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S U M M A R Y
Two automatic ways of estimating the regularization parameter in underdetermined, minimum-
structure-type solutions to non-linear inverse problems are compared: the generalized cross-
validation and L-curve criteria. Both criteria provide a means of estimating the regularization
parameter when only the relative sizes of the measurement uncertainties in a set of observations
are known. The criteria, which are established components of linear inverse theory, are applied
to the linearized inverse problem at each iteration in a typical iterative, linearized solution to
the non-linear problem. The particular inverse problem considered here is the simultaneous
inversion of electromagnetic loop–loop data for 1-D models of both electrical conductivity
and magnetic susceptibility. The performance of each criteria is illustrated with inversions of
a variety of synthetic and field data sets. In the great majority of examples tested, both criteria
successfully determined suitable values of the regularization parameter, and hence credible
models of the subsurface.

Key words: electromagnetic methods, inversion, regularization.

1 I N T RO D U C T I O N

The inverse problem of determining a plausible spatial variation of
one or more physical properties within the Earth that is consistent
with a finite set of geophysical observations can be solved by formu-
lating it as an optimization problem in which an objective function
such as

�(m) = φd(m) + βφm(m) (1)

is minimized. The vector m contains the M parameters in the Earth
model, φd is a measure of data misfit, φm is a measure of some
property of the Earth model, and β is the regularization parameter
that balances the effects of φd and φm. Here, the typical sum-of-
squares misfit:

φd(m) = ∥∥Wd[dobs − d(m)]
∥∥2

(2)

is considered, where dobs = (dobs
1 , . . ., dobs

N )T is the vector containing
the observations, d(m) is the vector containing the data computed
for the model m, and ‖ · ‖ represents the l2 norm. It is assumed
that the noise in the observations is Gaussian and uncorrelated.
The weighting matrix Wd is therefore the diagonal matrix Wd =
diag{1/σ 1,. . .,1/σ N}, whereσ i is the standard deviation of the noise
in the ith observation. It is also assumed that the relative sizes of
the standard deviations are known, with only their absolute sizes
unknown. That is, σ i can be expressed as σ0σ̃i , where the σ̃i (i =
1, . . . , N ) are known and the constant σ 0 is unknown.

Also, the following measure of the amount of structure in the
model is considered:

φm(m) = αs

∥∥Ws

(
m − mref

s

)∥∥2 + αz

∥∥Wz

(
m − mref

z

)∥∥2
, (3)

where mref
s and mref

z are two possibly different reference models.
The elements of the weighting matrices Ws and Wz are obtained by
substituting the discretized representation of the Earth into

ϕs(m) =
∫ ∞

z=0

∣∣m(z) − mref
s (z)

∣∣2
dz, (4)

and

ϕz(m) =
∫ ∞

z=0

∣∣∣∣ d

dz

[
m(z) − mref

z (z)
]∣∣∣∣

2

dz, (5)

respectively, and approximating the derivative in eq. (5) by a finite
difference. The coefficients αs and αz enable the appropriate balance
between the two components of φm to be achieved for a particular
problem. It is also assumed that the discretization of the Earth model
is sufficiently fine that the discretization does not regularize the prob-
lem. This invariable makes the discrete inverse problem of finding
the parameters in the model underdetermined, thus mimicking the
underlying inverse problem of finding the physical property as a
function of position.

A crucial part of the solution process is deciding on a suitable
value of the regularization parameter β. It should be chosen such
that the observations are reproduced to a degree that is justified by
the noise, and that there is not excessive structure in the constructed
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model. If the standard deviations of the noise are known, the expec-
tation, E(φd), of the misfit given by eq. (2) is equal to the number
of observations, N . A straightforward univariate search can be used
to find a value of β that results in φd ≈ N . This is known as the dis-
crepancy principle (see, for example, Hansen 1997), and has been
used extensively for geophysical inverse problems (see, for exam-
ple, Constable et al. 1987). If, however, the noise in the observations
is not well known, some means of automatically determining an ap-
propriate value of the regularization parameter during the course of
an inversion is required.

For linear inverse problems, several techniques have been de-
veloped for automatically estimating an appropriate regularization
parameter when the observations are contaminated with Gaussian
noise of uniform, but unknown, standard deviation. A number of
authors, for example Wahba (1990) and Hansen (1997), choose the
value of the regularization parameter that minimizes the generalized
cross-validation (GCV) function. Hansen (1997) chooses the value
corresponding to the point of maximum curvature on the ‘L’-shaped
curve obtained when φd is plotted as a function of φm for all possible
values of the regularization parameter. And Akaike (1980) chooses
the value that minimizes a Bayesian information criterion (ABIC)
function.

There have been a few reports in the mathematical literature of
the successful use of the GCV and L-curve criteria to choose the
regularization parameter in non-linear problems. Vogel (1985) used
the GCV criterion in a Newton-type solution to a simplified inverse
scattering problem; Amato & Hughes (1991) used the GCV crite-
rion in the inversion of the standard Fredholm integral equation of
the first kind, which was non-linear because of their choice of an
entropy measure as the regularization term; and Smith & Bowers
(1993) investigated both the GCV and L-curve criteria in a quasi-
Newton/trust-region inversion of the 1-D diffusion equation for a
spatially varying diffusion coefficient.

