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S U M M A R Y
We develop a procedure to invert time domain induced polarization (IP) data for inductive
sources. Our approach is based upon the inversion methodology in conventional electrical
IP (EIP), which uses a sensitivity function that is independent of time. However, significant
modifications are required for inductive source IP (ISIP) because electric fields in the ground
do not achieve a steady state. The time-history for these fields needs to be evaluated and
then used to define approximate IP currents. The resultant data, either a magnetic field or its
derivative, are evaluated through the Biot-Savart law. This forms the desired linear relationship
between data and pseudo-chargeability. Our inversion procedure has three steps: (1) Obtain
a 3-D background conductivity model. We advocate, where possible, that this be obtained
by inverting early-time data that do not suffer significantly from IP effects. (2) Decouple
IP responses embedded in the observations by forward modelling the TEM data due to a
background conductivity and subtracting these from the observations. (3) Use the linearized
sensitivity function to invert data at each time channel and recover pseudo-chargeability.
Post-interpretation of the recovered pseudo-chargeabilities at multiple times allows recovery
of intrinsic Cole-Cole parameters such as time constant and chargeability. The procedure is
applicable to all inductive source survey geometries but we focus upon airborne time domain
EM (ATEM) data with a coincident-loop configuration because of the distinctive negative IP
signal that is observed over a chargeable body. Several assumptions are adopted to generate our
linearized modelling but we systematically test the capability and accuracy of the linearization
for ISIP responses arising from different conductivity structures. On test examples we show:
(1) our decoupling procedure enhances the ability to extract information about existence and
location of chargeable targets directly from the data maps; (2) the horizontal location of a
target body can be well recovered through inversion; (3) the overall geometry of a target body
might be recovered but for ATEM data a depth weighting is required in the inversion; (4) we
can recover estimates of intrinsic τ and η that may be useful for distinguishing between two
chargeable targets.

Key words: Numerical approximations and analyses; Electrical properties; Electromagnetic
theory; Geomagnetic induction.

1 I N T RO D U C T I O N

The electrical conductivity of earth materials can be frequency de-
pendent with the effective conductivity decreasing with decreasing
frequency due to the build-up of electric charges that occur under
the application of an electric field. Effectively, the rock is electrically
polarized. Applications of induced polarization (IP) surveys to find
chargeable material have been particularly successful in mineral
exploration for disseminated sulphide or porphyry deposits (Pelton
et al. 1978; Fink et al. 1990) and also in geotechnical and environ-
mental problems (Li & Oldenburg 2000; Kemna et al. 2012).

Polarization charges can accumulate whenever there is an electric
field in a medium. In controlled source surveys, the transmitter can

be a galvanic source (a generator attached to two grounded elec-
trodes), or an inductive source (arising from currents flowing in a
wire loop). Most research and application has focused upon using
grounded electrodes and measuring electric fields; this is called an
EIP survey (Seigel 1959). Magnetic fields arising from polarization
currents using grounded electrodes as the transmitter (MIP survey)
have also been successfully used, particularly in mineral exploration
when there is a conductive overburden (Seigel 1974). In recent years
attention has also turned towards the use of inductive sources. In-
ductive source IP (ISIP), can have transmitters in the air or on the
ground and the waveforms can be in the frequency or time domain.
Recently Marchant et al. (2012) showed how, by collecting data
at two frequencies, it was possible to measure data that depended
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purely on IP signals and that these data can be inverted to recover a
3-D distribution of chargeability. For time domain systems, the ob-
servations of negative transients in coincident-loop systems provide
an distinctive verification of the existence of chargeable material
(Weidelt 1982). These negative transients have been frequently ob-
served (Smith & Klein 1996; Kang & Oldenburg 2015). The effects
of chargeable objects using time domain systems with inductive
sources have been investigated (Smith et al. 1988; Flis et al. 1989;
El-Kaliouby & Eldiwany 2004; Marchant et al. 2014) and approxi-
mate interpretation tools (Kratzer & Macnae 2012; Hodges & Chen
2014) are being developed. The ability to fully invert these data in
3-D is still lacking.

Extracting information about the complex conductivity from ob-
served data can be done in a variety of ways. An inverse problem
can be set up to find a function σ (x, y, z, ω) or a parametriza-
tion of the complex conductivity, usually with a Cole-Cole type
model (Fiandaca et al. 2012; Marchant et al. 2013; Xu & Zhdanov
2015). Traditionally, however, with EIP and time domain wave-
forms, one first estimates the background conductivity from the
asymptotic on-time data and then inverts off-time data to recover
information about ‘chargeability’ (Oldenburg & Li 1994). This is
carried out by solving an inverse problem using a linear function
where the sensitivities depend upon geometry of the survey and the
background conductivity. The recovered values are really pseudo-
chargeability, and they have the same units as the data (e.g. ms, mV
V−1). The same procedure can be used in the frequency domain
experiments but the data might have units of mrad and pfe (percent
frequency effect). Inversions of IP data to recover 2-D or 3-D dis-
tributions of pseudo-chargeability are now commonly carried out
(Kemna et al. 2012). These inversions delineate locations of high
pseudo-chargeability and the geometry of the bodies. MIP data
can be inverted with the same methodology (Chen & Oldenburg
2003). We note that pseudo-chargeability is different from intrinsic
chargeability, η, where η = σ∞−σ0

σ∞ and σ∞ and σ 0 are respectively
the conductivity at the infinite frequency and the zero frequency.

The physical mechanisms by which polarization charges and cur-
rents are established in the ground are independent of the type of
transmitter and waveform; the important quantity is the time history
of the electric field within the earth. The challenge posed by the use
of inductive sources is that steady state electric fields are not estab-
lished inside the earth as they are for EIP or MIP surveys. At any
location in the earth the electric field will increase to a maximum
value and then decrease as the electromagnetic (EM) wave diffuses
through. The EM fields at any position and time depend upon the
convolution of the electric field with the time-dependent conduc-
tivity of the rock. Unravelling these complexities, and providing
a framework for extracting information about IP characteristics of
rocks, are issues we address in our paper.

Our procedure involves three principal steps: (1) estimating the
3-D background conductivity and carrying out an EM-decoupling
to produce IP data (dIP), and (2) developing a linearized formula-
tion using the Biot-Savart law and an effective pseudo-chargeability
that encapsulates time dependencies of the EM fields at any lo-
cation in the earth, (3) inverting dIP using the linear functional
to recover pseudo-chargeability at each time channel, and subse-
quently processing these multi-channel data to obtain information
about Cole-Cole parameters for each point in the subsurface. Each
of these steps requires special attention for inductive source data
and approximations are required. Our paper proceeds as follows.
We first outline our decomposition process for obtaining dIP data,
define a pseudo-chargeability, and show how our problem can be
linearized. The IP data and pseudo-chargeability are linearly re-

lated through the Biot-Savart law and hence a depth weighting,
required for other potential field inversions, is necessary to obtain
geologically meaningful solutions. The inversion can be carried out
at multiple times and a pseudo-chargeability as a function of time
can be generated. These results can be used to recover intrinsic de-
cays of the chargeable rock units and thus potentially differentiate
between rock types in the same manner as carried out by Yuval
& Oldenburg (1997) using EIP data. In our numerical experiments,
we investigate the above steps and procedures, test our assumptions,
and evaluate the circumstances under which our technique might
provide meaningful results. Although we focus upon airborne TEM
(ATEM) data, the analysis we present here is valid for surveys on
the Earths surface using inductive sources and also for grounded
sources although many of the complications we deal with are not
relevant.

