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addressed this problem.  For example, Edwards et al. (1985)
discuss a specific case where the upper half-space is conductive
seawater, as encountered in the magnetometric offshore electrical
sounding (MOSES) system; Edwards (1988) and Edwards and
Nabighian (1991) concentrate upon estimating the ratio of the
magnetic fields below and above a known conductive layer to infer
the basement resistivity; Sezginer and Habashy (1988) use an
image method for computing the static magnetic field due to an
arbitrary current injected into a conducting uniform half-space;
Inayat-Hussein (1989) gives a new proof that the magnetic field
outside the 1D medium is independent of the electrical
conductivity; Veitch et al. (1990) "indirectly" derive the magnetic
field by applying Stokes' theorem and Ampère's law to the electric
potential, which was presented by Daniels (1977). Unfortunately,
these works are not sufficiently general about the magnetic field to
be used for many current applications.  We elaborate upon these
next.

Theoretically, the 3D conductivity of the earth can be recovered
(to within a multiplicative constant) by inverting MMR data.  In
mineral exploration problems, however, data are acquired by
having only a few current locations, and measurements of the
magnetic field are made on the surface and in a few boreholes.  In
such circumstances, direct application of a 3D inversion algorithm
does not produce a highly resolved conductivity distribution, and
further restriction of model space and incorporation of prior
information is required.  In particular, the inversion produces much
better results when looking for 3D targets within a known 1D
background.  The critical importance of background conductivity
on the recovery of 3D targets requires that we develop a 1D MMR
forward modelling and inversion solution (Chen et al., 2004).  In
practice, it is possible to use the 1D frequency-domain solution for
a grounded wire source with the frequency set "sufficiently" low.
The frequency domain solution has been extensively studied (Wait,
1982; Ward and Hohmann, 1991; Sorenson and Christensen,
1994).  However, it is more satisfactory to have a direct solution
rather than relying on asymptotic behaviour.  A second reason for
pursuing our solution is that it forms the basics for development of
a formula by which to estimate apparent resistivity in marine
MMR (Chen and Oldenburg, 2004), which allows first order
information about conductivity of the seafloor to be obtained
directly from the data.  The apparent resistivity is defined from the
azimuthal component of magnetic field at the sea bottom.  This
magnetic field is related to the relative geometric positions of
transmitter wire and the observation point, the thickness of
seawater, and the resistivities of the two-layered model (including
the seawater).  This requires an explicit expression between the
magnetic field and the seafloor resistivity, and the ability to take
into account the geometric difference between the transmitter wire
and receiver that arises because of the bathymetry of the sea floor.

In this note, we derive the magnetic field directly from solving
a boundary value problem, similar to the approach used by
Edwards (1988), and then briefly discuss simplifications in a
homogeneous and two-layered earth.  The solution is compared
with a published example.
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ABSTRACT

We derive a numerical solution of the steady-state magnetic
field due to a DC current source in a layered earth model.  Such a
solution is critical for interpretation of magnetometric resistivity
(MMR) data.  Our solution is achieved by solving a boundary
value problem in the spatial wavenumber domain and then
transforming back to the polar spatial domain.  The propagator
matrix technique is used to interrelate solutions between layers.
Two simplified cases are examined to promote understanding of
the magnetic fields.  In particular, the derived formula illustrates
why surface MMR data are insensitive to 1D conductivity
variations and why borehole measurements are effective in finding
conductivity contrasts.

INTRODUCTION

The magnetometric resistivity method (MMR) has recently
become an additional electrical prospecting technique used for
finding mineral resources (e.g., Bishop et al., 1997).  This
technique is based on the measurement of low-frequency magnetic
fields associated with non-inductive current flow in the ground
(which is numerically regarded as "direct current" or DC).  In
contrast to the commonly used DC resistivity method in which
electric fields are measured, MMR has its own unique
characteristics.  For example, surface MMR data are insensitive to
1D variation of conductivity, but down-hole MMR data are
dependent upon layered structure.  For interpreting downhole data,
we are required to separate the observed data into a "background"
field (we call it B

1d in this note), which is attributed to the 1D
background host material, and an anomalous response due to a 2D
or 3D target body.  Our experience has shown that a good
understanding of the background field in a layered earth is critical
to the success of a 3D inversion of field data (Chen et al., 2004).