Recently, there have been applications of the GCV and L-curve
criteria to the solution of some non-linear inverse problems en-
countered in geophysics. Haber (1997) and Haber & Oldenburg
(2000) proposed the use of the GCV technique in conjunction with
a damped Gauss–Newton step in the solution of non-linear inverse
problems, and applied their algorithm to the 1-D inversion of mag-
netotelluric data, and the inversion of gravity data for the depth
to the interface between two layers of contrasting densities. Li &
Oldenburg (2003) used the GCV technique in their solution to the
linear inverse problem of constructing a 3-D susceptibility model
from magnetic data, and used the obtained value of the regulariza-
tion parameter in the subsequent non-linear inversion when positiv-
ity was imposed on the susceptibility. Li & Oldenburg (1999) also
used the L-curve technique and a damped Gauss–Newton step in
their 3-D inversion of DC resistivity data. Finally, Walker (1999) in-
vestigated the use of the GCV method, in conjunction with a damped
Gauss–Newton step, in the inversion of electromagnetic loop–loop
data for a 1-D conductivity model of the Earth. One of Walker’s
observations was that this approach sometimes put excessive struc-
ture in the model at early iterations, which was then difficult and
time-consuming to remove at later iterations.

In addition, Akaike’s Bayesian information criterion has been
applied by Uchida (1993) and Mitsuhata et al. (2002) to the 2-D
inversion of magnetotelluric and controlled-source electromagnetic
data. We do not include this approach in our current discussion, but
refer the interested reader to the above publications and references
therein.

Here the use of the GCV and L-curve techniques, along with
the discrepancy principle, are compared and contrasted. As a typ-

ical non-linear problem, the simultaneous inversion of frequency-
domain electromagnetic loop–loop data to recover both the electrical
conductivity and magnetic susceptibility of a 1-D Earth is consid-
ered. The solution is iterative, with a linearized approximation to
the full non-linear inverse problem being solved at each iteration.
The GCV- and L-curve-based techniques are applied to the solution
of the linearized problems. First, the salient features of the iterative
procedure are summarized, as well as the GCV and L-curve criteria,
then their performance illustrated with 1-D inversions of both 1-
and 3-D synthetic data sets, and a field data set.

2 T H E O RY

2.1 Iterative, linearized solution of the non-linear problem

The non-linear optimization problem consists of minimizing the
objective function (from eqs 1–3):

�(m) = ∥∥Wd[dobs − d(m)]
∥∥2 + β

2∑
k=1

∥∥Wk

(
m − mref

k

)∥∥2
, (6)

where W1 = √
αsWs and W2 = √

αzWz , and mref
1 = mref

s and
mref

2 = mref
z . The usual procedure is followed (see, for example,

Gill et al. 1981; Dennis & Schnabel 1996). Let mn−1 be the current
model. A perturbation δm that will reduce �(m), and a value of
the regularization parameter β that provides an optimal trade-off
between misfit and model structure are sought. Assume for the mo-
ment that a suitable value, βn, has been found for the regularization
parameter for the current iteration. Consider also the linear Taylor
series approximation of the data for the model to be found at this
iteration:

dn ≈ dn−1 + Jn−1δm, (7)

where dn = d(mn), δm = mn − mn−1, and Jn−1 is the Jacobian
matrix of sensitivities:

J n−1
i j = ∂di

∂m j

∣∣∣∣
mn−1

. (8)

Substituting eq. (7) into the objective function in eq. (6) gives:

�[mn] ≈ ∥∥Wd(dobs − dn−1 − Jn−1δm)
∥∥2

+ βn
2∑

k=1

∥∥Wk

[
mn − mref

k

]∥∥2
. (9)

Differentiating this expression with respect to the elements of δm
and equating the resulting M derivatives to zero yields the following
linear system of equations to solve:(
Jn−1T WT

d WdJ
n−1 + βn

2∑
k=1

WT
k Wk

)
δm

= Jn−1T WT
d Wd(dobs − dn−1) + βn

2∑
k=1

WT
k Wk

(
mref

k − mn−1
)
.

(10)

The solution to eq. (10) is also equivalent to the least-squares solu-
tion of


WdJ
n−1

√
βnW1√
βnW2


 δm =




Wd(dobs − dn−1)√
βnW1

(
mref

1 − mn−1
)

√
βnW2

(
mref

2 − mn−1
)

. (11)

For the examples presented in this paper, eq. (10) is used when
applying the GCV criterion, and eq. (11) when applying the L-curve
criterion and the discrepancy prinicple.
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Once the model update δm has been determined from the solution
of either eq. (10) or eq. (11), the new model mn is given by

mn = mn−1 + λδm. (12)

The step length λ is successively reduced, if required, by factors of
2 from its initial value of 1 to ensure that the objective function is
decreased, that is, so that

φn
d (λ) + βnφn

m(λ) < φn−1
d + βnφn−1

m , (13)

where φn
d = φd[mn]. This is the damped Gauss–Newton method.

Finally, two of the termination criteria of Gill et al. (1981),
namely:

�n−1 − �n < τ (1 + �n), (14)

‖mn−1 − mn‖ <
√

τ (1 + ‖mn‖), (15)

are used to determine when the iterative procedure has reached
convergence, where �n = �[mn], and τ is specified by the user
(typically 0.01).