2 C O M P L E X C O N D U C T I V I T Y

A complex conductivity model presents a mathematical form of
the IP phenomenon, and there are a number of models used in
the literature (Dias 2000; Tarasov & Titov 2013). Each model has
some reflection of an IP phenomenon, and each of these mod-
els is an attempt to capture the complicated nature of complex
conductivity with a few parameters that may, or may not, have a
physical meaning. For our research we needed to choose one. We
follow Smith et al. (1988) and Marchant et al. (2014) who used
a Cole-Cole model (Cole & Cole 1941) modified by Pelton et al.
(1978):

σ (s) = σ∞ − σ∞
( η

1 + (1 − η)(sτ )c

)
= σ∞ + �σ (s), (1)

where s is the Laplace transform variable, σ∞ is the conductivity
at infinite frequency, η is the intrinsic chargeability, τ is the time
constant and c is the frequency dependency.

Real and imaginary parts of complex conductivity in the fre-
quency domain are shown in Fig. 1(a) for Cole-Cole parameters:
σ∞ = 10−2 S m−1, η = 0.5, τ = 0.01 s, and c = 1. By applying the
inverse Laplace transform, we have

σ (t) = L −1[σ (s)] = σ∞δ(t) + �σ (t), (2)

where δ(t) is Dirac delta function, and L −1[·] is inverse Laplace
transform operator. Note that we only deal with a causal function,
which is defined when t ≥ 0.

The intrinsic chargeability η is

η = − 1

σ∞
lim
t→∞

L −1

[�σ (s)

s

]
. (3)

Accordingly, it is convenient to define an impulse pseudo-
chargeability, η̃ I (t) as

η̃ I (t) = −�σ (t)

σ∞
. (4)

Effectively this writes �σ (t) as

�σ (t) = −σ∞η̃ I (t), (5)

Note that the intrinsic chargeability, η, is not time-dependent but
the impulse pseudo-chargeability, η̃ I (t), which is related to IP pa-
rameters: η, τ and c, is time-dependent. The Cole-Cole response in
time domain is shown in Fig. 1(b). The arrow at t = 0 s indicates
σ∞δ(t), which is a delta function, and after t = 0 s, σ (t) = �σ (t).
Since Ohm’s law in time states that �j = σ ⊗ �e where ⊗ indicates
convolution, the negative sign of �σ (t) shows that the polarization
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176 S. Kang and D.W. Oldenburg

Figure 1. Cole-Cole response in frequency domain (a) and time (b) domain. The Cole-Cole parameters are σ∞ = 10−2 S m−1, η = 0.5, τ = 0.01 s, and
c = 1. The arrow shown in panel (b) indicates a delta function (σ∞δ(t)).

current in the chargeable body will have a reversed direction com-
pared to the primary current when an electric field is applied. We
will revisit this later in Section 4.

3 D E C O M P O S I T I O N O F O B S E RV E D
R E S P O N S E S

IP effects in the observed data are coupled with EM effects. We
need to decompose the observations to isolate data associated only
with the IP phenomena. Maxwell’s equations in the time domain,
with a quasi-static approximation, are written as:

�∇ × �e = −∂�b
∂t

, (6)

�∇ × 1

μ
�b − �j = �js, (7)

where �e is the electric field (V m−1), �b is the magnetic flux density
(Wb m−2), �js is the current source (A m−2) and μ is the magnetic
permeability (H m−1). Here �j is the conduction current (A m−2). In
the frequency domain, this conduction current, �J , is related to con-
ductivity via Ohm’s law: �J (s) = σ (s) �E(s) where �E is the electric
field. Converting this relationship to time domain using the inverse
Laplace transform yields:

�j(t) = σ ⊗ �e =
∫ t

0
σ (u)e(t − u)du. (8)

Thus the current density depends upon the previous history of the
electric field. As in Smith et al. (1988), we represent total fields as
�e = �eF + �eIP, �b = �bF + �bI P and �j = �j F + �j IP, where superscript
F indicates fundamental and IP is induced polarization. Here fun-
damental fields indicate EM fields when the chargeability is zero .
Thus σ (s) = σ∞ (eq. 1) and there are no IP effects.

Eqs (6) and (7) are written as

�∇ × (�eF + �eIP) = − ∂

∂t
(�bF + �bIP), (9)

�∇ × 1

μ
(�bF + �bI P ) − (�j F + �j I P ) = �js . (10)

The fundamental equations can be written as

�∇ × �eF = −∂�bF

∂t
, (11)

�∇ × 1

μ
�bF − �j F = �js . (12)

where

�j F = σ∞�eF . (13)

Subtraction of the fundamental fields yields the expressions for
the IP fields

�∇ × �eIP = −∂�bIP

∂t
, (14)

�∇ × 1

μ
�bIP = �j IP. (15)

Let F[·] denote the operator associated with Maxwell’s equations,
and let d denote the observations that include both EM and IP effects.
Keeping the same notation, we obtain d = dF + dIP, where dF and
dIP are fundamental and IP responses, respectively. Based on this,
we define the IP datum as

d IP = d − d F = F[σ (t)] − F[σ∞]. (16)

Here F[σ∞] corresponds to the fundamental response (dF). This
subtraction acts as an EM-decoupling process which removes the
EM effects from the measured responses. This is the same procedure
that formed the basis of work by Routh & Oldenburg (2001).

4 P S E U D O - C H A RG E A B I L I T Y

Writing

�j IP = �j(t) − �j F (17)

and using eqs (2) and (8) we obtain

�j IP = σ∞�eIP + �jpol, (18)

where the polarization current (�jpol) is

�jpol(t) = �σ (t) ⊗ �e(t). (19)

If the electric field has different characteristics for the induc-
tive and galvanic sources this will generate different features in the
polarization current. We consider two cases: a) a DC source with
grounded electrodes (no EM induction) and b) an inductive source.
The first case corresponds to usual approaches for interpreting EIP
data (Seigel 1959; Oldenburg & Li 1994), and the second is as-
sociated with ISIP. Fig. 2 shows the amplitude of the fundamental
electric field, �eF , in the earth for those two cases. For the galvanic
source without EM induction effects ( ∂�b

∂t = 0), the electric field is
instantaneously on or off in response to the transmitter. (Fig. 2a).
However, for the inductive source, the electric field in the off-time
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Figure 2. Conceptual diagram for the amplitude of the fundamental electric fields. (a) EIP and (b) ISIP cases.

is not zero, but increases to a peak and then decays as shown in
Fig. 2(b). The polarization current for the two sources will be sig-
nificantly affected by these different electric fields. To capture this
difference in a linearized kernel for the IP response, we define
pseudo-chargeability, η̃(t), as

η̃(t) = −
�jpol(t)
�j ref

, (20)

where the reference current, �j ref is defined as

�j ref = σ∞�eref. (21)

Here �eref is the reference electric field, and we will explain our
choice of �eref below. The pseudo-chargeability defined in eq. (20) is
the ratio of the polarization current to the reference current. This is
a small quantity and it plays an essential role in our linearization. To
evaluate the pseudo-chargeability, we need to identify a reference
current or reference electric field, �eref, which is independent of time.
For EIP, we choose the value of the electric field achieved when there
is no IP present, that is the value shown in Fig. 2(a). For the inductive
source we choose the peak electric field as shown in Fig. 2(b)

Each pixel in the earth has its own reference electric field and
time thus both �eref and t ref have a 3-D distribution. For both EIP and
ISIP cases, we mathematically present our choice of the reference
electric field as

�eref = �eF (t) ⊗ δ(t − t ref). (22)

The reference time for the EIP case can be any time in the on-time.
By rearranging eq. (20), we obtain

�jpol = −�j refη̃(t). (23)

This states that the polarization current has an opposite direc-
tion to the reference current, and is proportional to the pseudo-
chargeability. This reversed direction of the current in a chargeable
medium results from the negative values of the time-dependent con-
ductivity when t > 0 s as shown in Fig. 1(b). This conceptual model
about the polarization current shown in eq. (23) is consistent with
Seigel’s (1959) result. We note, that for any pixel, even if �eref at-
tains the same value for an ISIP survey as for an EIP survey, the
pseudo-chargeability resulting from an ISIP survey will be less than
that from an EIP survey. We can infer from this that linearization
techniques, which have worked so well in EIP problems, should be
successful in ISIP problems.