As pointed out by Veitch et al. (1990), the general solution for
the magnetic field within a layered earth excited by a point source
has not been fully explored, although some researchers have
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MAGNETIC FIELD DUE TO A SEMI-INFINITE SOURCE
IN A 1D EARTH

As shown in Figure 1, a semi-infinite vertical wire AOC carries
an exciting current I and terminates at the location C.  The
electrode C is placed deliberately at the interface z = zs of layer s
and layer s+1 to simplify the mathematics.  Each layer has a
constant conductivity σj with thickness hj for the upper N–1 layers.
In a source-free region, the magnetic field H can be written as

. (1)

The problem is axisymmetric, and H has only an azimuthal
component in cylindrical coordinates (r, φ, z).  For simplicity, we
use H to represent the azimuthal component in the following
derivations.  Expanding equation (1) yields

. (2)

Since σ is a constant in each layer, the fourth term in equation
(2) can be deleted so

. (3)

This expression is the same as equation (6) in Edwards and
Nabighian (1991), except that we use field H instead of B.  The
advantage of using H is that it is independent of the magnetic
permeability in this unique situation.  If values of B are required,
they can be obtained by computing B = µH, where µ is the
magnetic permeability at the observation location.  In fact µ can be
any function of z.  Because of the symmetry, H has only an
azimuthal component, and there is no magnetization or "magnetic
charges" accumulated at the interfaces of different layers.
Therefore, we only need to solve for magnetic field from equation
(1).  The conservative law ∇⋅B = 0 is automatically satisfied for our
problem.

Following Edwards and Nabighian (1991), we define a Hankel
transform pair as

(4)

and

, (5)

where J
1

is the Bessel function of the first kind of order one.  The
Hankel transform of equation (3) results in the simple second order
equation

, (6)

where 
∼
Η is the magnetic field in wavenumber λ domain.  A

complementary solution to equation (6) in any layer j is

, (7)

where 
∼
Dj and 

∼
Uj are the downward and upward propagation

coefficients, independent of the variable z, which can be
determined through a propagator matrix by applying the boundary
conditions.  In order to determine 

∼
Dj and 

∼
Uj, we use the boundary

conditions: the azimuthal component of H field and the radial
component of E are continuous across the interface, i.e.,

(8)

and

. (9)

The radial and vertical components of E are related to H
through

(10)

and

. (11)

In addition, we also have to use two other constraints, i.e.,

, (12)

and no current crosses the air-earth interface

. (13)

Therefore, the 2N unknown coefficients can be determined
from the 2(N–1)+2 equations.

A General Solution for a Two-layered Earth

It is insightful to derive the solutions for a 1D earth that has a
top layer of conductivity σ

1
overlying a half-space of conductivity

σ
2
.  The current electrode is located at the interface z = z

1
.  In layer

1,
∼
Η

1
consists of two parts (Wait, 1982); one is the complementary

solution 
∼
Η

1

s, shown in equation (7), and the other part is the
particular solution 

∼
Η

1

p
, which is

. (14)

Therefore,
∼
Η

1
is given by

. (15)

In the second layer,

. (16)

Use of the above boundary conditions allows us to obtain the four
coefficients

(17)

(18)

(19)

. (20)

A special case is when σ
1

= σ
2
, and h

1
is the buried depth of the

electrode.  In this uniform half-space case,

. (21)
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Substituting equations (26) and (29) into (30) and using

, (31)

we obtain

(32)

and

,

, (33)

where all the elements Pij , P'
ij , and Qij (i, j = 1,2) are determined

by

(34)

(35)

and

. (36)

Once 
∼
D1,

∼
U1,

∼
DN have been determined,

∼
Dj and 

∼
Uj in any layer can

be obtained through equations (24) and (27), depending upon
where the observation is.

To summarize, the magnetic field due to a semi-infinite source
in a 1D earth can be computed by

(37)

or

. (38)

Computation of the Electric Field in a 1D Earth

From equations (10) and (11), we can readily obtain the radial
and vertical components of electric field in the wavenumber
domain by

(39)

. (40)

Both magnetic and electric fields in the wavenumber domain
are transformed back to the spatial domain through the Hankel
transform in equation (5).  We use the digital filter by Christensen
(1990) to perform the Hankel transform.

