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ABSTRACT

In a study at a military range with the objective to discriminate
potentially hazardous 4.2-inch mortars from nonhazardous
shrapnel, range, and cultural debris, six different discrimination
techniques were tested using data from an array of magnetome-
ters, a time-domain electromagnetic induction �EMI� cart, an ar-
ray of time-domain sensors, and a time-domain EMI cart with a
wider measurement bandwidth. Discrimination was achieved us-
ing rule-based or statistical classification of feature vectors ex-
tracted from dipole or polarization tensor models fit to detected
anomalies. For magnetics, the ranking by moment yielded better
discrimination results than that of apparent remanence from rela-
tively large remanent magnetizations of several of the seeded
items. The magnetometer results produced very accurate depths
and fewer failed fits attributable to noisy data or model insuffi-
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iency. The EMI-based methods were more effective than the
agnetometer for intrinsic discrimination ability. The higher sig-

al-to-noise ratio, denser coverage, and more precise positioning
f the EM-array data resulted in fewer false positives than the
MI cart. When depth constraints from the magnetometer data
ere used to constrain the EMI fits through cooperative inver-

ion, discrimination performance improved considerably. The
ide-band EMI sensor was deployed in a cued-interrogation
ode over a subset of anomalies. This produced the highest-

uality data because of collecting the densest data around each
arget and the additional late time-decay information available
ith the wide-band sensor. When the depth from the magnetome-

er was used as a constraint in the cooperative inversion process,
ll 4.2-inch mortars were recovered before any false positives
ere encountered.
INTRODUCTION

Unexploded ordnance �UXO� poses a major safety hazard in
any parts of the world, including Canada, the United States, and
ustralia, where UXO is present at former and active military rang-

s. During the past 10 years, significant research effort has been fo-
used on developing methods to discriminate between hazardous
XO and nonhazardous scrap metal, shrapnel, and geology �e.g.,
ell et al., 2001; Collins et al., 2001; Hart et al., 2001; Pasion and
ldenburg, 2001; Zhang et al., 2003a; Zhang et al., 2003b; Billings,
004�. The most promising discrimination methods typically pro-
eed by first recovering a set of parameters that specify a physics-
ased model of the object being interrogated. For example, in time-
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omain electromagnetic �TEM� data, the parameters are the object
ocation and the polarization tensor �typically two or three collocat-
d orthogonal dipoles along with their orientation and some parame-
erization of the time-decay curve�. For magnetics, the physics-
ased model is generally a static magnetic dipole. Once the parame-
ers are recovered by inversion, a subset of the parameters is used as
eature vectors to guide a statistical or rule-based classifier. There are
ignificant advantages in collecting both types of data, including in-
reased detection, stabilization of EM inversions by cooperative in-
ersion of the magnetics �Pasion et al., 2008�, and extra dimension-
lity in the feature space that may improve classification perfor-
ance �e.g., Zhang et al., 2003a�.
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B104 Billings et al.
Results are presented here for a discrimination study pilot pro-
ram conducted at the former Camp Sibert, Alabama, U.S.A., spon-
ored by the Environmental Security Technology Certification Pro-
ram �ESTCP�. The ability to separate munitions from nonhazard-
us metallic items or geology is critical to reduce the cost of remedi-
ting munitions-contaminated sites. Camp Sibert is particularly well
uited for such classification efforts, which require collecting high-
uality geophysical data. The site is relatively flat and clear of ob-
tructions from vegetation or topography that would hinder survey-
ng with cart-based geophysical sensors. In addition, the history of
he site indicates there was primarily one type of ordnance deployed
here: 4.2-in mortars. The objective at Camp Sibert was to discrimi-
ate potentially hazardous 4.2-inch mortars from nonhazardous
hrapnel, range, and cultural debris.

Our case study focuses on the results achieved using methodolo-
ies developed by ourselves and others �e.g., Pasion and Oldenburg,
001; Billings, 2004; Beran and Oldenburg, 2008; Pasion et al.,
008�. We provide an overview of the methodology and point the
eader to relevant papers that describe the techniques in greater de-
ail. We concentrate primarily on the results achieved — in particu-
ar, the comparative performance of the different sensor modalities
nd deployment modes. All results reported here were obtained us-
ng commercial off-the-shelf �COTS� sensors. These include Geon-
cs EM61 and EM63 time-domain metal detectors and an array of
eometrics cesium vapor magnetometers. See Gasperikova et al.

2009� for the results of applying a multistatic EMI sensor at the
ame site.