5 L I N E A R I Z AT I O N

Following from the methodologies in EIP, our goal is to express the
IP response, dIP, as a linear function of the pseudo-chargeability,
η̃(t). That is we wish to write d IP(t) = J [η̃(t)], where J[·] is a
linear operator which is independent of time. In doing this we first
consider a general EM system which is applicable to galvanic or
inductive sources. For any volume pixel in the earth the amplitude
and direction of the electric field can vary dramatically in time
and thus the IP charging process can be complicated. However,
if substantial polarization currents are developed we assume there
was a sufficiently large electric field in a predominant direction to
generate them. Although the direction of the electric field is constant
the amplitude varies with time.

Let �e(t) be approximated as

�e(t) ≈ �erefŵ(t), (24)

where ŵ(t) is defined as:

ŵ(t) = P0[wref(t)]. (25)

Here a projection P0[·] of an arbitrary time function, f(t) is

P0[ f (t)] =
{

f (t) f (t) ≥ 0
0 if f (t) < 0,

(26)

and

wref(t) = �eF (t) · �eref

�eref · �eref
. (27)

wref(t) is a dimensionless function that prescribes the time history
of the electric field at each location along the direction of the chosen
reference electric field, �eref. Negative values of wref(t) are set to zero
in accordance with our conceptual model that polarization currents
have an opposite direction to the reference current (eq. 23). We
redefine the pseudo-chargeability as

η̃(t) = η̃ I (t) ⊗ ŵ(t). (28)

The polarization current, �jpol, can be approximated with eq. (4) as

�jpol(t) ≈ −η̃ I (t) ⊗ ŵ(t)�j ref. (29)

Substituting into eq. (18) yields

�j IP(t) ≈ σ∞�eIP(t) − η̃ I (t) ⊗ ŵ(t)�j ref (30)

and this yields

�j IP(t) ≈ σ∞�eIP(t) − �j refη̃(t). (31)
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The second term, −�j refη̃(t) corresponds to polarization currents.
The first term, σ∞�eIP(t) is usually omitted (Smith et al. 1988).
This was because Smith et al. (1988) were mostly interested in
chargeable targets that were significantly conductive compared to
the background. However, if the conductivity of the chargeable
target is similar to that of the background, the first term could be
important.

We include it here and will explore the conditions in which it
is important. Because the reference current is static, any time-
dependence in the polarization currents is encapsulated in the
pseudo-chargeability. The build-up and decrease of polarization
currents is a slow process and we assume therefore that this process
does not produce induction effects ( ∂�bIP

∂t ≈ 0) and hence we can
write

�eIP ≈ �eIP
approx = −�∇φIP, (32)

where φIP is the electrical potential for IP. By taking the divergence
of eq. (31), substituting �eIP with eq. (32), and carrying out some
linear algebra, we obtain

φIP(t) ≈ −[∇ · σ∞ �∇]−1∇ · �j refη̃(t). (33)

By applying the gradient we obtain

�eIP
approx = �∇[∇ · σ∞ �∇]−1∇ · �j refη̃(t). (34)

Thus, the electric field due to the IP effect can be expressed as a
function of η̃(t) in time. This form is also applicable to the EIP case.

For an inductive source, the data are either �b or its time derivative
and hence we also need to compute �bIP or its time derivative. For this,
we first compute �j IP then use the Biot-Savart law. By substituting
eq. (34) into eq. (31), the approximated IP current density, �j IP

approx

can be expressed as

�j IP(t) ≈ �j IP
approx = S̄�j refη̃(t), (35)

where

S̄ = σ∞ �∇[∇ · σ∞ �∇]−1∇ · − Ī (36)

and Ī is an identity tensor. Applying the Biot-Savart law we have:

�bIP
approx(�r ; t) = μ0

4π

∫



S̄�j ref(�rs) × r̂

|�r − �rs |2 η̃(t)d�rs, (37)

where �rs indicates a vector for a source location, and r̂ = �r−�rs
|�r−�rs | .

If σ∞�eIP is omitted in �j IP then the tensor, S̄ becomes − Ī . In this
situation, the IP current is same as the polarization current, and
it always has an opposite direction to the reference current. This
reversed current, along with Biot-Savart law, provides a physical
understanding about the negative transients in ATEM data when the
earth is chargeable.

Observed data are often the time derivative of �b, hence by taking
time derivative to the eq. (37), we obtain

− ∂�bIP
approx

∂t
(�r ; t) = μ0

4π

∫



S̄�j ref(�rs) × r̂

|�r − �rs |2
(

− ∂η̃(t)

∂t

)
d�rs . (38)

Here we have chosen to keep the minus signs in eq. (38) so that
− ∂η̃(t)

∂t is positive when η̃(t) is decaying in time. Accordingly, the IP

datum is given by − ∂�bIP

∂t .
The IP fields shown in eqs (34), (37) and (38) are linear func-

tionals of η̃ and the equations for a single time channel can be
discretized in space as

dIP = Jη̃, (39)

where J is the corresponding sensitivity matrix. In particular when
the observed datum is the time derivative of �b, the linear relationship
can be written as

dIP = J
(
−∂η̃

∂t

)
. (40)

A detailed description for the discretization of the linearized kernel
is shown in Appendices C1 and C2. The representation in eq. (39)
is valid for galvanic and inductive sources but the two assumptions:
(a) �e ≈ �erefŵ(t) and (b) �eIP ≈ −�∇φIP need to be tested numerically
for the case of inductive sources.

6 3 D I P I N V E R S I O N M E T H O D O L O G Y

For the inversion of ISIP data, we focus on an ATEM survey with
a coincident-loop geometry. From the previous section, we first
defined the IP datum (eq. 16) then linearized it as a function of
the pseudo-chargeability (eq. 39). The linearization was developed
for a single transmitter. An ATEM survey however includes many
transmitters and each will excite a volumetric pixel differently. We
address this important issue in Appendix A1. It requires combining
the pseudo-chargeabilities that arise from individual transmitters
into a transmitter-independent effective pseudo-chargeability. This
requires computing, and combining, the individual time histories
of the electric fields due to each transmitter into an effective time
history. The result is that a dIP datum for any transmitter takes the
form:⎡
⎢⎢⎢⎢⎢⎣

dIP
1 (t)

dIP
2 (t)

...

dIP
nT x (t)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

J1

J2

...

JnT x

⎤
⎥⎥⎥⎥⎥⎦

[
η̃(t)

]
, (41)

where dIP
k (t) and Jk indicates the IP datum and sensitivity ma-

trix at kth transmitter. Here η̃(t) stands for an effective pseudo-
chargeability, which represents pseudo-chargeability from all trans-
mitters. Hence, for a given effective pseudo-chargeability we can
compute IP responses at all transmitters. Eq. (41) shows that IP
data for an ATEM survey are linearly related to effective pseudo-
chargeability. Information about chargeability can be obtained by
solving a linear inverse problem. This is a common problem in
applied geophysics so we provide only an essential summary.

