for the slow evaluation of φ. The method only
requires that φ be smooth away from the origin. All of the
basic functions presented here (including tension splines) sat-
isfy this condition, along with almost all of the variograms and
semivariograms in the kriging literature (see, e.g., Journel and
Huijbregts, 1978; the few exceptions are those specifically con-
structed to have finite support).

Miscellaneous issues

The above discussion indicates how iterative techniques cou-
pled with fast multipole and moment methods can make possi-
ble seemingly intractable calculations. In the interest of clarity,
our discussion has necessarily glossed over some areas. We shall
briefly touch on one such issue in this section—whether to use
conjugate gradients or GMRES.

Most Krylov subspace methods rest on the construction of
an orthogonal basis for the subspace Km out of the basis vec-
tors Crm. If C is symmetric and positive definite (SPD) then
updating Km and the approximate solution requires only the
new basis vector Crm and the current approximate solution.
Thus, generating updates is particularly simple, and there is no
need to store a complete basis for Km. The resulting update
expressions define the conjugate gradients method and make
it the most attractive of the Krylov subspace methods.

In most cases the matrix C will not be SPD; but as we shall
presently see, it can be converted into an SPD form. Recall
from equation (21) that C is actually composed of the matrices
A and P. The discussion following equation (6) establishes that
A is always conditionally SPD, that is, λT Aλ> 0 for all λ 6= 0
such that PTλ= 0. With this constraint it is always possible to
find an orthogonal basis Q such that PTλ= 0⇔λ=Qµ′. where
µ′ ∈RN−K , with K the dimension of the polynomial subspace.
This idea can be traced to Sibson and Stone (1991) with an
extended treatment in Beatson et al. (2001). The matrix system
of equation (6) can then be converted to the strictly SPD form
C′µ′ = z′, with C′ =QT AQ and z′ =Qz. Furthermore, once µ′

and hence λ are found, the polynomial coefficients α can be
obtained by finding the polynomial from πd

k interpolating to
the residual function r= f−Aλ at K points.

It is always possible to convert CGS equations to a strictly
SPD form. However, when preconditioners such as those of
Beatson et al. (2001) are used, the matrix system may no longer

be strictly SPD, and conjugate gradients must be replaced by
GMRES. To update the Krylov subspace, GMRES requires
an orthogonal basis for Km. For m iterations, the storage re-
quirements are O(mN) and the operation count for this ex-
tension, excluding the cost of the matrix–vector multiplica-
tion, grows as O(m2 N) The preconditioners implemented in
Beatson et al. (2001) cluster most of the eigenvalues; hence,
the number of iterations required for convergence will be small.
Thus, the storage and arithmetic overheads are unlikely to be
of concern.

APPLICATION TO GEOPHYSICAL DATA

We now present examples of the application of thin-plate and
tension splines, multiquadrics, and the equivalent-source tech-
nique to some gravity and magnetic data. No examples of krig-
ing or sinc interpolation are presented because they concern
smooth fitting rather than interpolation. Examples of these fits
are presented in Billings et al. (2002).

Broken Hill gravity survey

Gravity data interpretation often involves compiling several
different data sets with widely differing observation spacing.
Traditional gridding techniques such as minimum curvature
can have difficulty in creating a fit that achieves a good com-
promise between high-frequency response in densely sampled
areas and avoidance of high-frequency noise or ringing in areas
of sparse coverage. Murray (1998) recognized this and devel-
oped a multiple-pass minimum curvature (MPMinq) algorithm
that attempts to create a good fit regardless of the data density.
Here, we compare our thin-plate spline fit to Murray’s results
and to a standard Minq algorithm. Since the thin-plate spline is
the correct continuous minimum curvature surface, any devi-
ations from it reflect the inaccuracies of discrete gridding and
the artifacts it can introduce.

The data we chose for comparison consist of 55 805 grav-
ity observations in the Broken Hill area, New South Wales,
Australia. The data set covers an area of approximately 3.8◦

by 3.8◦, with a highly heterogeneous sampling density; obser-
vation spacing varies from 25 m to 7 km (Figure 3a). The thin-
plate spline fit required 14 iterations and took about 11 minutes
on a generic Intel Celeron processor operating at 450 MHz. We
evaluated the surface on a constant grid with a spacing of 15 s
in both the north–south and east–west directions, as this was
the spacing of the MPMinq grid available. The evaluation re-
quired a further 4 minutes. We also used the Minq algorithm
in Geosoft to grid the data, with the tolerance parameter set
to 0.01% of the data range.