Because each COTS instrument measures only one component of
vector field, a measurement at a single location provides limited in-

ormation. Consequently, relatively dense 2D measurements are re-
uired for accurate recovery of relevant target parameters. These
easurements must be very precisely positioned and oriented for

iscrimination to be successful. Data were acquired in full-coverage
urvey mode �magnetometer array, EM61 cart, and EM61 array� and
n cued-interrogation mode �EM63 cart�, whereby selected prelo-
ated anomalies were surveyed densely in the immediate vicinity of
he flagged anomaly location picked from a full coverage survey. In
ddition to inverting each of the individual sets of data discussed, co-
perative inversions also were undertaken for the towed EM61 array
nd the EM63 cued-mode data using the magnetometer data to con-
train the EM inversions.

Here, we contrast the discrimination and localization abilities of
ix sensor combinations:

� Magnetometer array deployed in full-coverage mode with di-
pole moment size used for discrimination

� EM61 cart deployed in full-coverage mode �no orientation in-
formation recorded�

� EM61 array deployed in full-coverage mode with position and
orientation information recorded

� Cooperative inversion of EM61 array and magnetometer array
data

� EM63 cart deployed in cued-interrogation mode with position
and orientation recorded

� Cooperative inversion of EM63 cart and magnetometer array
data
STRUCTURE OF DISCRIMINATION STUDY

Our results are from a blind test of the discrimination performance
f the different techniques; the ESTCP managed the discrimination
tudy and withheld ground-truth information until after discrimina-
ion declarations had been made. All results reported here, unless
therwise indicated, were for the original submissions to the ESTCP.

An initial magnetometer survey of the Camp Sibert site was used
o select three different areas for the discrimination study: southeast

�SE1�, southeast 2 �SE2�, and southwest �SW�. Combined, the
hree areas cover approximately 15 acres. A geophysical prove-out
GPO� was established immediately adjacent to the SW area; it in-
luded 30 4.2-inch mortars emplaced at different depths and orienta-
ions and eight partial mortars, considered as nonhazardous scrap.
he ESTCP emplaced 152 4.2-inch mortars in the three areas. The

ocations and depths of 29 of these mortars, along with the locations
nd identities of 179 clutter items, were provided to each demonstra-
or and used as training data.

In full-coverage survey mode, data were collected using the stan-
ard cart platform of the EM61-MK2 system. The Geonics EM61-
K2 is a pulse-based time-domain electromagnetic instrument that

ecords data in four time windows centered at 0.216, 0.366, 0.660,
nd 1.266 ms after pulse turn-off �e.g., Bosnar, 2001�. EM61-MK2
art data were acquired by an onsite contractor using a line spacing
f 50 cm, sensor height of 40 cm, and positions recorded with a real-
ime kinematic global position system �RTK GPS�, accurate to with-
n a few centimeters. Survey-mode data also were acquired for a

agnetometer array and an EM61-MK2 array using the multisensor
owed-array detection system �MTADS�. The MTADS EM array
onsists of three overlapping EM61-MK2 sensors �each 1 m wide
nd 0.5 m long� that have a center-to-center separation of 0.5 m
Nelson et al., 2003�. Data were collected with a nominal across-
rack sensor spacing of 50 cm, and the array was transported 25 cm
bove the ground.

Figure 1 shows the MTADS EM data over the SW area with the lo-
ation and identities of the ground truth marked. The MTADS mag-
etometer array is composed of a platform housing a 2-m-wide in-
ine array of eight G-822 cesium vapor magnetometers spaced
5 cm apart and 25 cm above the ground �Nelson et al., 2003�. For
he MTADS EM and magnetometer arrays, position and orientation
nformation were obtained through centimeter-level RTK GPS and
nertial-motion-unit �IMU� measurements.

The Geonics EM63 is a pulse-based multichannel TEM induction
nstrument �e.g., McNeil and Bosnar, 2000�. The system consists of

1�1-m-square transmitter coil and three coaxial 0.5�0.5-
-square receiver loops mounted on a two-wheeled trailer. Mea-

ured voltages are averaged over 26 geometrically spaced time
ates, spanning 180 �s to 25.14 ms. The EM63 was deployed in a
ued-interrogation mode on a customized air-suspension cart. The
art lowered the instrument closer to the surface �from the standard
0 cm to 20 cm� and absorbed some of the effects from instrument
ostle resulting from an uneven ground surface. The late-time infor-

ation available from the 26 time channels provided an extended
iew of target decays. Position information was collected by a Leica
PS 1206 robotic total station with orientation effects recorded us-

ng a Crossbow AHRS 400 IMU. We estimated that positions were
ccurate to within 2–4 cm and orientation to within about 2°.
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UXO discrimination at a military site B105
DATA PROCESSING AND INTERPRETATION
METHODOLOGY

