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SUMMARY 
The similitude equation for electromagnetic induction represents an exact integra 
relationship between the conductivity model and field measurements, and has beer 
suggested as a basis for the inversion of magnetotelluric data. In this note, inversion 
of the similitude equation is compared to linearized inversion and found to be 
inadequate in that it implicitly neglects first-order terms. 
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INTRODUCTION 

The magnetotelluric (MT) method uses surface measure- 
ments of natural electromagnetic fields to investigate the 
conductivity distribution of the Earth. Determining the 
conductivity model from a set of MT responses is a 
non-linear inverse problem. Many successful approaches to 
inverting MT responses are based on linearization of the 
data equations. Linearized methods are particularly useful 
when they are used to generate solutions which minimize a 
given functional of the model. Models of different character 
can be constructed by minimizing different functionals. 
G6mez-Trevitio (1987) presented an alternative formulation 
for the MT inverse problem. Using scaling properties of 
Maxwell’s equations, he 9erived an exact, non-linear 
integral equation, known as the similitude equation, relating 
the conductivity model to field measurements. G6mez- 
Treviiio suggested that the similitude equation should be 
investigated as the basis for an inversion procedure which 
parallels linearization in generality. This note compares the 
similitude equation to linearization for MT inversion. 

LINEARIZED INVERSION 

Linearization has proved to be a practical and useful method 
for solving the non-linear MT inverse problem. In the 
linearized approach, the MT response R for the true model 
a ( z )  at period T is expanded about an arbitrary starting 
model ao(z) according to 

R(a,  T )  = R(o0 + 60, T )  
m 

= R(ao,  T )  + G(uo, T, z )  6 4 ~ )  dz + R,, (1) 

where R, represents the remainder term of the first-order 
expansion in conductivity. Assuming R is FrCchet 
differentiable, G is known as the FrCchet kernel, and the 
remainder term is second order in 6u. Neglecting the 

remainder term yields an approximate linear equation 

&?(a, 00, T )  = G(u0, T, Z) ~ u ( z )  dz, (2) b 
where 6R(u, uo) = R ( a )  - R(u,). Substituting 6o(z)  = 
~ ( z )  - uo(z) in (2) leads to a linear expression relating 
known quantities (‘modified’ responses) to a linear 
functional of the model: 

= p ( u 0 .  T,  z)a(z )  dz. (3) 

This expression is in the form of a Fredholm integral 
equation of the first kind, and standard methods of linear 
inverse theory may be used to solve for a model that 
minimizes some functional of a(z). Since higher order terms 
have been neglected, this procedure must be repeated 
iteratively until an acceptable model is achieved. 

This formulation provides considerable flexibility: solu- 
tions of different character may be constructed by 
minimizing different functionals of the model. Oldenburg 
(1983) and Dosso & Oldenburg (1989) have used this 
method to construct extremal models which maximize or 
minimize a box-car average of the conductivity over a 
specified region. These extremal models provide upper and 
lower bounds for the conductivity averages and may be used 
to appraise model features of interest. Constable, Parker & 
Constable (1987), Smith & Booker (1988) and Dosso & 
Oldenburg (1989) have also used the linearized equation (3) 
to construct minimum-structure conductivity models from 
MT measurements. The iterative linearized inversion 
procedure is essentially Newton’s method for operators (e.g. 
Milne 1980, chapter 4), so convergence is generally 
guaranteed provided the starting model is sufficiently close 
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to an acceptable solution, and quadratic convergence can be 
expected when the method converges. 

INVERSION USING T H E  SIMILITUDE 
EQUATION 

G6mez-Trevifio (1987) derived the similitude equation for 
MT in terms of the apparent conductivity u, as response. In 
order to compare the similitude approach to linearization, 
the similitude equation is derived here for the MT response 
R = B / E ,  where B and E represent orthogonal components 
of the magnetic and electric fields measured at the surface of 
the Earth. This derivation also serves to illustrate 
Gbmez-Trevifio's approach. The scaling properties of the 
electric and magnetic fields are well known and follow 
directly from Maxwell's equations: for a scalar k 

1 
k 

E(ku, kT, ~ ) = - E ( U ,  T,  z), 

B(ku, kT, z )  = B(o ,  T,  z ) .  