6.1 3-D IP inversion with a linearized kernel

The linear inverse problem to recover chargeability is straight-
forward and is described in Oldenburg & Li (1994). We rewrite
eq. (39) as

dpred = Jm, (42)

where J is the sensitivity matrix of linear problem, which corre-
sponds to J shown in eq. (39). Here, dpred represents IP responses at
a single time channel, m denotes model parameters, which can be
either η̃ or − ∂η̃

∂t . The important positivity constraint results because
the intrinsic chargeability η is restricted to the range [0,1).

The solution to the inverse problem is the model m that solves
the optimization problem

minimize φ = φd (m) + βφm(m) (43)

s.t. 0 ≤ m,
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where φd is a measure of data misfit, φm is a user-defined model
objective function and β is regularization or trade-off parameter.

We use the sum of the squares to measure data misfit

φd = ‖Wd(Am − dobs|)‖2
2 =

N∑
j=1

(
dpred

j − dobs
j

ε j

)2

, (44)

where N is the number of the observed data and Wd is a diagonal
data weighting matrix which contains the reciprocal of the estimated
uncertainty of each datum (εj) on the main diagonal, dobs is a vector
containing the observed data, dpred is a vector containing calculated
data from a linear eq. given in eq. (42). The model objective function,
φm, is a measure of the amount structure in the model and upon
minimization this will generate a smooth model which is close to a
reference model, mref. We define φm as

φm =
∑

i=s,x,y,z

αi‖Wi W(m − mref)‖2
2, (45)

where W is a model weighting matrix, which will be defined be-
low, Ws is a diagonal matrix containing volumetric information of
prisms, and Wx , Wy and Wz are discrete approximations of the
first derivative operator in x, y and z directions, respectively. The
α’s are weighting parameters that balance the relative importance
of producing small or smooth models (Tikhonov & Arsenin 1977).

Because in our ATEM data we have only a single datum for each
transmitter, we do not have intrinsic depth resolution. This is the
same circumstance encountered when inverting magnetic data. (Li
& Oldenburg 1996). Correspondingly we apply a depth weighting
through the model weighting matrix (W):

W = diag(z − z0)1.5, (46)

where z and z0 are discretized depth locations and reference depth
in the 3-D domain.

Although we use the linear form of dIP data (eq. 39), the in-
verse problem is nonlinear because of imposed positivity on m.
We solve this constrained optimization problem using a projected
Gauss-Newton (GN) method (Kelley 1999). For further details of
implementing this constrained optimization see Marchant et al.
(2012). The trade-off parameter, β, is determined using a cooling
technique where β is progressively reduced from some high value.
The inversion is stopped when the tolerance is reached (cf. Nocedal
& Wright 1999; Oldenburg & Li 2005).

For the implementation of our IP inversion algorithm, we use
an open source python package for simulation and gradient-based
parameter estimation in geophysics called SIMPEG (Cockett et al.
2015).

6.2 3-D IP inversion workflow

The 3-D IP inversion methodology provides us with a capability to
invert IP data at each time channel. However, before we invert those
IP data, we need to compute an estimate of σ∞ which is needed for
EM-decoupling as well as generating the sensitivity matrix.

Considering the multiple tasks required to restore IP informa-
tion from TEM data we use the following workflow: (1) Estimate
a 3-D distribution of σ∞. An effective option is to invert early-
time TEM data that appear not to be contaminated with IP effects.
(2) forward model the estimated conductivity, σ est to obtain the
fundamental response dF and subtract it from the observations to
obtain dIP data. (3) Invert dIP data to recover a pseudo-chargeability
model at individual time channels using the relationship in eq. (39).
(4) Further, process the inversion outputs at multiple time-channels

to estimate the Cole-Cole, or equivalent IP parameters. For detailed
descriptions of this step see Appendix B.

In the following we investigate each of the above steps via nu-
merical simulations and test the validity of our assumptions.

7 N U M E R I C A L E X P E R I M E N T S

For our numerical experiments we concentrate upon coincident-
loop ATEM surveys. This choice is made because of the observed
negative transients that are direct indicators of IP phenomena (Smith
& Klein 1996; Kratzer & Macnae 2012; Kang & Oldenburg 2015),
and the extensive use of this survey by industry.

We begin with a simple IP model composed of a chargeable
block in a half-space as shown in Fig. 3. Cole-Cole parameters of
the block are η = 0.2, τ = 0.005 s and c = 1. The conductivity
of the half-space, (σ 1) is 10−3 S m−1, whereas the conductivity
of the chargeable body, σ 2 is variable; σ∞ is thus a 3-D distri-
bution. We consider three cases: a) canonical (σ 2 = σ 1), b) con-
ductive (σ 2 = 102 × σ 1) and c) resistive models (σ 2 = 10−2 ×
σ 1). The 3-D earth is discretized with 50 × 50 × 50 m core cells
and the number of cells in the domain is 41 × 41 × 40. The size
of the chargeable body is 250 × 250 × 200 m and the top boundary
is located 50 m below the surface. The EMTDIP code (Marchant
et al. 2014) is used to compute forward ATEM responses that in-
clude IP effects. The survey consisting of 11 soundings along each
of 11 lines is shown in Fig. 3(a). Data are from a coincident-loop
system and the flight height is 30 m above the surface; the radius of
the loop is 10 m. A step-off transmitter waveform is used and the
range of the observed time channels is 0.01–60 ms. The observed
responses can be the vertical component of �b or ∂�b

∂t .
In this section, we first decompose the observed responses and

the total currents into fundamental and IP portions to aid in the
basic understanding of IP effects in ATEM data. Second, we val-
idate the linearized functional by computing the approximate IP
current and IP responses, and compare these with the true val-
ues. Third, we invert the IP data and recover 3-D distributions of
pseudo-chargeability at multiple times. Lastly, we use the recovered
pseudo-chargeabilities to examine the potential to extract intrinsic
Cole-Cole parameters.

7.1 IP responses

Using the EMTDIP code and carrying out two simulations, we
compute the IP data via subtraction in eq. (16). Fig. 4 shows the ob-
served, fundamental and IP responses at a sounding location above
the centre of the chargeable body for (a) canonical, (b) conductive
and (c) resistive models. Both bz and − ∂bz

∂t data are shown. The
IP effects are most noticeable for the conductive body and we turn
attention to this example first. The IP response starts to significantly
affect the observations near 0.6 ms and the observed responses show
a sign reversal near 1 ms. Beyond that time the signal is dominated
by the IP. The dashed line in Fig. 4(b) shows that after turning off
the transmitter current, the IP current increases (as inferred by the
magnitude of the bz field) until about 1 ms and then decreases. We
interpret this in terms of charging and discharging phases and a ver-
tical dashed line in the figure defines the two phases. In the charging
phase at early times the EM effects dominate and IP signals are not
expected to be observed. In the discharging phase, which occurs at
later time, the IP effects may eventually dominate the EM effects.

The maximum of the bIP
z corresponds to the zero crossing for − ∂bIP

z
∂t

but the times at which the IP signal becomes dominant are delayed
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180 S. Kang and D.W. Oldenburg

Figure 3. Plan (a) and section (b) views of the IP model. The solid line in panel (a) delineates the boundary of the IP body. Solid circles in panel (a) denote
the sounding locations. In panel (b), the conductivity σ 2 is variable so that canonical, conductive and resistive blocks can be examined

compared to bIP
z . By comparing the observations with the funda-

mental fields we see that the IP signal could be recognized in the bz

data near 0.7 ms and near 2.0 ms in the − ∂bz
∂t data.