Three steps are required to utilize geophysical data for unex-
loded ordnance discrimination. First, we create a map of the geo-
hysical sensor data; this includes all actions required to estimate the
eophysical quantity in question �magnetic field, amplitude of EMI
esponse at a given time channel, etc.� at each visited location. Sec-
nd, we select the anomaly and extract features. This includes de-
ecting anomalous regions and subsequently extracting a dipole
magnetics� or polarization tensor model �TEM� for each anomaly.

here magnetic and EMI data have been collected, the magnetic
ata are used as constraints for the EMI model via a cooperative in-
ersion process. Third, we classify anomalies. The objective of the
emonstration is to produce a dig sheet with a ranked list of anoma-
ies. We achieve this using statistical classification, which requires
raining data to determine the attributes of the UXO and non-UXO
lasses.

rocess flow

Each demonstrator provided filtered, located geophysical data.
o additional preprocessing was performed on any data set. At this
oint in the process flow, there was a map of each of the geophysical
uantities measured during the survey. The next step in the process
as to detect anomalous regions, followed by extracting features for

ach detected item.Anomalous regions were detected by the demon-
trators who provided the easting and northing coordinates corre-
ponding to the maximum geophysical signature for each anomaly.
he demonstrators used an automatic target-detection algorithm that

riggered a detection each time the sensor response exceeded a
hreshold. The threshold value was set to one-half of the minimum
mplitude recorded over any of the 4.2-inch mor-
ars in the GPO.

The inversion procedure assumes that we are
ealing with a single target in free space. Once
ata anomalies are identified, we define a mask to
epresent the spatial limits of the data to be invert-
d. Unlike magnetics data, an unconstrained EMI
nversion is very sensitive to adjacent anomalies
nd to the size of the mask used in areas without
earby anomalies. The masking procedure helps
nsure that signals from adjacent anomalies do
ot affect the inversion results. In addition, from a
ractical standpoint, inverting the minimum
umber of observations reduces computing time.

We used an automated masking procedure that
ts an ellipse to contours of the anomalous target.
y using an ellipse, we recover a relatively

mooth mask that mimics the shape of the anoma-
y. The main challenge is to find contours that are
mooth as well as close to the noise level. Includ-
ng good estimates of the background noise en-
ures that we choose appropriate starting contour
alues that are above the baseline error and en-
ompass all anomalous data. Estimates of back-
round noise were calculated independently for
ach time channel through the statistics in a 5�5
m moving window that covered the entire data
et. To estimate the standard deviation of the
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artifacts cause
rows in a recen
oise, the sample skewness was calculated and the largest data sam-
les were iteratively discarded until the skewness value was less
han a user-defined threshold value �we used 0.25�. This process pro-
ided an effective means to estimate the spatially �and temporally�
arying background noise without significant distortion from the
ignals of interest.

We did not always include all time channels in the inversion pro-
ess. For the EM61, we kept, at a minimum, the first three time chan-
els; for the EM63, we kept, at a minimum, the first 10 time chan-
els. Additional channels were included if the energy within the
ask at that time channel were at least twice the estimated noise lev-

l.

eature extraction for a magnetics sensor

For magnetics, the physics-based model most commonly used is a
ipole:

b�r��
�0

4�r3 ��m · r̂�r̂�m�, �1�

here r̂�r / �r� is the unit vector pointing from the dipole to the ob-
ervation point, b is the vector magnetic field, m is a magnetic di-
ole, �0�4� �10�7 H /m is the permittivity of free space, and r

�r� is the distance between the center of the object and the obser-
ation point.Abound-constrained optimization problem is solved to
xtract feature vectors from each anomaly �Branch et al., 1999�.

The magnetic remanence metric was calculated for each dipole
oment �Billings, 2004� by using an equivalent spheroid to repre-

ent a 4.2-inch mortar. The equivalent spheroid defines a dipole fea-
ibility curve �the family of moments that an object of that length and
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B106 Billings et al.
iameter can produce by induced magnetization in the presence of
he earth’s magnetic field�. We calculated the orientation that causes
he minimum difference �m between the moment of the ordnance
nd the moment determined through the inversion m. We then esti-
ated the minimum percentage of remanent magnetization required

o best match the observed dipole:

rem�100
��m�
�m�

. �2�

eature extraction for a time-domain EMI sensor

In general, TEM sensors use a step-off field to illuminate a buried
arget. The currents induced in the buried target decay with time,
enerating a decaying secondary field that is measured at the sur-
ace. The time-varying secondary magnetic field b�t� at a location r
rom the dipole m�t� can be approximated with a dipole as per equa-
ion 1 except, in this case, the moment is a function of time. The di-
ole induced by the interaction of the primary field b0 and the buried
arget is given by

m�t��
1

�0
M�t� ·b0, �3�

here M�t� is the target’s polarization tensor �e.g., Das et al., 1990;
ell et al., 2001; Pasion and Oldenburg, 2001; Smith et al., 2004�.
The polarization tensor governs the decay characteristics of the

uried target and is a function of the shape, size, and material proper-
ies of the target. The polarization tensor is written as