The grids for the thin-plate spline and the MPMinq algo-
rithms are shown in Figures 3c and 3d as sun-shaded images
with sun inclinations and declinations of 45◦ (the Minq result
is not shown). The thin-plate spline grid is slightly smoother
than the MPMinq grid and has some obvious differences in the
areas with sparse data coverage (e.g., just to the east and north
of 141◦E, 31◦S). These differences are further emphasized in
a profile across the grid (Figure 4) and in a residual image
(Figure 3b) shown with a linear color stretch between −20
and 20µm/s2. Positive residuals larger than this range are white,
while negative residuals lying outside the range are black.
Almost all of the regions with very large residuals correspond
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to areas with poor data coverage. Look in particular at the
poor fit in the profile plot between 141◦E and 141.5◦E. These
results show that the MMPMinq algorithm is a poor approxi-
mation to the true thin-plate spline surface in areas of sparse
data coverage.

The profile plot also shows that a standard Minq algo-
rithm has difficulty in approximating the true thin-plate spline
surface. Notice that the MPMinq and Minq results can also
deviate significantly from the thin-plate spline fit in areas with
very dense coverage (look at the profile plot near 139◦E). This
is because of the way these algorithms handle multiple values
appearing in a single grid cell. Last, the MPMinq does im-
prove the fit over the Minq algorithm, with the residuals for
the former having a range of−120 to 105µm/s2 and a standard
deviation of 7.1 µm/s2 compared with −231 to 238 µm/s2 and
a standard deviation of 7.9 µm/s2 for the latter.
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FIG. 3. Australian Geological Survey Organization gravity data set over Broken Hill. (a) Location of observations. (b) Difference
between the thin-plate spline and multiple-pass minimum curvature grid. (c) Calculated thin-plate spline surface. (d) Multiple-pass
minimum curvature grid.

Next, we investigated how successful some of the other CGS
interpolation techniques would be on the same data set. We
zoomed in on the region shown in Figure 5a because it con-
tained both sparsely and densely sampled regions and fit sur-
faces with the equivalent-source technique, a tension spline,
and a multiquadric. For each of the methods, we first did sev-
eral trial fits to a small subsection of the data before coming
up with estimates of suitable scaling constants. This led us to
choose a scaling constant of 2.5 minutes for both the multi-
quadric and equivalent-source methods and a tension param-
eter of 50 for the tension spline. A suitable scaling parameter
was one that did not cause oscillations in the fitted surface—
something that is particularly evident in a spline surface when
using inappropriate tension. In fitting the surfaces we did not
allow the iterative methods to converge fully for reasons that
will become apparent.
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Contour plots of the different surfaces are shown in Figure 5
(5b, equivalent source; 5d, tension spline; 5e, multiquadric).
The contours are fairly similar in the regions with low and
medium sampling densities, with the thin-plate spline tending
to give a smoother set of contours. In the densely sampled
regions (top-right corner and slightly to the left of bottom
center) all three of the new surfaces have many bull’s-eye-
shaped artifacts. At first we thought these must have been
concentrated around noisy data in these regions. However,
all of these artifacts lie away from data locations and are
the result of data overfitting. To show this, we recomputed
the multiquadric surface and this time stopped our GMRES
iteration early while the residuals were still quite high. The
resulting contour plot is shown in Figure 5f. The bull’s-eye ar-
tifacts have disappeared, and the surface appears to mimic the
thin-plate spline quite closely. This tendency of fitting meth-
ods to estimate the smoother parts of the surface in the early
iterations and the rougher parts later on is a general feature
of the GMRES and conjugate gradient iterative methods (e.g.,
Sibson and Stone, 1991).

The overfitting problems revealed in Figure 5 result from
the scaling factors required by the equivalent-source, tension-
spline, and multiquadric basic functions. Choosing the scaling
factor by trial and error in a small subsection of the survey as
we did will result in a scaling factor that is appropriate for that
particular data density. When the data density varies by orders
of magnitude from this value, the scaling factor will not be ap-
propriate in all areas and artifacts will be introduced. The only
way to prevent these artifacts is to stop the iterative process
early, which creates a smooth fit. However, when we do this
we are not taking advantage of the high-frequency sampling
in some parts of the survey area. This implies that these inter-
polation methods cannot meet our stated aim of achieving a
good compromise between fitting high frequencies in the data
and avoiding ringing and high-frequency noise in the sparsely
sampled areas. The thin–plate spline does not suffer from these
disadvantages because it is scale independent. Even when the
data points are very dense, the thin–plate spline will be free
of high-frequency artifacts (as long as the data are essentially
noise free).
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FIG.4. Difference between the thin-plate spline surface and the
standard and multiple-pass minimum curvature grids along the
profile marked in Figure 3a.

Last, in Figure 6 we compare the different fits along the pro-
file shown in Figure 5a. The profile lies away from the areas con-
taminated with bull’s-eye artifacts. As one might expect, there
are quite large deviations in the fitted surfaces in areas with
sparse data coverage (between 141◦E and 141.5◦E). Where the
coverage is a bit denser and more uniform (between 141.5◦E
and 141.8◦E), the different surfaces give very similar fits.