The plots for the canonical and resistive bodies show that the
time that separates charging and discharging occurs earlier than
for the conductive body. This is a reflection that the fundamental
currents reside for a longer time in a conductor. For the canonical
body, a significant difference between the measured responses and
the fundamental fields occur about 0.9 ms for bz and about 2 ms for
− ∂bz

∂t . The amplitudes of the IP responses are significantly smaller
than those for the conductor. Lastly, there is little IP signal for the
resistive body; the IP signal is much smaller than the fundamental
response throughout the given time range. This is a consequence of
the small fundamental currents in the resistor.

The decay curves from a sounding location provide insight about
the IP response but more is gleaned by looking at data from all
sounding locations in the ATEM survey. We focus on bIP

z for the
conductive block at selected time channels. Fig. 5 shows inter-
polated maps of the observed, fundamental and IP responses at
(a) 0.86 ms and (b) 6.7 ms which are respectively included in the
charging and discharging times. For the conductive block, 0.86 ms
is close to the peak time when transition from charging to discharg-
ing occurs, but it is still included in the charging time. At this time,
the observations are dominated by the fundamental response and
no negative values, which are the signature of the IP effect, are
observed. Subtracting the fundamental however, yields a residual
dIP data map that has a strong negative. This example shows that
our EM-decoupling procedure can work satisfactorily. At 6.7 ms,
obtaining good IP data are easier because the observed data already
show negative values. There is still a weak fundamental field and
the subtraction process improves the dIP response. The dIP data at
0.86 ms and 6.7 ms shown in Fig. 5 are of sufficient quality to be
inverted.

7.2 Polarization currents

To evaluate the polarization current shown in eq. (19) for the linear
functional, we assumed �e(t) ≈ �erefwe(t) and defined our reference
current as �j ref = σ∞�eref. That yielded our approximation of the

polarization current to be �jpol(t) ≈ −�j refη̃(t). This approximation
requires that the polarization current has a direction antiparallel to
the reference current, and the direction is the same for all times.
With this approximation the time dependence for the polarization
currents only occurs through the scalar η̃(t). We investigate the ap-
proximation by evaluating both reference and polarization currents
numerically. From eq. (22), a reference current can be considered
as the maximum fundamental current that occurred throughout the
time history. To evaluate polarization currents we rearrange eq. (18)
as �jpol = �j IP − σ∞�eIP.

Here we limit our attention to canonical and conductive blocks.
Figs 6(a) and (b) show reference currents for the canonical and con-
ductive blocks, respectively. A transmitter is located at (−200 m,
0 m, 30 m) and marked as a white solid circle in the figure, where (·,
·, ·) refers to a point at (easting, northing, depth). Reference currents
for the canonical block are circular, centred on the transmitter loca-
tion, and decay with distance. For the conductive block, additional
vortex currents are induced. We compare these reference currents
with the polarization currents. Fig. 7 shows the plan and section view
maps of the polarization currents at 0.86 ms. Comparisons of Figs 6
and 7 clearly show that polarization currents for both canonical and
conductive blocks are oppositely aligned with respect to their refer-
ence current. This was the hypothesized outcome. Fig. 8 shows that
the direction of polarization currents at 6.7 ms is similar to those
at 0.86 ms. Thus both for the canonical and conductive blocks,
the direction of polarization currents after 0.86 ms is constant in
time.

Of particular interest is the difference in character of the polar-
ization currents for the canonical and conductive bodies. For the
canonical body the currents look like anomalous galvanic currents
that would be expected from an EIP survey. The resultant mag-
netic fields will be similar to the magnetic fields obtained from an
electric dipole. For the conductive case however, the currents are
circular and they reflect the vortex nature of the induced currents.
The resultant magnetic fields are those associated with a magnetic
dipole. The polarization currents inside a body are therefore com-
plicated by the fact that they are a mixture of galvanic and inductive
processes. Our choice of reference currents effectively incorporates
this complexity.
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Recovering distributed IP information from ISIP data 181

Figure 4. Time decaying curves of the observations (d; black line), fundamental (dF; blue line) and IP (dIP; red line) responses. All three cases: (a) canonical,
(b) conductive and (c) resistive are presented. Right and left panels show bz and − ∂bz

∂t . The vertical black dotted line indicates the time at which the polarization
field reaches its maximum value. The flight height of the collocated transmitting and receiving loop is 30 m above the surface.

7.3 IP currents

The IP currents, as provided in eq. (18), are given as

�j IP = σ∞�eIP + �jpol. (47)

In most analyses, for example, Smith et al. (1988), the term σ∞�eIP

is neglected. We have included this term but with an approximation
that �eIP ≈ −∇φ (eq. 32). Here we investigate these approximations,
and under what circumstances they hold.

Using the forward modelling we can evaluate �eIP. This field can
be broken into galvanic and inductive parts using the Helmholtz
decomposition (Bladel 1959): �e = −�∇φ − �a so that �j IP = �jpol −
σ∞ �∇φIP − σ∞�aIP. In our work we included the effects from the
scalar potential but neglected any contribution from the vector po-

tential. We look at the contributions of each of these terms for the
three cases of canonical, conductive and resistive bodies. Fig. 9 re-
spectively shows plan view maps of �jpol, −σ∞ �∇φIP, and −σ∞�aIPfor
(a) canonical, (b) conductive, and (c) resistive models at 0.86 ms.

Inside the body, the polarization currents have the greatest
strength and the strength of these currents is largest in the con-
ductive body and smallest in the resistive body. In all cases, the
polarization currents are the largest contribution to �j IP. The second
column in Fig. 9 is related to the scalar potential for the electric
field or effectively to the galvanic currents. These exist both inside
and outside the chargeable body. Again, these are largest for the
conductive body. We note that inside the body, these currents have a
direction that is opposite to the polarization currents. The third col-
umn is associated with the vector potential for �eIP and is associated
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182 S. Kang and D.W. Oldenburg

Figure 5. Interpolated maps of observed (left panel), fundamental (middle panel) and IP (right panel) responses. Two time channels at (a) 0.86 ms and
(b) 6.7 ms are presented. White line contours a zero-crossing in the observed response.

with vortex currents. The effects of these currents have not been
included in our linearized approximations. These currents are quite
small for the canonical and resistive models but their amplitude
starts to be comparable to the galvanic portion for the conductive
model.

We evaluate �j IP and its components at two locations in the body
for conductive model. These are denoted by white stars in the fig-
ures. For both locations, the polarization currents have the great-
est strength and the vortex currents are smaller than the galvanic
currents. The IP current is smaller than the polarization current
mostly because the galvanic IP currents are in the opposite direc-
tion compared to the polarization currents. The results are tabulated
in Table 1.

The above figures provide insight about the three contributions
to �j IP but of ultimate interest is the effect of these currents on the
measured data. We therefore apply the Biot-Savart law to each cur-
rent. It suffices to work with the conductive case. Fig. 10 shows IP
responses computed from the polarization current (stars), galvanic
(rectangles) and inductive portions (circles) of the IP current. Here
solid and empty markers show negative and positive signs, respec-
tively. The polarization current has the major contribution to the IP

response although it is larger than the true value. This overshoot
is primarily negated by the galvanic portion of IP responses and
further reduced because of the vortex currents. We notice that the
contribution of the galvanic currents is generally larger than those
due to the vortex currents except near 0.4 ms. At 6.7 ms, the ampli-
tude of the IP response due to the polarization current is about 130
per cent of the true one, while galvanic portion is 30 per cent. These
results show that the assumption by Smith et al. (1988) is reason-
able, but incorporation of the galvanic portion to the IP datum is
significant at later times. The inductive portion of the IP responses
is small compared to the galvanic portion except for the time before
0.2 ms, and hence ignoring this is generally justified.