M�t���L1�t� 0 0

0 L2�t� 0

0 0 L3�t�
�, �4�

here we use the convention that L1�t1��L2�t1��L3�t1�, so that po-
arization-tensor parameters are organized from largest to smallest.
he polarization-tensor components are parameterized such that the

arget response can be written as a function of a model vector con-
aining components that are a function of target characteristics. Par-
icular parameterizations differ, depending on the instrument �num-
er of time channels, time range measured, etc.� and the group im-
lementing the work. Bell et al. �2001� solve for the components of
he polarization tensor at each time channel, and this is the procedure
e use for the four-channel EM61-MK2. For the EM63, we use the
asion-Oldenburg �2001� formulation:

Li�t��ki�t�� i��� i exp�t/� i �5�

or i� �1,2,3�, with the convention that k1 �k2 �k3. For a body of
evolution, L2�L3 for a rodlike object �Pasion and Oldenburg,
001� and L1�L2 for a platelike object.

A bound-constrained optimization problem is solved for the three
olarization tensor components, their three Euler angles, and the
hree position coordinates of the source �Branch et al., 1999; Billings
t al., 2002�.
eature extraction for cooperative inversion of TEM
nd magnetic data

In cooperative inversion, multiple data are inverted sequentially;
he results of the first inversion constrain the second �Pasion et al.,
008�. This prior information can be introduced formally into the
ayesian formulation through the prior p�v�, where v is a vector of
odel parameters. Commonly utilized priors include Gaussian and

niform priors �i.e., a constant probability density function �PDF�
or a parameter between two limits and zero probability outside
hese limits�. The solution to the inverse problem, given observed
ata dobs, utilizes a Gaussian prior with hard bounds:

minimize 	�v��	
j

1

2
 j
2 �v j� v̄ j�2�

1

2
�Vd

�1/2�dobs

�F�v���2, subject to vi
L�vi�vi

U,

�6�

here j represents the index of parameters distributed as Gaussian
DFs with standard deviation 
 j, Vd

�1/2 is the inverse square root of
he data covariance matrix, and F�v� is the forward model operation
returns predicted data given the model parameters v�.

We used a three-step strategy for cooperatively inverting magnet-
cs and electromagnetics data. First, the magnetics data were invert-
d for a best-fit dipole. Second, the dipole location was used to define
j �for j�1, 2, and 3 that correspond to the easting, northing, and
epth of the dipole� and the standard deviation of the parameter un-
ertainties used to define 
 j. The estimated model-parameter stan-
ard deviations were obtained from the Gauss-Newton approxima-
ion to the Hessian at the optimum model location �e.g., Billings et
l., 2002�. Third, we inverted the EM data using the prior obtained
rom the magnetics data in step 2.

Inevitably, there were anomalies in the TEM data that did not have
orresponding magnetic fits, and vice versa. Where no constraints
rom magnetometer data were available, the TEM data were invert-
d using the same procedure as for single inversion.

ata-quality considerations using a figure of merit
FOM)

In all data sets, there are a number of targets whose observed fit
btained through the inversion process is unsatisfactory and must be
ailed. These failed fits were classified as “can’t analyze” and would
ave resulted in a significant number of excavations. We therefore
nvestigated methods to reduce the number of items that needed to be
xcavated, hoping to maintain the same probability of correct classi-
cation.
Close scrutiny of failed inversions and inversions that yielded in-

ccurate depth estimates on the GPO and ground-truth targets re-
ealed that poor inversions could be tied to certain features of the
ata or the inversion. This motivated us to identify and establish
ules to define a confidence factor for a given inversion. We consid-
red several criteria that we gathered under a so-called figure of mer-
t �FOM�, which comprises the following data features:

Signal-to-noise ratio �S/N� should be above a given threshold for
reliable inversion of each time channel; S/N should decay with
time if the sensor operates properly and noise estimates are accu-
rate.
Data coverage of anomaly should sample the spatial decay of the
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UXO discrimination at a military site B107
EM scattered field to allow recovery of orthogonal polarizations.