(4) 

( 5 )  

Thus, the R response scales according to 

B(ku,  kT, 0)  
E(ku, kT, 0)  

R(ku, k T )  = = kR(u,  T ) .  

If k = 1 + h, ( 6 )  becomes 

R ( u + h u ,  T + h T ) = ( l + h ) R ( u ,  T ) .  (7) 
The quantities h a  and hT may be thought of as 
perturbations in conductivity and period which are simply a 
scaling of the original values. The perturbation in the 
response 6 R  is given by 

dR(hU, h T )  = R ( u  + ho,  T + h T )  - R(u, T ) .  

GR(hu, h T )  = hR(u,  T ) .  

(8) 

( 9 )  

Combining (7) and (8) leads to 

However, 6 R  may also be expressed in terms of an 
expansion about T and u: 

+ [C(u, T ,  z ) h u ( z )  dz + R ,  + R,, (10) 

where R ,  and R, are (second-order) remainder terms for 
the first-order expansion of R about u and T.  For the 
response R = B / E ,  the Frkchet kernel is given by 
G(u,, T, 2) = -po[E(uo,  T ,  z ) / E ( u , ,  T ,  O)]' (Oldenburg 
1979). Substituting for 6 R  from ( 9 )  and dividing by h,  (10) 
may be written as 

1 1 
R(u,  T )  = T ""g ' ) + [ G ( u ,  T ,  Z ) U ( Z ) ~ Z  + - R T  h h  + - R , .  

( 1 1 )  

In the limit as h+O, R,/h+O and R,/h-+O and ( 1 1 )  
becomes 

R(u, T ) -  T aT = J]oPG(u, T ,  z )u(z )  dz .  

(12) is the similitude equation for R. It is an exact 

expression relating field measurements and their derivatives 
to the conductivity model and makes no allusion to any 
perturbation or starting model; however, the relationship is 
non-linear in u. By comparison, the linearized equation (3) 
is an approximate expression relating responses to a linear 
functional of u which is accurate to second order. 

G6mez-Trevifio (1987) suggests that since the similitude 
equation relates the response to the model exactly, inversion 
algorithms could be based on this formulation rather than 
on a linearized approximation. The difficulty is that the 
kernel function in (12) is evaluated at the (unknown) model 
u(z) .  G6mez-Trevifio suggested approximating G(u, T, z) 
with G(u,, T,  2) in (12) ,  and solving the resulting linear 
equation for u in an iterative manner. Although he does not 
consider the problem in detail, G6mez-Trevifio suggested 
this approach could form a general inversion procedure for 
MT. 

There are several practical difficulties with an inversion 
algorithm based on the similitude equation. The modified 
data involve both the measured response R(u ,  T )  and its 
derivative with respect to period a,R(u, T). In order to 
evaluate d,R(cr, T ) ,  the response R(u,  T )  must be 
measured at closely spaced periods. Even if this is done, 
estimating numerical derivatives is prone to error and 
therefore the final data are subject to errors that are 
potentially much larger than the measurement errors in 
R ( u ,  T )  alone. In addition, if the inversion algorithm 
converges, all that is required is that the similitude data 
R(u,  T )  - T d,R(u, T )  are reproduced. This does not 
ensure that either R(u,  T )  or 3,R(u, T )  are reproduced 
individually. 