7.4 Validations of linearization

Forward modelling using eq. (39) requires that we have adequately
estimated the IP currents and we can evaluate their response using
the Biot-Savart law. To validate this we first compute approximate
IP currents using eq. (35), and first compare them with the true IP
currents. It suffices to work with the conductive model which is the

 at T
he U

niversity of B
ritish C

olom
bia L

ibrary on A
ugust 30, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Recovering distributed IP information from ISIP data 183

Figure 6. Maps of reference currents: (a) canonical and (b) conductive models. Left and right panels show plan and section views at −125 m depth and 0 m
easting, respectively. A transmitter is located at (−200 m, 0 m, 30 m). Black arrows and coloured background respectively indicate the direction and amplitude
of the current. The black solid line outlines the boundary of chargeable body.

most challenging. Fig. 11 compares the true and approximate IP
currents at 0.86 ms. The approximate IP currents match well, both
in direction and amplitude, with the true IP currents both inside and
outside the body. As shown in Fig. 12 the agreement improves as
time increases (see the directions of the true and approximate IP
currents at (0,0,−350) on the right panels of Figs 11 and 12).

We next test the validity of the computation of IP responses by us-
ing our formulation of the Biot-Savart law. To do this we compute the
‘true’ IP responses by subtracting the fundamental response from
the observations. We next compute the IP responses by evaluating
the Biot-Savart law with the true IP currents shown in Fig. 12(a).
As shown in Fig. 13 the agreement between these responses is very
good after 0.01 ms. This validates the use of the Biot-Savart law
(eq. 37). Lastly, we want to compare responses, evaluated through
the Biot Savart law, but use our approximated IP currents (Fig. 12b).
The results are shown in Fig. 13. The responses obtained from using
our approximate currents have lower amplitude and differ by 33 per
cent at the extreme. The difference decreases with increasing time.
Overall the two curves are in reasonable agreement, thus validating
our linearized forward modelling (eq. 39).

The same analysis of comparing true and approximate dIP data
was carried out for the canonical and resistive models. As shown

in Fig. 13, the true and approximate dIP for both cases show good
agreements. We note however, that despite the fact that our linear
functional reasonably explains dIP data for the resistive case, the IP
signals are very small compared to EM signals and we likely cannot
identify them in practice.

7.5 3-D IP inversions

Using our linearized sensitivity, we now proceed with 3-D IP inver-
sion, which recovers a pseudo-chargeability given by eq. (39). We
limit our attention to the conductive case (σ 2 = 0.1 S m−1). For the
computation of the sensitivity we use σ est to be the true 3-D conduc-
tivity model (σ∞) and then invert data at successive time channels
and recover 3-D pseudo-chargeability at multiple times. Our 3-D
inversion is based upon (Oldenburg & Li 1994; Li & Oldenburg
2000), and it requires some choices for inversion parameters.

For data uncertainties, we use one percent of the maximum ampli-
tude of the observed data (0.01max(|dobs|)). Coefficients for small-
ness and smoothness are set to αs = 10−5 and αx = αy = αz = 1,
respectively. The reference model is zero, which means the pseudo-
chargeability of every cell is zero, and we applied a depth weighting.
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184 S. Kang and D.W. Oldenburg

Figure 7. Maps of polarization currents: (a) canonical and (b) conductive models at 0.86 ms. Left and right panels show plan and section views at −125 m
depth and 0 m easting, respectively. A transmitter is located at (−200 m, 0 m, 30 m). Black arrows and shaded values respectively indicate the direction and
amplitude of the current. Black solid outlines boundary of the surface or the chargeable body.

The need for a depth weighting arises because the sensitivity func-
tion J[·] is primarily controlled by a 1/r3 decay associated with the
Biot-Savart kernels. Thus an ATEM data set is not unlike a magnetic
data set where it is well established that a depth weighting is required
to image objects at depth. The following example illustrates this.

We first generate IP responses at a single time using the linear
functional and specifying that the pseudo-chargeability is unity in-
side the body and zero outside, as shown in Fig. 14(a). Fig. 14(b)
shows the recovered pseudo-chargeability without depth weight-
ing. The recovered anomalous pseudo-chargeability is concentrated
near the surface and the magnitude of the pseudo-chargeability is
underestimated; it is ∼0.2 rather than unity. By using the depth
weighting shown in eq. (46), the IP body is imaged closer to its
true depth (Fig. 14b). Also, the magnitude of the recovered pseudo-
chargeability (∼0.6) is closer to the true value than the result with-
out depth weighting. Based on this analysis, we use the same depth
weighting for our following examples.

7.5.1 Incorrect conductivity

The 3-D distribution of σ∞ plays a central role in our analysis. It is
used in the EM-decoupling process and it is also needed to compute
the linearized sensitivities for inversion. Therefore, estimating 3-D

distribution of σ∞ is an essential step, and inverting early TEM
signals having minor IP effects can be an effective option. In this
paper we do not focus on estimating σ∞. We do however appreciated
that this will never be known exactly. We address this in more detail
in Section 8, but here we explore some consequences of having an
incorrect σ est. We return to our conductive block in a half-space and
evaluate the dIP data when the half-space conductivity is the true
value (σ 1 = 10−3 S m−1) as well as a factor of two too large (2 ×
10−3 S m−1) and a factor of two too small (5 × 10−4 S m−1). Here
conductivity of the chargeable block is fixed to σ 2 = 0.1 S m−1.
The data along a survey line are plotted in Fig. 15.

We invert these three IP responses, and provide sections of the
recovered pseudo-chargeability at 0 m northing. Figs 16(a)–(c) cor-
respondingly show the recovered pseudo-chargeability when the
conductivity is: the true value, too high, or too low. With the correct
conductivity the geometry of the IP body is reasonably recovered.
When the half-space conductivity is too high, the dIP have a negative
bias that results in larger pseudo-chargeabilities and positive-valued
artefacts near the IP body (Fig. 16b). When the half-space conduc-
tivity is too small, the IP data have a positive bias and this produces
negative-valued artefacts near the IP body (Fig. 16c). White dot-
ted contours shown in Fig. 16(c) shows zero-crossing lines, which
delineate those negative-valued artefacts. However, based on the
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Figure 8. Maps of polarization currents: (a) canonical and (b) conductive models at 6.7 ms. Left and right panels show plan and section views at −125 m
depth and 0 m easting, respectively. A transmitter is located at (−200 m, 0 m, 30 m). Black arrows and shaded values indicate the direction and amplitude of
the current, respectively. Black solid outlines boundary of the surface or the chargeable body.

definition of the pseudo-chargeability shown in eq. (A5), the sign
of the pseudo-chargeability should be positive. By incorporating
positivity as a constraint in the inversion, and re-inverting the IP
data that have a positive bias, we obtain the result in Fig. 16(d). This
is a much better result than Fig. 16(c), and it shows that the positive
constraints prevent fitting positive residual fields. We shall use this
positivity constraint for our following 3-D IP inversion examples.