he data inversion features include the following:

Quality of fit — misfit, correlation coefficient.
Variance of estimated depth — there can be several solutions of
the inverse problem with similar misfits but distributed over a
large range of depth.

ull details and quantitative descriptions of each FOM metric are
rovided in Lhomme et al. �2008�.

iscrimination methodology

For the magnetic data, the primary discrimination diagnostic was
ased on the size of the dipole moment �with a preference to dig
tems with larger moments�. For test purposes, we compiled a sec-
nd discrimination ranking using the apparent magnetic remanence
equation 2�. Data from the GPO and the initial release of training
ata were used to determine appropriate thresholds for dipole size
nd remanence. The dipole-size threshold was selected based on the
inimum moment of a 4.2-inch mortar encountered in the GPO and

raining data, with an extra safety margin built in to account for error
n estimating the depth of the dipole �which could cause an underes-
imate of the size of the moment�. The remanence threshold was set
t 10% larger than the maximum apparent remanence encountered in
he GPO and training data.

For the statistical classification, we used data over the GPO and
he initial training grids to determine which feature vectors and sta-
istical classifier to use. A probabilistic neural network �PNN� was
rained on a size and a time-decay feature extracted from anomalies
n the GPO �thirty 4.2-inch mortars and eight cutter items� and the
artial release of ground truth �29 mortars and 179 clutter items�.
he PNN classifier models the underlying statistical distributions as
superposition of Gaussian kernel functions centered on each train-

ng vector, with the kernel width set to the standard deviation of the
eature vectors in the UXO class. The size feature was chosen as the
ase-10 logarithm of the maximum instantaneous polarization at
ime channel 1 for the EM61 and the base-10 logarithm of the largest
asion-Oldenburg k-parameter for the EM63. Relative time decays
ere calculated as the ratio of the principal polarizations of the third

nd first time channels for the EM61 and as the ratio of the principal
olarizations at the fifteenth and first time channels for the EM63.
he size and time-decay features were then normalized so they had
ero mean and unit variance. Stop-digging points were selected by
isually inspecting the training data and the PNN probability sur-
ace.

From the extracted feature vectors, the following five statistically
ased dig sheets were produced:

� MTADS-EM61, using statistical classification of features de-
rived from the MTADS-EM61 data

� Contractor EM61, using statistical classification of features de-
rived from the Contractor’s EM61 data

� EM63 cued, using statistical classification of features derived
from the EM63 cued-interrogation data

� MTADS-EM61 and magnetics as for dig sheet 1 but with
MTADS-EM61 fits constrained by the magnetics data and add-
ing features from the magnetometer data �remanence, moment,
etc.�

� EM63 and magnetics as for dig sheet 4 but with the EM63.
RESULTS FROM CAMP SIBERT

urvey-mode data

Figure 2 plots the two feature vectors for the MTADS magnetics,
M61 cart, MTADS-EM61, and MTADS-EM61 cooperative data
ets over the decision surface, with separate plots for the training and
est data. For magnetics, the training data revealed several 4.2-inch

ortars with relatively large remanence �Figure 2a�.All mortars had
oments greater than 0.17 Am2 and could therefore be considered

arge. Consequently, the size of the moment �not the remanence� was
sed to prioritize the dig list. We also produced a remanence priori-
ized dig list so that we could test performance using that discrimina-
ion metric. Assuming a 5-cm error in the depth estimate of the di-
ole moment at the surface, we anticipated that all mortars would be
ecovered with a threshold of 0.109 Am2, which we decreased to
.1 Am2 for an extra safety margin. In other words, we recommend-
d digging all anomalies with moments greater than 0.1 Am2.

Feature vectors within the UXO, partial rounds, and base-plate
lasses are more tightly clustered for the MTADS-EM61 than for the
M61 cart, with further improvement evident in the cooperatively

nverted MTADS-EM61. This indicates higher-quality data ob-
ained using the MTADS-EM61 array, which has the additional ca-
ability over the EM61 cart of recording sensor orientation by incor-
orating IMU and collecting orthogonal sets of survey lines. Further
mprovements are obtained when the EM61-MTADS is coopera-
ively inverted because incorporating the MTADS magnetometer

easurements considerably improves the accuracy of the estimated
epths. For all three data sets in Figure 2, we used two decision
oundaries: an aggressive one for high FOM anomalies and a less
ggressive one for low FOM anomalies. For each of the three data
ets, all 4.2-inch mortars lay on the appropriate side of the “high-
onfidence UXO” decision boundary.