Aeromagnetic survey

We now turn to the problem of gridding aeromagnetic sur-
vey data where there is a relatively uniform sampling regime,
but with significantly different sampling densities in the x- and
y-directions. The survey we chose was flown with a 200-m line
spacing at a mean terrain clearance of 60 m with data collected
every 7 m along the flight lines. The data are proprietary; so
to protect the location we rotated and transformed the coor-
dinates to cover the range 0 to 15.4 km east and 0 to 21.8 km
north (Figure 7a). Notice the large gap in the center of the sur-
vey where there was a large lake that was not surveyed and
the absence of several lines which did not meet the survey
specifications.

The survey consisted of 178 545 points. Fitting a thin-plate
spline took 31 minutes and 24 s on an Intel Celeron operat-
ing at 450 MHz. The evaluation required another 33 s. The
resulting thin-plate spline surface evaluated on a 50-m grid
cell size is shown in Figure 7c, a standard (Geosoft) Minq fit
in Figure 7d, and a difference image in Figure 7b. The Minq
fit took 4 minutes, 35 s. Excluding the data-free region in the
center of the survey, the standard deviation of the residuals of
the Minq fit compared to the thin-plate spline is 7.3 nT with a
range of −165 to 452 nT. As one might expect, the largest dif-
ferences are in the area with missing lines and also along some
of the numerous faults evident in the image. This latter obser-
vation reflects the thin-plate spline’s slightly improved ability
to fit linear features transverse to the sampling direction. How-
ever, overall the thin-plate spline image differs little from the
Geosoft minimum curvature image.

DISCUSSION

Sibson and Stone (1991) felt that interpolation with CGS
when there were more than 10 000 data points would never
be feasible. Clearly, this restriction no longer applies, with cur-
rent code able to solve problems with 5 million centers in two
dimensions and several hundred thousand centers in three di-
mensions (Beaston et al., 2001). The key advances have been
the implementation of good iterative methods, efficient pre-
conditioners, and fast methods for evaluating matrix–vector
products. For the two geophysical examples considered in this
paper, our Intel Celeron 450-MHz computer required about
15 minutes for the 55 000-point gravity data set and 34 minutes
for the 178 000-point aeromagnetic survey. The code is con-
tinually being improved, so these times would be expected to
decrease further.

The gravity data set demonstrated that the additional com-
putational time required to compute the full thin-plate spline
surface was justified. The thin-plate spline is scale independent
and is able to adjust to vastly different data densities without
any detrimental effects on other parts of the surface. We found
that scale-dependent basic functions were unable to cope with
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(a) Observed points (b) Equivalent source surface

(c) Thin-plate spline surface (d) Tension-spline surface

(e) Multiquadric (tight) surface (f) Multiquadric (smooth) surface

FIG. 5. (a) Data points and contour plots for (b) equivalent source gridding, (c) thin-plate spline, (d) tension spline, (e) multiquadric
(tight), and (f) multiquadric (smooth) fits to part of the Broken Hill gravity data set.
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such heterogeneous data sampling. Where the scale param-
eter might be optimum for one sampling density, it became
suboptimal in other parts of the data set. Such basic functions
would best be applied to interpolating surveys where there is
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FIG. 6. (a) Profile along the line marked in Figure 5a for
the thin-plate spline surface. (b) The difference between the
thin-plate spline and the tension and equivalent-source pro-
files. (c) The difference between the thin-plate spline and the
tight and smooth multiquadric profiles.

a fairly consistent spacing between data points, such as in air-
borne geophysical surveys.

The small difference between the thin-plate spline and
minimum-curvature fits on the aeromagnetic survey indicates
that the longer execution time required by the thin-plate spline
would not be warranted in this case. However, we can envi-
sion two situations where computing a CGS might be justified.
The first is where additional processing operations, such as up-
ward and downward continuation, need to be applied to the
surface. As investigated in Billings and Newsam (2002), CGS
surfaces can have exact Fourier processing operations applied
without the need for padding and data filling. The second is
when the data are noisy and an exact fit is not ideal. In this
case the user really desires a smooth surface that sensibly fits
the data in some approximate fashion. The CGS framework
readily encompasses several proven techniques for construct-
ing such smooth approximations, along with automatic deter-
mination of the appropriate degree of smoothing, such as the
widely used generalized cross-validation process. These types
of smooth fits are required, in particular, for noisy airborne
radiometric surveys, Billings et al. (2002a) investigate the ap-
plication of CGS to this problem.

FIG. 7. (a) Data distribution, (b) difference image (c)–(d),
(c) thin-plate spline, and (d) minimum-curvature grids for a
60-m elevation, 200-m line spacing airborne magnetic survey
interpolated to a 50-m grid cell. The difference image has a
linear contrast stretch within the limits −20 to 20 nT.
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