2.2 Choosing the regularization parameter:
the discrepancy principle

The discrepancy principle is the method that has generally been
used for choosing the regularization parameter in underdetermined
inverse problems. Hansen (1997) gives a thorough discussion of it in
the context of linear problems. It was used by Constable et al. (1987)
in their Occam’s inversion and by Smith & Booker (1988) for the
inversion of magnetotelluric data for 1-D models of the electrical
conductivity distribution within the Earth.

For the assumed uncorrelated Gaussian noise of zero mean and
standard deviation σ i, the measure of misfit given in eq. (2) is a χ 2

random variable. If the values used for the standard deviations when
calculating φd are known, the expectation of the misfit is equal to
the number of observations, N , with a standard deviation of

√
2N .

The value of the regularization parameter chosen according to the
discrepancy principle is therefore one that results in a model for
which φd ≈ N .

For an iterative, linearized solution to a non-linear inverse prob-
lem, the above argument can be used to choose the regularization
parameter at each iteration, with the misfit calculated using either
the exact forward modelling, as done by Constable et al. (1987),
or the linearized approximation given in eq. (7), as done by Smith
& Booker (1988). The implementation of the discrepancy principle
used for the examples presented in this paper uses the exact forward
modelling. The target misfit of approximately N is not usually attain-
able at early iterations, in which case the value of the regularization
parameter is typically chosen to be the one that gives the minimum
misfit. However, if the regularization parameter is too small at early
iterations, excessive structure can build-up in the model, which can
then require a not insignificant number of additional iterations to re-
move later in the inversion. It is actually more efficient if the starting
value of the regularization parameter is fairly large and restrictions
are placed on its greatest allowed decrease, thus enforcing a slow
but steady introduction of structure into the model. For the examples
presented here, the discrepancy principle is therefore combined with
an imposed cooling-schedule-type behaviour, with the value of β at
the nth iteration chosen to be (Farquharson & Oldenburg 1993):

βn = max(cβn−1, β�), (16)

where 0.01 ≤ c ≤ 0.5, and β� is the value of the regularization
parameter for which φd ≈ N , or for which φd is a minimum.

However, if the standard deviations of the noise in the observa-
tions are not known, as is often the case in reality, then neither is the
expectation of the misfit. Consequently, there is no target misfit for
which to aim in the inversion.

2.3 The GCV criterion

This criterion for defining an appropriate value of the regulariza-
tion parameter is based on the following argument, the so-called
‘leaving-out-one’ lemma (Wahba 1990). Consider the linear inverse
problem of finding the model, m, which minimizes:

N∑
i=1

[
dobs

i − di (m)
]2 + β‖m‖2, (17)

where d(m) = L m, and L is a matrix independent of m. Assume also
that the noise in every observation has the same standard deviation,
that is, σ i = σ 0 (i = 1, . . ., N ). Consider inverting all but the kth
observation using a trial value, β̂, of the regularization parameter,
that is, find the model mk which minimizes:

N∑
i=1
i �=k

[
dobs

i − di (m)
]2 + β̂‖m‖2. (18)

For β̂ to be considered a suitable value for the regularization param-
eter, the kth forward-modelled datum, dk[mk], should be close to the
omitted observation, dobs

k . If this procedure is repeated leaving out
each observation in turn, and all the forward-modelled data dk[mk]
are close to their respective observations, β̂ would be considered a
suitable value of the regularization parameter for the whole set of
observations. The most suitable value can therefore be defined as
the one that minimizes the function:

V0(β) =
N∑

k=1

{
dobs

k − dk[mk]
}2

. (19)

This is the ordinary cross-validation function. It can also be ex-
pressed in a more efficiently evaluated form that does not require
explicit solution of the inverse problem for each omitted observation
(Wahba 1990):

V0(β) =
N∑

i=1

[
dobs

i − di (mβ )
]2

[1 − Aii (β)]2
, (20)

where mβ = (LT L + β I)−1 LT dobs is the solution of the inverse
problem for the particular value of β, and Aii is the ith element on
the diagonal of the matrix A(β) = L(LT L + β I)−1LT .

The ordinary cross-validation function given in eqs (19) and (20)
is not invariant under an orthogonal transformation of L and dobs.
The value of β that minimizes V 0 for the transformed problem
will therefore not be the same as the one that minimizes V 0 for
the original problem, leading to different inversion results for the
two related problems. This should not be the case. A modification
of eq. (20) gives the generalized cross-validation (GCV) function
(Wahba 1990):

V (β) = ‖dobs − d(mβ )‖2

{trace[I − A(β)]}2
, (21)

which is invariant under an orthogonal transformation.
For a non-linear problem solved using an iterative procedure,

the GCV-based method described above can be applied to the lin-
earized problem at each iteration. One would anticipate (assuming
such a procedure converges) that at the final iterations for which the
changes in the model are small and thus the linearized approximation
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is an adequate description of the problem, the GCV criterion would
exhibit the same success that it does for purely linear problems. This
has been demonstrated by Haber & Oldenburg (2000) who showed
for two example non-linear problems that, at convergence, the ob-
tained value of the regularization parameter was a good estimate of
what was expected given the noise in their synthetic data sets. In
addition, they found that the estimates of the regularization param-
eter at the early iterations were close to its ultimate value, implying
that the GCV-based method, and the leave-out-one lemma on which
it is based, can distinguish between the Gaussian noise in a set of
observations and the errors arising from the linear approximation.