Figure 3 compares the magnetometer, EM61, MTADS-EM61,
nd MTADS-EM61 cooperative receiver operating characteristic
ROC� curves. The horizontal axis shows the number of unnecessary
xcavations required �items that had to be dug but were not 4.2-inch
ortars� with the vertical axis, showing the proportion of mortars in

he test set that were recovered. A solid dot represents the operating
oint �i.e., the stop-digging point� of each classification method.
ome anomalies had insufficient S/N or data coverage to constrain

he TEM model parameters. This included anomalies with overlap-
ing signatures that could not be isolated and inverted one at a time.
ll such anomalies were labeled “can’t analyze” on the dig sheet and

xcavated as potential UXO. When including the “can’t analyze”
ategory �Figure 3a�, the magnetometer data require the fewest num-
er of false-positive �FP� excavations at its operating point �170
ompared to 264, 344, and 275 for the EM61, MTADS-EM61, and
TADS-EM61 cooperative�. For the non-UXO items, 72% can be

eft in the ground with the magnetometer data, compared to 33%,
4%, and 55% for the other data sets. When excluding the “can’t an-
lyze” category �Figure 3b�, it is evident that feature vectors extract-
d from the MTADS-EM61 and MTADS-EM61 cooperatively in-
erted data are more highly discriminatory than the magnetometer or
M61.

ddressing the problem of the large number of “can’t
nalyze” anomalies

The MTADS-EM61 and MTADS-EM61 cooperative algorithms
ad to deal with many geologic detections that could not be fit by the
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dipole model and hence had to be listed as “can’t
analyze.” These extra false detections caused the
MTADS classifiers to have poorer performance
than the magnetometer and EM61 cart when
“can’t analyze” anomalies were included. Most
of these geologic alarms were caused by the
bouncing movement of the cart as it traversed fur-
rows in the plowed field on the southwest section
of the site. When the distance between the cart
and the ground decreased, there was an increase
in the amplitude of the response from the soil,
which often was large enough to trigger a false
detection.Ascatter plot of the total energy of time
channel t1 of the east-west versus north-south
transects �Figure 4a� shows that most of the geo-
logic anomalies have 18–23 dB of energy north-
south �perpendicular to furrows� compared to
5–18 dB east-west �parallel to furrows�.

To reduce the number of geological anomalies,
we decided to try to develop a metal/soil discrimi-
nator based on the relative energy in the two di-
rections. This was to be applied as a prescreener
before submitting the anomaly to the polarization
tensor-fitting routines. We used the GPO and ini-
tial training data to investigate different potential
classifiers and used two classes: one comprising
the geologic anomalies and the other comprising
all metallic anomalies minus fragmentation �the
S/N of anomalies resulting from fragmentation
was generally very low, and there often were sig-
nificant differences between the north-south and
east-west transects�. After initial experimenta-
tion, we settled on a quadratic discriminant analy-
sis classifier because it produced the most intu-
itively reasonable discrimination boundary. We
then plotted the cumulative distributions of the
different classes against the metal probability
Pmetal �Figure 4c�. Approximately 50% of geolog-
ic anomalies had Pmetal � 0.3, with the first UXO
occurring at Pmetal�0.4. We therefore selected an
operating point of Pmetal � 0.3.

Figure 4b shows a feature vector plot of the
blind-test data, and Figure 4d shows cumulative
distributions of the different classes.At the select-
ed operating point, 55% of geologic anomalies
would be rejected, along with 14% of shrapnel,
8% of scrap metal, and less than 3% of partial
rounds and base plates. Most importantly, no
UXO would be rejected by the prescreener. It
would have excluded 119 geologic anomalies
from further analysis: 116 of these were in the
“can’t analyze” category and had to be excavated.
In total, the prescreener could have reduced the
number of “can’t analyze” anomalies by 130
�from 285 to 155�. For the MTADS-EM61 coop-
erative inversion, the reduction would have
dropped from 226 to 116.