Making use of the integral

(22)

we can transform equation (21) back to spatial domain and obtain

. (23)

N-layered Earth with a Source in Layer s (1 ≤ s ≤ N–1)

If the observation point is located in the source-free region 
(s+1 ≤ j ≤ N–1), the coefficients 

∼
Dj and 

∼
Uj in layer j can be

determined from 
∼
Dj+1 and 

∼
Uj+1 in the lower, j+1, layer through the

relationship

, (24)

where the propagator matrix is

. (25)

When j=s+1, we have

. (26)

Conversely, if the observation point is in the source region 
(1 ≤ j ≤ s),

∼
Dj+1 and 

∼
Uj+1 in layer j+1 can be written in terms of 

∼
Dj and∼

Uj in upper layer j as

, (27)

where the propagator matrix is

(28)

In layer j = s, we have

. (29)

At the interface of layer s and s+1, the boundary conditions in
equations (8) and (9) result in

. (30)
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ANALYSIS

As shown in Figure 1, the total B field is a linear superposition
of the magnetic field due to the wire current (AOC), Bw, and to the
earth current, i.e., the field B1d.  As mentioned before, there is only
an azimuthal component because of the symmetry of the problem.
For the following, we assumed that the magnetic permeability µ in
each layer is equal to that in the air.  Two special cases are of
interest.

A Uniform Half-space

Consider Figure 2 in which a current source I is at a depth h.  To
model this we return to Figure 1 and the work done above.  Bw can
be obtained by a simple Biot-Savart integral over the semi-infinite
wire from A to C,

, (41)

where h is the depth of the buried point source, and r and z are the
radial and vertical coordinates of the observation point in a
cylindrical coordinate system.  The total B field has been derived
in equation (23).  Therefore, the field due to the earth current is

. (42)

This expression proves the validity of the equivalent current
filament model, as proposed by Nabighian et al. (1984).
According to the filament model, the magnetic field on and below
the earth's surface, due to a current source of strength I buried at
depth h, is exactly equivalent to the magnetic field generated by a
current filament of strength I which flows downward from infinity
and terminates at a height h above the surface (see Figure 2).
Equation (42) is also consistent with the expression (3) shown by
Veitch et al. (1990) using the image method.

When the buried depth h = 0, and the observation point is on the
surface of the earth, i.e., z = 0, equation (42) is simplified as

. (43)

This is a very important point for surface MMR.  It shows that
the magnetic field is insensitive to the conductivity beneath the
surface, and only related to the geometry between the source
electrode and receiver.  This is also true for the downhole MMR in
a uniform half-space, as seen from equation (42).

A Two-layered Earth

Assume the electrode is located at the interface of σ
1

and σ
2
,

i.e., h = h
1
.  The existence of a conductivity interface changes the

pattern of current flow, and consequently changes the magnetic
field.  To quantify the difference from the half-space case, the field
B

1d can be split into two parts: one due to the primary current flow
in a uniform half-space (conductivity σ

1
), denoted by Bp

1d, and the
other due to the secondary (or perturbed) current flow, denoted by
Bs

1d, i.e.,

. (44)

As shown in equation (15), generally we may not obtain a closed
form for the magnetic field in the spatial domain; instead, we
discuss it directly in the wavenumber domain where this field is
represented with a tilde (

∼
B).  Since we have the total 

∼
B(λ,z)

(equation (15)), the wire 
∼
Bw (transformed from equation (41)), and

the primary Bp

1d (transformed from equation (42)), the secondary

Bs

1d in layer 1 can be obtained from
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Fig. 1. A schematic of a semi-infinite wire source terminating at an
interface in a N-layered earth.

Fig. 2. A point current source buried at a depth h, in a uniform half-
space, and its equivalent current filament.

. (45)

This expression shows that the secondary field Bs

1d depends
upon the conductivity ratio (σ

2
/σ

1
), as well as other geometric

factors.  When the measurement is made on the surface (z = 0),
however, the last two exponential terms in equation (45) cancel
each other, and the secondary field is null.  This is a fundamental
difference between the downhole MMR and surface MMR
methods.