A more fundamental difficulty with inversion via the 
similitude equation involves the approximation of 
G(u, T, z) with G(u,, T,  z) in (12). This approximation is 
equivalent to neglecting an error term R ,  in much the same 
way that expansion ( 1 )  is linearized by neglecting the 
remainder term R,. To illustrate this, the similitude 
equation (12) can be written 

aR(a' $G(u,, T,  z ) u ( z )  dz + R,. (13) R(u, T )  - T 
3T 

The error term R,, which is neglected to invert (13), is given 
by 

R, = [G(u, T, Z) - G(u,, T,  z) ]u (z )  dz.  (14) b 
To determine the magnitude of the similitude error term R,,  
consider the following analysis. Subtract from the similitude 
equation (12) an identical expression evaluated at a,, rather 
than u. This leads to 

6 R  - T - =  G(u, T ,  Z ) U ( Z )  dz "" L= 
- f i (uo ,  T ,  z )uo ( z )  dz. (15) 

After some algebra, (15) may be rearranged to give 

S(6R)  G(u,, T, Z) ~ u ( z )  dz - T -  . 
aT 

But 6 R  - I," G(u,, z) 6u(z)  dz = R,  according to (l), so 
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(16) becomes reduces immediately to the linearized equation 

6 R ( a ,  a,, T )  + %C(o,,, T ,  z)uo(z) dz 

= [C(a,, T ,  z)u(z )  dz .  From (1) it follows that 

2RW 
dT dT 

aG(an' T' 6a(z) dz + T -  , 
d ( 6 R )  

dT 
T-=  TIo 

and so 

Using (19), the similitude equation (13) can be written as 

aR(a' T ,  = p ( u 0 ,  T, z )  dz 
dT 

R(o, T )  - T 

In order to illustrate the order in 6a of the terms, (20) can 
be written as 

R(u, T )  - T dR(a' T ,  - C(a,, T ,  z )a , ( z )  dz 
dT 

SRO + R , - T - .  
dT 

The quantities on the left side of (21) may be considered 
modified data. The first term on the right side is the linear 
functional to be inverted, expressed here in terms of 6a; the 
remaining three terms comprise the error term R, .  The third 
and fourth terms on the right are second order in 6a, but 
the second term is first order in 60. If R,  is neglected in (13) 
then this first-order term is not included in the inversion. 
Writing the similitude equation in this form emphasizes that 
the linear functional to be inverted and the error term are of 
the same order in 60, and any inversion scheme based on 
neglecting this error term is ill-founded. Whether the model 
produced by such an inversion is an improvement on a,, 
depends on the relative size of the linear functionals of 6a in 
(21). At best, an iterative inversion algorithm based on the 
similitude equation might exhibit linear convergence; 
however, convergence is not guaranteed, even as a,+ a. 

A natural question to investigate is whether the first-order 
error term can be included in the inversion rather than 
neglected. In order to include this term, the similitude 
equation (20) may be written to first order as 

1 G(u,, T,  Z) 6 a ( ~ )  dz 

= [G(a,, T, z )u (z )  dz. 

Since R ( a ,  T )  - G(a,, T ,  z )  6a(z) dz = R(a, ,  T )  (to 
first order) according to (2), and Td,R(u, ,  T)= 
R(a,, T )  - I;G(a,, T, z)uo(z) dz according to (12), (22) 

(3) 

This is not a surprising result. The FrCchet derivative of 
the response R with respect to the conductivity is defined to 
be a linear functional which, when applied to the 
conductivity perturbation, produces (to first order) the 
response perturbation (e.g. Milne 1980, chapter 4). The 
FrCchet derivative is unique, therefore the linearized 
equation represents the only linear expression which relates 
6R to 6a [or, using (3), to u itself] which is accurate to first 
order in 6a. Any attempt to devise a linear relationship 
between R and a which is accurate to first order must reduce 
to the linearized equation for R.  

DISCUSSION 

In this note the similitude equation is compared to 
linearization as a basis for the inversion of MT responses. 
The similitude equation is shown to be inappropriate for 
general inversion in that its application implicitly neglects a 
first-order error term. Before the analysis presented in this 
note was carried out, an inversion algorithm based on the 
similitude equation was implemented and tested for 
synthetic cases where R ( a ,  T )  and d,R(a, T )  could be 
computed accurately. For the special case when the true and 
starting models consisted of half-spaces of constant 
conductivity, the algorithm generally converged to the true 
model. However, for models with any appreciable structure 
(even simple two-layer models), the algorithm did not 
converge. Thus it would seem both in theory and in practice 
that the similitude equation is not an appropriate basis for a 
general inversion algorithm. 
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