Note that this prescreener was applied retro-
spectively and was not used for the initial submis-
sion of dig sheets.
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UXO discrimination at a military site B109
ued-interrogation-mode data

The EM63 was deployed in a cued-interrogation mode over a sub-
et of anomalies; the blind-test data comprised 150 items that con-
ained 34 UXO. Statistical classification results are presented for
M63 data and EM63 cooperatively inverted data in Figures 5 and 6.
s with the EM61 data sets, discrimination was based on a PNN

lassifier with a size-based and a time-based feature vector. The size-
ased feature vector was the k1-parameter from the primary polariza-
ion, with the ratio of primary polarizations at the fifteenth and first
ime channels used as the time-decay parameter. The UXO, partial
ounds, and base-plate classes are tightly clustered in both data sets,
ith fewer variation in the cued-interrogation data �Figure 5�. The
XO class for the EM63 data contain two outliers, one of which

auses the false negative evident in Figure 5b.At the selected operat-
ng point, the EM63 statistical classification required 38 false posi-
ives �30 of these were “can’t analyze”�, but one 4.2-inch mortar was

issed.
The EM63 false negative was from a 4.2-inch mortar buried at

0 cm that was predicted to be at 5 cm. The shallower solution depth
nderestimated the size of the item and resulted in the feature vector
ying outside the main cluster of the 4.2-inch mortar class. Inspec-
ion of the observed data and model fit reveals a very poor fit to one
f the transverse lines in the cued-interrogation data �Figure 7�. This
ine of bad data should have been identified and removed so that the
alse negative would have been a consequence of a quality-control
QC� failure. A misfit versus depth plot �Figure 8� reveals two mini-
a: one at the shallow solution and another close to the true depth of

0 cm. The shallower solution has a slightly lower misfit and hence
s selected by the optimization algorithm.After removing the corrupt
ine of data, the misfit of the shallow solution increases and the deep-
r solution is preferred �Figure 8�. A better size estimate results, and
he feature vector for the anomaly lies within the same tight cluster
s the rest of the mortars. When the depth constraints from the mag-
etometer were used, the deeper solution was also preferred and the
alse negative was eliminated. This example demonstrates the im-
ortance of careful QC and the benefits of the cooperative inversion
rocedure. Even a simple automated QC process that flags residuals
bove a certain threshold would have identified this anomaly.

When the depth from the magnetometer was used as a constraint
n the cooperative inversion process, the false negative did not occur.
n fact, the EM63 cooperative produced a perfect ROC curve, with
ll 34 UXO recovered and zero false alarms. At the selected operat-
ng point, 21 false positives were required, with 16 of these in the
can’t analyze” category. In Figure 6, we also show an ROC curve
or the MTADS-EM61 cooperative when restricted to the same 150
ued-interrogation anomalies. It results in a perfect ROC curve but
equires 34 FP at the operating point, with six of those in the “can’t
nalyze” category.

ccuracy of inverted depths

Scatter plots of the predicted versus ground-truth depths for each
f the six different sensor combinations are shown in Figure 9. There
s excellent agreement between estimated and actual depths for the

agnetometer, with 85% within 10 cm and 96% within 20 cm. The
M61 cart and MTADS-EM61 display a much larger scatter in actu-
l and predicted depths — 74% and 76%, respectively, within
0 cm. For the EM61, the estimated depths of the deeper 4.2-inch
ortars are particularly poor and contribute to the relatively wide
ange of estimated size observed for that class. The EM61 cart and
TADS-EM61 have a tendency to predict deeper depths for small,

hallow items.
Cooperative inversion considerably improves the accuracy of the

stimated depths: 75% of MTADS-EM61 depths are within 10 cm
ompared to 53% when inverted without magnetometer depth con-
traints. The performance gain is from 75% to 87% within 10 cm
hen the EM63 data are cooperatively inverted.

DISCUSSION

At the Camp Sibert site, the objective was to discriminate poten-
ially hazardous 4.2-inch mortars from nonhazardous shrapnel,
ange, and cultural debris. We have described the performance of six
ifferent discrimination techniques that use data from the MTADS
agnetometer array, a Geonics EM61 cart, the MTADS-EM61 ar-

ay, and the Geonics EM63. From the extracted feature vectors, sev-
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UXO discrimination at a military site B111
n different prioritized dig lists were created: magnetics ranked by
oment, magnetics ranked by remanence, EM61 statistical classifi-

ation, MTADS-EM61 statistical classification, MTADS-EM61 co-
perative inversion and statistical classification, EM63 statistical
lassification, and EM63 cooperative inversion and statistical classi-
cation.
In the blind-test data set, 119 seeded 4.2-inch mortars were left.