For the problem considered here, the GCV function for the nth
iteration is given by (from eq. 10, by analogy with eq. 21):

V n(β) =

∥∥∥Wdd̂ − WdJ
n−1M−1

(
Jn−1T WT

d Wdd̂ + r
)∥∥∥2

[
trace

(
I − WdJ

n−1M−1Jn−1T WT
d

)]2 , (22)

where:

M(β) =
(
Jn−1T WT

d WdJ
n−1 + β

2∑
i=1

WT
i Wi

)
, (23)

r = β

2∑
i=1

WT
i Wi

(
mref

i − mn−1
)
, (24)

and d̂ = dobs − dn−1. The data weighting matrix Wd contains the
estimates of the relative amounts of noise in the observations: Wd =
diag{1/σ̃1, . . . , 1/σ̃N }.

Although the GCV-based estimates of the regularization param-
eter at the early iterations can be close to what its final value will
be, it has been shown by Walker (1999) that using these estimates
can cause too much structure to appear too early in the model. The
GCV criterion is therefore combined with a cooling-schedule-type
behaviour, just as for the discrepancy principle, choosing the value
of β at the nth iteration to be:

βn = max(cβn−1, β�), (25)

where 0.01 ≤ c ≤ 0.5, and β� is the minimizer of the GCV function
given in eq. (22).

2.4 The L-curve criterion

Consider again the linear inverse problem introduced in Section 2.3.
If solutions are computed for all values of the regularization param-
eter β, the graph, using log–log axes, of the misfit ‖dobs − L m(β)‖2

versus the model norm ‖m(β)‖2 tends to have a characteristic ‘L’
shape (Hansen 1997). At the corner of the L-curve, a change in the
value β results in changes of roughly equal significance in both the
misfit and model norm. In contrast, on either of the two branches
of the L-curve, a change in β results in either a small decrease in
the misfit and a large increase in the model norm (for β greater than
that at the corner), or a small increase in the model norm and a large
decrease in the misfit (for β smaller than that at the corner). The
corner of the L-curve can therefore be taken as indicating the value
of the regularization parameter that gives the best balance between
the two opposing components of the objective function.

For a non-linear problem, a value for the regularization param-
eter can be selected by applying the above ideas to the linearized
inverse problem at each iteration (Li & Oldenburg 1999). Again, the
expectation is that at convergence, when the linearized approxima-
tion is an adequate description of the full non-linear problem, the

value of the regularization parameter chosen for the linearized prob-
lem is also suitable for the non-linear problem. At each iteration,
the misfit, φlin

d , computed using the linearized approximation of the
forward modelling given in eq. (7) is plotted against φm. The data
weighting matrix Wd is comprised of the relative uncertainties in
the observations, just as for the GCV-based criterion. The curvature
of the L-curve is computed using the formula (Hansen 1997):

C(β) = ζ ′η′′ − ζ ′′η′

[(ζ ′)2 + (η′)2]3/2
, (26)

where ζ = log φlin
d , and η = log φm. The prime denotes differentia-

tion with respect to log β. Just as for the implementations of the dis-
crepancy principle and the GCV-based approach, the regularization
parameter is chosen at the nth iteration according to the expression:

βn = max(cβn−1, β�), (27)

where 0.01 ≤ c ≤ 0.5, and β� is the maximizer of the curvature of
the L-curve given by eq. (26).

3 E X A M P L E S

3.1 A synthetic 1-D example

The abilities of the GCV- and L-curve-based methods for choos-
ing the regularization parameter are first illustrated with a synthetic
example: the simultaneous inversion of electromagnetic loop–loop
data for 1-D models of both electrical conductivity and magnetic
susceptibility (see also Farquharson et al. 2003). The three-layered
Earth model for which the data were generated is shown by the
dashed lines in Figs 1(b) and (c). A ‘max–min’-type survey config-
uration was considered: a vertical magnetic dipole transmitter 1 m
above the surface of the model, and observations of the vertical com-
ponent of the secondary (i.e. total minus free-space) magnetic field,
also 1 m above the surface, at a distance of 50 m from the transmit-
ter. The real and imaginary parts of the secondary field (normalized
by the free-space field, and expressed as a percentage) were com-
puted for ten frequencies ranging from 110 Hz to 56 kHz. Gaussian
noise of zero mean and standard deviation equal to 5 per cent of
the magnitude of an observation, or 0.001 per cent, whichever was
larger, was added to give the data set to be inverted. The χ2 measure
of the actual amount of noise introduced in this example was 21.8.
The data are shown by the error bars (which are equal in size to the
standard deviations of the added noise) in Fig. 1(a).

The synthetic data set described above was inverted for both
conductivity and susceptibility using the GCV- and L-curve-based
methods to choose the regularization parameter. The Earth models
comprised 50 layers of increasing thickness, with uniform conduc-
tivity and susceptibility in each layer. The parameters sought in the
inversions were the logarithms of the layer conductivities and the
layer susceptibilities. To ensure positivity of the recovered suscep-
tibility, a logarithmic barrier term was included in the objective
function (see, for example, Wright 1997; Farquharson et al. 2003;
Li & Oldenburg 2003). This issue will not be pursued further here,
except to note that both the GCV and L-curve methods were suc-
cessful even with this additional non-linear term in the objective
function.