The 3-D distribution of σ∞ is also needed when computing the
sensitivity function, since we need the reference electric field, which
is dependent on conductivity. An incorrect conductivity will then
affect the sensitivity function. In order to test this, we compute the
sensitivity matrix using a half-space conductivity model (σ 1 = σ 2 =
0.001 S m−1). Fig. 17 compares the recovered pseudo-chargeability
from the 3-D IP inversion of the IP datum at 0.86 ms with the true
and incorrect sensitivity function using the half-space conductivity.
There is not a large difference between the two inversions which
suggests that an approximate conductivity may still provide sensi-
tivities that are adequate for inversion. This parallels results from
EIP where even an approximate conductivity can still yield good
results when inverting the data. Thus there is robustness in our sen-
sitivity function with respect to an incorrect conductivity. These

results suggest that even if one cannot generate a good estimate of
σ∞, a half-space conductivity might produce an adequate sensitiv-
ity function, and hence an inversion can provide some indication of
a chargeable body.

7.5.2 Extracting intrinsic IP parameters

By applying our inversion to each time channel of dIP data sepa-
rately, we can recover 3-D distributions of pseudo-chargeability at
multiple times. The pseudo-chargeability at each time carries differ-
ent information about the state of polarization and we can use these
to recover information about intrinsic IP parameters. Diverse time-
dependent conductivity models such as the Cole-Cole model and
stretched-exponential can be used for this interpretation. We use the
Cole-Cole model with c = 1. We parametrize pseudo-chargeability
at a single pixel in terms of chargeability and time constant as
described in Appendix B, and solve a small inverse problem. In
previous works about this task for the EIP problem (Yuval & Old-
enburg 1997; Hördt et al. 2006), the convolution shown in eq. (B1)
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Figure 9. Decomposition of the IP currents as �jpol (left panel), −σ∞ �∇φIP (middle panel), and −σ∞�aIP (right panel) at 0.86 ms. Plan view maps of the currents
at −125 m depth are shown: (a) canonical, (b) conductive and (c) resistive cases.

Table 1. Amplitudes of decomposed IP currents at two marked points (white stars) shown in Fig. 9(b). Units in A m−2.

Division |�j IP| |�jpol| |−σ∞ �∇φIP| |−σ∞�aIP|
Left 1.5 × 10−10 2.5 × 10−10 7.6 × 10−11 1.9 × 10−12

Right 5.4 × 10−11 1.2 × 10−10 3.5 × 10−11 3.3 × 10−11

was not explicitly mentioned because ŵ(t) is a step-off or -on func-
tion and it does not change for different cells and transmitters. This
allowed an explicit equation for a step-off or -on response of the
pseudo-chargeability to be derived. However, in our work, convolu-
tion plays a fundamental role and needs to be explicitly addressed
when extracting intrinsic IP parameters. Also, the details regarding

how we defined the effective pseudo-chargeability (eq. A8) needs
to be included. Except for this additional complexity related to
the convolution, our approach parallels that of Yuval & Oldenburg
(1997) and Hördt et al. (2006).

As an example, we use the conductive and chargeable block
presented in the previous section and invert 14 time channels of
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Figure 10. Comparisons of contributions of �jpol, −σ∞ �∇φIP, and −σ∞�aIP to the observed IP responses. Solid line indicates true bIP
z responses. Stars,

rectangles, and circles correspondingly indicate each IP response generated by applying Biot-Savart law to �jpol, −σ∞ �∇φIP, and −σ∞�aIP. Empty and solid
markers represent positive and negative values, respectively.

data ranging from 1–10 ms. The EM data are forward modelled
using EMTDIP code and the true σ∞ model is used to evaluate
the IP datum and compute the sensitivity function. The recovered
pseudo-chargeability from one of the 14 inversions is shown in
Fig. 17(a). In that pseudo-chargeability model, we select cells that
have a pseudo-chargeability value greater than 0.001, and then carry
out the nonlinear inversion to estimate the time constant, τ , and
chargeability, η, for each cell separately. The forward modelling for
this inversion is shown in eq. (A8), which requires we(t) (eq. A9).
The we(t) for a pixel in the block is shown in Fig. A2.

Figs 18(a) and (b) correspondingly show the estimated time con-
stants and chargeability as section maps. The estimated time con-
stants show good agreement with the true value τ = 0.005 s. There
is less agreement about chargeability for which the true value is
η = 0.2. Recovered values range from about 0.04–0.2 so most val-
ues are underestimated. In Fig. 19, we also provide time decays of
the observed and predicted pseudo-chargeabilities at a single pixel
marked as a black empty rectangle in Fig. 18. The estimated time
constant, τ est, and chargeability, ηest, for this pixel are 0.0046 and
0.09, respectively. These results imply there is greater stability on
recovering the time constant than on recovering chargeability with
our approach. Again, similar experiments were carried out for the
canonical and resistive bodies and the conclusions were also that
the time constant was adequately recovered with better fidelity than
was the chargeability.

8 E S T I M AT I N G T H E B A C KG RO U N D
C O N D U C T I V I T Y

In this paper we have generally assumed that a good estimate of 3-D
σ∞ was available. If it is, then we have shown that we can obtain
IP data by subtracting the fundamental responses from the observa-

tions. This process is sometimes referred to as EM-decoupling and
its solution has been a long-standing goal in exploration geophysics.
For the ATEM survey, one potential approach to finding σ∞ is to
invert the early-time data in which the EM response is much larger
than the IP response (for example inverting time channels 2 to 10 ms
in the left panel of Fig 4b). The success of this method is depen-
dent upon three factors: (a) that the data are uncontaminated by IP
effects (i.e. there is no IP-coupling); (b) that the data acquisition is
sufficiently dense in space and in time so that needed information
about 3-D σ∞ is obtained; (c) an inversion algorithm exists that can
generate a 3-D conductivity model. Even so, the recovered conduc-
tivity will not be equal to the true conductivity. In Section 7.5.1, we
showed how the estimated IP data are affected when a half-space
conductivity is altered by a factor of two. This was a simple example
but it illustrated the general effects of an incorrect conductivity and
ameliorating effects of the positivity constraint in the IP inversion
(eq. 43). The problem will become more challenging when there
is substantial spatial variation between the true and estimated con-
ductivity. It is conceivable that if the ATEM data show no negative
values and if the conductivity approximation is sufficiently poor
then our EM-decoupling procedure will fail to produce quality IP
data. This will have to be addressed for each survey. What we did
demonstrate here was that even an approximate σ∞ is sufficient to
generate the sensitivities, and hence if quality IP data can be iso-
lated from observations, then our techniques can unravel the data to
generate information about the polarization structure.

9 C O N C LU S I O N S

In this paper, we have introduced a procedure for recovering IP in-
formation from TEM data with inductive sources. Three main steps
are required: (1) subtraction of the fundamental responses from the
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188 S. Kang and D.W. Oldenburg

Figure 11. Interpolated maps of (a) true and (b) approximate IP currents at 0.86 ms. Left and right columns respectively show plan and section view maps at
−125 m depth and 0 m easting.

observations to generate IP data, (2) linearization of the IP responses
as a function of the pseudo-chargeability, and (3) restoration of 3-D
pseudo-chargeability at multiple times, and further interpretation
of the pseudo-chargeability to extract intrinsic IP parameters like
Cole-Cole model. We used the ATEM survey to test our IP inversion
procedure.