To better understand this point, we compute the current density
distribution through formula (39) and (40) and then transform the
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result to the spatial domain.  The source electrode is located on the
surface, and the depth of the first layer is 50 m.  The conductivity
contrast between layer 2 and layer 1 is 10.  The maps of the total,
primary, and secondary current densities on a cross-section are
plotted in Figure 3a, 3b, and 3c, respectively.  The associated total,
primary, and secondary Bx are also shown in Figure 3d, 3e, and 3f.
We note that Bz is zero since all of the magnetic fields are
azimuthal.  For this particular cross-section, and coordinate
system, By is also zero.

As seen from Figure 3c, the secondary current is axially
symmetric around the vertical coordinate axis passing through the
source, so it depends only on r and z.  Edwards and Nabighian
(1991) refer to this as a poloidal current and this figure is a
numerical substantiation of their sketch of the secondary currents.
Because of the symmetry of the fields, we can apply Ampère's law
on a horizontal plane at depth to get

, (46)

where Is

1d is the current strength enclosed in the circle of radius r
centred on the axis.  Clearly, Is

1d has some value beneath the surface
and Bs

1d is definitely not zero, as seen in Figure 3f.  When
measuring on the surface or above, Is

1d = 0, and Bs

1d = 0.  This
explains, in another way, why we end up with no response from a
1D conductivity variation when making measurement at the
surface of a layered earth.

To provide further physical insight, a companion figure to
Figure 3 is added to demonstrate the behaviour of J1d and B1d in
vector plots for a conductive overburden.  In this case, the
conductivity contrast between layer 1 and layer 2, i.e., σ

1
/σ

2
, is 10.

As shown in Figure 4, the primary current density and primary Bx

are identical to Figure 3b and 3e.  For the secondary current
density and field, they just flip the signs, compared to those in
Figure 3.  Consequently, the total current density and Bx field
(Figure 4a and 4d) change dramatically.

Borehole Measurements

To obtain insight about the magnetic fields in a borehole, we
use the example discussed by Veitch et al. (1990).  As shown in the
inset in Figure 5, a single buried transmitting electrode is located
at a depth of 25 m, and the receivers are in a vertical borehole that
is 50 m away from the source electrode.  The conductivity contrast
(σ

1
/σ

2
) is varied from 0.2 to 100.  The azimuthal component of the

magnetic field clearly shows the position of the conductivity
boundary.  This is regarded as one of the advantages for downhole
MMR compared to electric potential profiles (Veitch et al., 1990).
In addition, this plot is almost identical to Veitch et al.'s Figure 7a,
and helps to verify the solution derived in this note.

In addition, when we fix σ
1
/σ

2
= 10, but only change the depth

d of the source electrode, varying from 0 (at the surface), going
down through the conductive overburden, and to 200 m in the
resistivity basement, we have magnetic field distributions shown in

Chen and Oldenburg Magnetic Field in 1D

Fig. 3. Current density and magnetic field Bx distributions over a two-layered earth.  The inset is the 1D model used.  The total current is shown in
(a).  This can be decomposed into a primary current of a uniform half-space and a secondary current due to the presence of the conductivity interface
at depth 50 m.  These are shown in (b) and (c) respectively.  The corresponding total, primary, and secondary Bx are in (d), (e), and (f).  The vertical
component of B is zero everywhere inside the earth.
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Fig. 4. Current density and magnetic field Bx distributions over a two-layered earth with a conductive overburden.  The conductivity contrast σσ
1
/ σσ

2
is 10.

Fig. 5. The magnetic field B1d variation versus conductivity contrast 
σσ

1
/ σσ

2
for a two-layer earth.  The inset is the 1D model used, and the

conductivity contrast σσ
1

/ σσ
2

is labelled on the respective profile.

Fig. 6. The magnetic field B1d variation versus depth of the source
electrode for the two-layer earth shown in Figure 5.  The conductivity
contrast σσ

1
/ σσ

2
is fixed at 10.  Depth d is labelled on the respective

profile.
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Figure 6.  All these results are in an excellent agreement with those
in Figure 6a presented by Veitch et al.

CONCLUSION

We have derived a general solution for the magnetic and
electrical fields due to a point source in a layered earth.  This
solution is relevant to interpreting downhole and marine MMR
data, in which 1D inversion and calculation of apparent resistivity
soundings are required.  The solution also provides a theoretical
base from which to understand certain unique behaviours of MMR
data.
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