For all the following inversions, the coefficients αs and αz for
the conductivity half of the model were equal to 0.001 and 1,
respectively, and those for the susceptibility half were equal to 0.05
and 1. The reference conductivity was a homogeneous half-space
of 0.001 S m−1, and the reference susceptibility was a half-space of
0 SI units. The starting model was the best-fitting half-space, and
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Figure 1. (a) The synthetic data set (error bars) for the first example in-
version and the forward-modelled data (solid line, inphase; dashed line,
quadrature) for the model produced by the inversion using the GCV-based
method for choosing the regularization parameter. (b) The conductivities in
the model constructed by the inversion, and (c) the susceptibilities in the
constructed model. The dashed lines in (b) and (c) indicate the model for
which the data were generated.

the initial value of the regularization parameter, β0, was equal to
N/φ†

m, where φ†
m was the model norm computed for a two-layer

model of typical conductivities and susceptibilities (the top ten lay-
ers of 0.02 S m−1 and 0.02 SI units; the remainder of 0.01 S m−1

and 0 SI units). The constant c in eqs (25) and (27) was taken to be
0.5.

The conductivity and susceptibility models produced using the
GCV-based method are shown in Figs 1(b) and (c). Their smeared-
out character is due to the smoothing regularization that was used,
in particular the choice of an l2 norm, and the loss of resolution
with depth. The corresponding forward-modelled data are shown in
Fig. 1(a). It is clear that they reproduce the observations well. The
value of misfit is equal to 19.3, which is slightly less than the amount
of noise (=21.8) introduced into the data set.

The GCV function at each iteration in the inversion is shown in
Fig. 2. The minimum in the GCV function at each iteration is listed

Figure 2. The variation of the GCV function with the regularization param-
eter at each iteration of the inversion of the synthetic data set shown in Fig. 1.
Panel (a) shows the variation for a range of values of the regularization pa-
rameter. Panel (b) emphasizes the variation around the value (60.0) to which
the inversion converged. The iteration to which each curve corresponds is
indicated by the labels.

C© 2004 RAS, GJI, 156, 411–425



416 C. G. Farquharson and D. W. Oldenburg

Table 1. The values of the regularization parameter at the minimum
of the GCV function (β�

GCV) and the values used (βn
GCV) at each

iteration (n) of the inversion of the first synthetic data set using the
GCV-based method. Also the values corresponding to the point of
maximum curvature of the L-curve (β�

L) and the values used (βn
L)

during that inversion.

n β�
GCV βn

GCV β�
L βn

L

1 0.23 228.0 56.1 228.0
2 28.4 114.0 37.3 114.0
3 28.5 57.1 40.0 57.1
4 34.7 34.7 32.5 32.5
5 46.2 46.2 36.8 36.8
6 53.2 53.2 40.0 40.0
7 65.0 65.0 48.4 48.4
8 60.0 60.0 45.7 45.7
9 60.0 60.0 36.6 36.6

in Table 1. The values of the regularization parameter used at each
iteration according to eq. (25) with c = 0.5 are also listed in Table 1.
It can be seen that the restriction on the decrease in β came into
effect at the first three iterations. It can also be seen from Table 1
that the minimizer of the GCV function at all iterations except the
first is a fair estimate of the value of the regularization parameter at
convergence and that it becomes successively closer as the iterations
proceed.

The models produced by the inversion of the first synthetic data
set using the L-curve-based method are shown in Figs 3(b) and
(c). Just as for the results of the inversion using the GCV-based
method, the constructed models are in concordance with the models
from which the data were generated. The forward-modelled data
for the constructed models are shown in Fig. 3(a). Their misfit is
equal to 18.9, which is less than the amount of noise added to the
data (=21.8), and slightly less than the misfit at convergence of the
GCV-based inversion (=19.3).

The L-curves for the iterations in the inversion of the first data
set are shown in Fig. 4(a). The values of the (linearized) misfit, the
model norm and the curvature of the L-curves as functions of the
regularization parameter are shown in Figs 4(b)–(d). The values of
the regularization parameter at the point of maximum curvature on
the L-curves are listed in Table 1, along with the actual values cho-
sen at each iteration according to eq. (27) with c = 0.5. From Fig. 4
it can be seen that the L-curve, and hence its curvature, changes sub-
stantially between the early iterations. However, the L-curves for the
later iterations coalesce into a single curve as the iterative procedure
converges to the solution of the non-linear inverse problem.

The final values of the regularization parameter for the inversions
using the GCV and L-curve criteria (60.0 versus 36.6—see Table 1)
are different despite the closeness of the corresponding values of
misfit (19.3 and 21.8). This reflects the slow variation of the inversion
results with the regularization parameter, as illustrated by the wide,
indistinct minimum of the GCV function in Fig. 2(b) and the wide
maximum in the curvature of the L-curve shown in Fig. 4(b).

As a final note for this example data set, its inversion using the dis-
crepancy principle did converge to the target misfit of 20.0 (for which
β = 95.6) and produced conductivity and susceptibility models es-
sentially the same as those produced using the GCV and L-curve
criteria.