ach of the seven methods successfully discriminated the mortars
rom nonhazardous items. For magnetics, the ranking by moment
as better than that of remanence because of relatively large rema-
ent magnetization of several of the seeded items.At the selected op-
rating point, 76% of nonhazardous items were left in the ground and
ll mortars were recovered. Statistical classification of the contrac-
or-collected EM61 data resulted in recovering all 4.2-inch mortars,
ith 59% of nonhazardous items left in the ground. For the MTADS-
M61 and MTADS-EM61 cooperative processes, all mortars were

ecovered, with 52% and 72%, respectively, of nonhazardous items
nexcavated. The MTADS-EM61 results were degraded by the
any “can’t analyze” anomalies that had to be excavated as suspect-

d UXO. Most of these were geologic artifacts caused by cart bounce
s the MTADS-EM61 array traversed perpendicular furrows in a re-
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ently plowed field. Retrospective analysis revealed that many of
hese “can’t analyze” anomalies could have been eliminated using
n FOM or a geologic prescreener. The prescreener was based on a
tatistical classification of feature vectors related to the energy in the
rst time channel in the east-west versus north-south transects of the
TADS-EM61 array. More than 55% of the geologic anomalies

ould be rejected because they had significantly more energy north-
outh �perpendicular to the furrows� than east-west �parallel to the
urrows�.

By excluding the “can’t analyze” category, we revealed the excel-
ent intrinsic discrimination ability of the EM methods, particularly
he MTADS-EM61 cooperative inversion. All 119 mortars were re-
overed with just three false positives, compared to 75, 25, and 8
alse positives for the magnetometer, EM61, and MTADS-EM61,
espectively. Stop-digging points were very conservative, with 103,
15, 59, and 70 false positives for the magnetometer, EM61,
TADS-EM61, and MTADS-EM61 cooperative, respectively.
The EM63 was deployed in a cued-interrogation mode over a sub-

et of anomalies; the blind-test data comprised 150 items that con-
ained 34 UXO. At the selected operating point, the EM63 statistical
lassification required 38 false positives, but one 4.2-inch mortar
as missed. The failure was caused by a corrupt line of data that re-

igure 6. Comparision of ROC curves for the EM63 and EM63 co-
perative data sets: �a� including the “can’t analyze” category; �b�
xcluding the “can’t analyze” anomalies. MTADS-EM61 coopera-
ive results are also shown for comparison. The values for probabili-
y of detection and false positives are discriminatory �disc�.
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ulted in a small, shallow solution with a lower misfit than an alterna-
ive second solution closer to the true depth of burial. When the
epth from the magnetometer was used as a constraint in the cooper-
tive inversion process, the false negative did not occur. In fact, the
M63 cooperative produced a perfect ROC curve, with all 34 UXO

ecovered with zero false alarms. At the selected operating point, 21
alse positives were required, with 16 of these in the “can’t analyze”
ategory.

The depth predictions of the magnetometer data are very accurate,
ith more than 85% within 10 cm and 96% within 20 cm of the true
epths. The EM61 and MTADS-EM61 display a much larger scatter
n actual and predicted depths, with 74% and 76%, respectively,
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igure 7. �a� Data, �b� model, and �c� residual of the
rst time-channel dipole model fit to anomaly 649

n the EM63 data. �d� Profile of the actual and fitted
ata in time channel 1 along the white line in views
a�–�c�.

igure 8. Misfit versus depth curve for the EM63 Pasion-Oldenburg
odel fit to anomaly 649. Two cases are considered: using all data

hat produce a shallow minimum close to the surface and after re-
oving a “bad” line of data wherein the minimum occurs very close

o the true depth of 40 cm �black dashed line�.
ithin 20 cm. For the EM61, the estimated depths of the deeper 4.2
inch mortars are particularly poor and contribute to the relatively
ide range of estimated size observed for that class. The EM61 and
TADS-EM61 tend to predict deeper depths for small, shallow

tems.
Cooperative inversion considerably improves the accuracy of the

stimated depths: 75% of MTADS-EM61 depths are within 10 cm,
ompared to 53% when inverted without magnetometer depth con-
traints. The performance gain is 75%–87% within 10 cm when the
M63 data are cooperatively inverted. The better-constrained
epths of the cooperatively inverted EM models result in less scatter
n the polarizabilities and improved discrimination ability.
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CONCLUSION

It is feasible to use magnetic and EMI data to reduce the number of
onhazardous items requiring excavation when attempting to clear a
ite contaminated with unexploded 4.2-inch mortars. The much
icher information content of the EMI data sets compared to magne-
ometry results in better intrinsic discrimination performance, al-
hough some of the EMI data sets suffer from many “can’t analyze”
nomalies. Many of these were geologic artifacts caused by cart
ounce as the sensor system traversed across furrows in a plowed
eld. Discrimination performance improved significantly when the
epths of the EMI polarization models were constrained using mag-
etometry and/or as EMI data quality and information content in-
reased �denser coverage, longer decay time measured, more accu-
ate positions�.
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