3.2 Different noise realizations

The results of repeating the above inversions for eight other real-
izations of the noise used to make the synthetic data are briefly given

Figure 3. (a) The forward-modelled data (solid line, inphase; dashed line,
quadrature) for the result of inverting the first synthetic data set (error bars)
using the L-curve-based method for choosing the regularization parameter.
(b) The constructed conductivity model, and (c) the constructed susceptibil-
ity model. The dashed lines in (b) and (c) indicate the model for which the
data were generated.
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Figure 4. (a) The L-curves of the linearized misfit plotted as a function
of the model norm at each iteration in the inversion of the first synthetic
data set, the results of which are shown in Fig. 3. The labels indicate the
iteration to which each of the more distinct L-curves corresponds. (b) The
curvature of the L-curves as a function of the regularization parameter. (c)
The (linearized) misfit as a function of the regularization parameter, and
(d) the model norm at each iteration in the inversion. The labels indicate to
which iteration the more distinct lines correspond.

Table 2. The final value of the regularization parameter, β, and
the corresponding value of the misfit, φd, for the inversions of the
synthetic data sets described in Section 2.4, which differ only in the
realization of the added noise. The superscripts and subscripts ‘GCV’
and ‘L’ indicate the results of the inversions using the GCV and L-
curve criteria, respectively. The amount of noise added for each noise
realization (NR) is denoted by φ�

d.

NR φ�
d βGCV φGCV

d βL φL
d

1 22.7 86.8 22.0 35.0 21.4
2 12.7 63.0 10.4 15.9 10.0
3 23.7 100.0 19.4 41.1 18.8
4 21.7 97.0 13.8 24.3 13.6
5 19.3 83.2 13.5 23.9 13.0
6 15.5 0.48 12.8 42.3 14.6
7 24.0 35.3 17.0 32.8 16.9
8 12.6 72.2 10.9 27.9 10.6

here. The amount of noise added in each case is given in Table 2.
Each data set was inverted using both the GCV and L-curve criteria.
The values of the inversion parameters were the same as those in the
previous section. The final values of the regularization parameter
and the corresponding values of the misfit are given in Table 2. The
final conductivity and susceptibility models are shown in Figs 5
and 6.

As the numbers in Table 2 show, both the GCV and L-curve
criteria gave final values of the misfit that were close to, although
consistently less than, the amount of added noise. For the cases
where the added noise was significantly different from the number
of observations (realizations 2, 6 and 8), the results achieved by both
the GCV and L-curve criteria are more appropriate than those that
would have been achieved using the discrepancy principle. There
was one major failure. For the sixth realization, the GCV criterion
significantly underestimated the value of the regularization parame-
ter resulting in extreme conductivity and susceptibility models (see
Fig. 5). This is representative of our experience from applying the
GCV criterion to many data sets, both synthetic and genuine: oc-
casionally (although less often than the one-in-eight suggested by
this example), it produces a value of the regularization parameter
that overfits the observations to such an extent that the constructed
model is unacceptable.

3.3 1-D inversions of synthetic 3-D data

The effectiveness of the GCV and L-curve criteria is further illus-
trated by presenting the results of performing 1-D inversions of the
data at each observation location in a synthetic 3-D data set. The er-
rors introduced by the 1-D approximation are correlated, and are not
unlike the linearization errors at the early iterations of the 1-D exam-
ple analysed in Section 3.1. It is therefore anticipated that the GCV
and L-curve criteria will be able to discriminate between the Gaus-
sian random noise and the correlated errors arising from the 1-D
approximation, just as they were mostly successful at discriminat-
ing between random noise and linearization errors.

Synthetic data computed using the programme of New-
man & Alumbaugh (1995) for the two-prism model shown
in Fig. 7 is considered. This data set has also been used
by Zhang & Oldenburg (1999). The shallower prism (prism
1) had a conductivity of 0.1 S m−1 and a susceptibility of
0.1 SI units, and the deeper prism (prism 2) had a con-
ductivity of 0.5 S m−1 and a susceptibility of 0.2 SI units.
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Figure 5. The conductivity and susceptibility models produced by the inversions, using the GCV criterion, of synthetic data sets differing only in the realization
of the added noise (see Section 3.2).

Figure 6. The conductivity and susceptibility models produced by the inversions, using the L-curve criterion, of synthetic data sets differing only in the
realization of the added noise (see Section 3.2).
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Figure 7. The two prism model of Section 3.3. Prism 1 has a conductivity of
0.1 S m−1 and a susceptibility of 0.1 SI units, and prism 2 has a conductivity
of 0.5 S m−1 and a susceptibility of 0.2 SI units. The background is a non-
susceptible half-space of conductivity 0.01 S m−1. The line of data that was
inverted is indicated by the dashed line.

The background was a homogeneous half-space of conductivity
0.01 S m−1 and zero susceptibility. The secondary magnetic field for
an airborne-type configuration (a vertical magnetic dipole transmit-
ter at a height of 30 m, and measurements of the vertical component
of the magnetic field 10 m from the transmitter in the y-direction
and also at a height of 30 m) was computed at 10 frequencies (110,
220, 440, 880, 1760, 3520, 7040, 14 080 and 56 320 Hz) for 29
locations of the transmitter–receiver pair along the line x = 350 m
(see Fig. 7). Gaussian noise of standard deviation equal to 1 per
cent of the magnitude of a datum, or 0.5 ppm, whichever was larger,
was added to the computed field values to give the synthetic data
set to be inverted. The synthetic data are indicated by the error bars
in Fig. 8(a). The size of each error bar corresponds to the standard
deviation of the noise added to that datum.

The 20 data (inphase and quadrature parts at the ten frequencies)
at each location along the line x = 350 m were simultaneously
inverted for 1-D models of both conductivity and susceptibility.
There were 25 layers in the models. The values of the coefficients
αs and αz in the conductivity part of the model norm were 0.001 and
1, respectively, and the values of the coefficients in the susceptibility
part were 0.1 and 10, respectively. The reference conductivity model
was a half-space of 0.01 S m−1, and the reference susceptibility
model was a non-susceptible half-space.

The results of using the L-curve criterion to determine the regu-
larization parameter in the 1-D inversions at each location are shown
in Fig. 8. Panels (c) and (d) show the images of the conductivity and
susceptibility beneath the line of data created by stitching together
the 1-D models for each location along the line. There are clearly
artefacts in these images arising from inverting data containing 3-D
effects for 1-D models, most notably the smearing outwards and
downwards from the true locations of the prisms of the conduc-
tivity and to a lesser extend the susceptibility, the underestimation
of the vertical extents of the prisms, and the overestimation of the
resistivity directly below the prisms. However, these artefacts are
not excessive, and the images are quite interpretable. It is therefore
clear that the L-curve criterion has been successful in achieving an
appropriate fit to the observations all along the line. At each end of
the line, the attained misfits are close to their expected value of 20,
and the corresponding parts of the conductivity and susceptibility
images agree with the corresponding parts of the true model. Over
the prisms, the values of the regularization parameter chosen by the
L-curve criterion are sufficiently small that the data are fit reason-
ably well and there is meaningful structure in the model, but not so
small that the artefacts in the models are extreme.

Fig. 9 shows the results of repeating the previous example, but us-
ing the discrepancy principle to choose the regularization parameter.
At each end of the line, the target misfit of 20 was attained. However,
over the prisms the 3-D effects in the data could not be fit by 1-D
models, and so the discrepancy principle resorted to choosing the
value of the regularization parameter that gave the smallest possible
misfit. As can be seen from panel (b) in Figs 8 and 9, the final values
of misfit over the two prisms are significantly less than those from
the inversions using the L-curve criterion. The conductivity and sus-
ceptibility images in Figs 9(c) and (d) display the greater amount of
structure associated with these smaller misfits. The artefacts in the
conductivity and susceptibility images in Fig. 9 are not at all bad,
but are definitely stronger than in the images produced using the
L-curve criterion.

The results of using the GCV criterion for this example are shown
in Fig. 10. The achieved misfits over the prisms are somewhat less
than those for the L-curve criterion, and the amount of structure
in the conductivity and susceptibility images is greater. However,
like the L-curve criterion, the GCV criterion has done something
sensible when confronted with having to fit data containing 3-D
effects with a 1-D model, giving better results than those obtained
using the discrepancy principle.

3.4 A field example

Finally, the results of inverting a field data set using both the GCV
and L-curve criteria are presented. The observations are from an
airborne survey for which measurements were made of the inphase
and quadrature parts of the secondary magnetic field at three fre-
quencies (1325, 4925 and 11 025 Hz) for the horizontal coplanar
transmitter–receiver combination (vertical magnetic dipole source,
and measurements of the vertical component of the magnetic field
5.1 m from the transmitter along the flight direction). The flight
height varied slowly along the line, not deviating more than a cou-
ple of metres up or down from 30 m. The line of data considered
here was composed of measurements made at 105 locations. As is
typical for field data, no estimates of the measurement uncertain-
ties were available. Uncertainties of 1 per cent of the value of a
datum, or 1 ppm, whichever was greater, were therefore assigned
to the observations. Panel (a) of Fig. 11 displays the observations
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Figure 8. (a) The synthetic data set (error bars) created from the model shown in Fig. 7 and the forward-modelled data (solid, inphase; dashed, quadrature)
from the 1-D models constructed using the L-curve criterion. (b) The regularization parameter and misfit for the final model for each sounding. (c) The image
created by concatenating the constructed 1-D conductivity models for all soundings along the line. (d) The susceptibility image. The outlines in (c) and (d)
indicate the location of the two prisms.

and the uncertainties. The purely ad hoc choice for the absolute size
of the assigned uncertainties was based on the smooth variation of
the data along the line, which suggested that the amount of noise
in the observations was small. The use of an uncertainty equal to a
percentage of the size of each datum was thought to be a realistic
representation of how the amount of noise varied with frequency at
any one location. It is in exactly this kind of real-life situation in

which the noise in a data set is not well known that automatic means
of determining the regularization parameter such as the GCV and
L-curve criteria come into their own.

Figs 11 and 12 show the results of inverting the line of data
using the L-curve and GCV criteria, respectively. Just as for the
synthetic two-prism example described in Section 3.3, the data at
each location were simultaneously inverted for 1-D conductivity and
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Figure 9. (a) The synthetic 3-D data set (error bars) and the forward-modelled data from the 1-D models constructed using the discrepancy principle. (b) The
regularization parameter and misfit for the final model for each sounding. (c) The conductivity image. (d) The susceptibility image.

susceptibility models. These models were then stitched together to
give the 2-D images of the subsurface beneath the flight line. Both
inversions have revealed essentially the same variations in the thick-
ness, conductivity and susceptibility of the overburden layer. The
GCV-based inversion gave somewhat smaller values of misfit along
most of the line, and slightly more structure in the conductivity and
susceptibility images. However, both the GCV & L-curve criteria
have resulted in models that give a misfit significantly smaller than
six at each location, which is equal to the number of observations,

and hence what the target misfit would have been for an inversion
using the discrepancy principle. It is clear that the GCV and L-curve
criteria are suggesting that the uncertainties we assigned in lieu of
their observed values are actually too large for at least half of this
survey line. If the discrepancy principle had been used with these
assumed, incorrect uncertainties, the information content of the data
along these stretches of the line would not have been fully extracted.
Unfortunately, no information concerning the true structure of the
subsurface beneath this survey line is presently available.
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Figure 10. (a) The synthetic 3-D data set (error bars) and the forward-modelled data from the 1-D models constructed using the GCV criterion. (b) The
regularization parameter and misfit for the final model for each sounding. (c) The conductivity image. (d) The susceptibility image.

4 D I S C U S S I O N S

We chose to investigate the performance of the GCV and L-curve
criteria on a 1-D inverse problem so that computation time would
not be an issue. (For example, the inversions using the discrepancy
principle, the GCV criterion and the L-curve criteria of the line
of data over the two-prism model in Section 3.3 took 8.5, 3.5 and
7.5 min, respectively, on a 500 MHz Pentium III computer.) How-
ever, there are a few computational practicalities that are relevant

to larger problems, and so we briefly discuss them here. For the
discrepancy principle, the line search along the misfit versus regu-
larization parameter curve can be made efficient and accurate. Our
implementation steps along this curve (in terms of the logarithm
of the regularization parameter) starting at the value of the regular-
ization parameter for the previous iteration until the target misfit, or
the minimum in the misfit, is bracketed. The search then contracts
to the target or minimum using a bisection or golden section search
(see, for example, Press et al. 1992), respectively. However, the
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Figure 11. (a) The line of airborne data (error bars) discussed in Section 3.4 and the data (solid lines, inphase; dashed lines, quadrature) forward modelled
from the 1-D models constructed by the inversions, using the L-curve criterion, of the six data (inphase and quadrature parts at the three frequencies 1325,
4925 and 11 025 Hz) at each horizontal location. (b) The final misfits attained by the inversions at each location. (c) The image created by concatenating the
1-D conductivity models constructed by the L-curve inversions for each location. (d) The corresponding image of the susceptibility.

forward modelling required to compute the misfit for each value of
the regularization parameter is relatively time-consuming. For the
example here, this made the discrepancy principle slower than the
implementations of the GCV or L-curve criteria.

The line search over the GCV function versus (the logarithm
of) the regularization parameter curve can also be made efficient,

stepping along the curve from the value chosen at the previ-
ous iteration until the minimum is bracketed, and then contract-
ing down into the minimum using a golden section search. The
one limiting factor as far as speed is concerned is that the in-
verse of the matrix is required to compute the GCV function (see
eq. 22).
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Figure 12. The line of airborne data discussed in Section 3.4 and the results of their inversion using the GCV-criterion. (a) The observations (error bars) and
the forward-modelled data from the constructed 1-D models (solid, inphase; dashed, quadrature). (b) The misfits achieved at each location. (c) The conductivity
image made by stitching together the 1-D models for every location. (d) The susceptibility image.

Implementation of the line search over the curvature of the
L-curve is not so straightforward. It is susceptible to numerical
noise because of the two numerical differentiations required (see
eq. 26), and the slow variation with the regularization parameter of
the functions being differentiated (the logarithms of the model norm
and linearized misfit—see Fig. 4). It is therefore important to make
the line search robust. We sample the curvature as a function of the

regularization parameter at equally spaced values of the logarithm
of the regularization parameter over a couple of orders of magni-
tude centred on the value of the regularization parameter from the
previous iteration. We fit a parabola through the maximum of the
sampled values and its two neighbouring points, and take the value of
the regularization parameter corresponding to the maximum of this
parabola. This implementation of the line search generally makes
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the L-curve criterion slower than the GCV criterion, but has the
desired robustness.

Finally, in this discussion of the details, we mention that the statis-
tical basis of the GCV criterion would suggest that it cannot really
be expected to work as well when the number of observations is
small (less than ∼20, Haber 1997). However, this is somewhat con-
tradicted by our experience: the GCV criterion has continued to be
successful on numerous examples with as few as six (for example,
the airborne data set in Section 3.4) or even four data.

5 C O N C L U S I O N S

We have illustrated the use of the GCV and L-curve criteria for
automatically estimating the regularization parameter in iterative,
minimum-structure, underdetermined inversion algorithms by in-
corporating them in the solution of a representative and yet compu-
tationally tractable non-linear geophysical inverse problem. In our
experience, both criteria perform well, giving appropriate values of
the regularization parameter in the vast majority of situations. Such
automatic methods are particularly valuable in real-life situations
for which it is too often the case that estimates of the measurement
uncertainties are not acquired, meaning that we can only guess at the
noise levels, and hence the target misfit in the traditional discrepancy
principle method for choosing the regularization parameter.
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