The first step requires a good estimate for 3-D distribution of
σ∞. This is important for two reasons. The 3-D σ∞ is used to
generate the fundamental fields that are subtracted from the obser-
vations to produce the IP data. This conductivity is also needed
to compute the sensitivities for our linear relationship between
the IP data and pseudo-chargeability. Inverting early-time TEM
signals that are felt to be uncontaminated with significant IP re-
sponses could be an effective option for this step. For the mid-
time data, subtraction of the fundamental responses from the ob-
servations revealed negative data even though the observations
were positive. At very late times this subtraction process was not
necessary since the EM fields had sufficiently decayed. We note
that maps of the dIP data can, in themselves, be a useful pro-
cessing tool for detecting anomalies. For practical applications,
where we propose inverting early TEM data to recover σ∞ in
3-D, the effects on an incorrect σ∞ on the dIP data will need to be
investigated.

The second item, linearization of the IP responses with respect
to a pseudo-chargeability, required that a number of assumptions
be made. Our pseudo-chargeability is defined as the ratio of the
polarization current to a reference current. Unlike the EIP case, the
electric fields for an inductive source do not achieve steady-state and
hence neither do the polarization currents. To address this important
difference we evaluate the fundamental fields at each location in the
earth and generate a reference electric field that has the direction and
magnitude of the field at the time when the fundamental field reaches
its maximum value. The pseudo-chargeability at a point in the earth
thus depends upon the chargeability, the reference electric field,
and the time history of the fundamental electric field. The situation
becomes more complicated when data from many transmitters are to
be inverted simultaneously because the time history of the electric
field at a point in the earth is different for each transmitter. We
handle this by defining an effective pseudo-chargeability and an
associated reference electric field that accommodates, in a least
squares fashion, the effects of all transmitters acting on a single
cell.

To have confidence in when, and under what circumstances, our
approximations are sufficiently valid, we proceed with a number
of rigorous tests. First we introduce 3 test models which are re-
spectively a chargeable block in a half-space. The block can be
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Figure 12. Interpolated maps of (a) true and (b) approximate IP currents at 6.7 ms. Left and right columns respectively show plan and section view maps at
−125 m depth and 0 m easting.

Figure 13. Comparison of true and approximate IP responses (bIP
z ). Black, blue and red colours respectively indicate canonical, conductive and resistive cases.

Solid lines indicate true bIP
z computed by subtracting the fundamental response from the observation. The stars are the application of Biot-Savart to true IP

current and generate bIP
z BS. Empty circles show our approximate bIP

z approx response.
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Figure 14. Effect of depth weighting in 3D IP inversion. (a) True pseudo-chargeability model on vertical section at 0 m northing. Recovered pseudo-chargeability
models (b) without depth weighting and (c) with depth weighting.

Figure 15. IP responses on a profile line at 0 m northing. IP responses are computed from perturbed σ∞ models. Half-space conductivity (σ 1) is perturbed
two times higher or less resulting in overestimated (dotted line) and underestimated (dashed line) IP responses. Solid line shows the true IP response.

conductive, canonical, or resistive with respect to the half-space
conductivity. Our evaluations show that: (1) our choice of refer-
ence electric field and its time history produces a good estimate of
the polarization currents; (2) the IP currents are dominated by the
polarization currents, which is an assumption that is often made.
However, the galvanic and vortex currents arising from the scalar
and vector potentials in the Helmholtz decomposition of �eIPcan be
significant in some circumstances. The galvanic currents are the sec-
ond most important contribution to the IP currents and, in the body,
they have a direction that opposes the direction of the polarization
currents. In our work we have included the galvanic currents and
neglected the vortex currents which are almost always smaller than
the galvanic currents; (3) the IP responses can be accurately evalu-
ated using the Biot-Savart law provides accurate results; (4) with our
approximate IP currents, the predicted responses are in reasonably
good agreement with true values although they are underestimated
for the highly conductive example. These results lead us to infer that
our linearized formulation dIP(t) = Jη̃(t) is a viable representation
for the forward modelling at late times when the IP effects are sub-
stantial compared to the EM effects. (5) For the multi-transmitter
case we derived an effective pseudo-chargeability which is a linear
combination of the pseudo-chargeability of each transmitter. These
were forward modelled with the linearized formulation and com-
pared to the true responses. The values were underestimated for the
conductive model but were almost identical for the canonical and
resistive models.

The third component is the 3-D inversion of the IP data using the
linearized formulation to recover an effective pseudo-chargeability
for each cell. ATEM data have only one receiver for each transmitter
and a data map at a single time channel is essentially a potential
field. The data do not have intrinsic resolving power and hence, as in
magnetics or gravity inversions, we attempt to counteract this by in-
troducing a depth weighting. When this is done, our 3-D IP inversion
recovers a reasonable geometric shape and location of the charge-
able body but the amplitude is underestimated. For the inversion it
is assumed that a good estimate of σ∞ is available. An incorrect
σ∞ has two effects in the inversion. Firstly it can generates errors in
the dIP data because the fundamental field, which is subtracted from
the observations, is incorrect. To obtain insight we looked at the
effects when σ est was too low or two high. This respectively yielded
positive or negative residual fields in the IP response. A positivity
constraint on the pseudo-chargeability (similar to that used in EIP
surveys) greatly ameliorated the effects of the positive residuals.
The other avenue by which an incorrect σ∞ can affect the inver-
sion is through the sensitivity matrix J. We showed that, even with
an approximate conductivity, we recovered important information
about the chargeable body such as geometric shape and location.
An inversion of the data at a particular time channel provides in-
formation about the effective pseudo-chargeability for each pixel.
Inversions carried out at multiple time channels therefore generates
a pseudo-chargeability as a function of time for each pixel. The
pseudo-chargeability for pixels that had significant chargeability
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Figure 16. Recovered pseudo-chargeability sections from 3D IP inversions at 0 m northing. (a) dIP with true σ 1. (b) dIP with 2 × σ 1. (c) dIP with 0.5 × σ 1.
(d) dIP with 0.5 × σ 1 and the positivity constraint on the pseudo-chargeability. White dashed lines contour zero-crossing lines.

Figure 17. Recovered pseudo-chargeability sections from the 3D IP inversions at 0 m northing. (a) True and (b) incorrect σ∞ is used to compute sensitivity
function. For the incorrect sensitivity we used a half-space conductivity σ 1.

were subsequently fit to a Cole-Cole model to estimate τ and η by
assuming c = 1. The estimated τ was close to the true value whereas
η was underestimated and less robust. This suggests that there is
a possibility to extract intrinsic IP parameters from the recovered
pseudo-chargeability from ATEM surveys.

Our IP inversion procedure provides a framework for recovering
IP information from inductive source EM surveys and in partic-
ular from ATEM surveys that are commonly flown. Our exam-
ples show: (1) that the horizontal location of a target body can be

well recovered; (2) the overall geometry might be recovered but
much of that inference requires a depth weighting to be included;
(3) we can recover estimates of intrinsic τ and η that may be useful
for distinguishing between two chargeable targets. Our procedure
depends on having a good estimate for the background conductiv-
ity and this aspect this should be carefully investigated in future
practical applications. Other areas for follow-up research include
quantifying depth of resolution for airborne IP surveys, and general
strategies for extracting intrinsic IP parameters from our effective
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Figure 18. Section views of recovered: (a) time constant and (b) chargeability. Any region where the pseudo-chargeability shown in Fig. 17(a) is smaller than
0.001 is ignored in this analysis, and blanked.

Figure 19. Comparisons of the observed and predicted pseudo-chargeability at a single pixel in a chargeable body. The empty circles and solid line respectively
indicate predicted and observed pseudo-chargeability. The estimated time constant and chargeability are respectively expressed as τ est and ηest. The true values
for τ and η are respectively 0.005 s and 0.2.

pseudo-chargeabilities. Lastly, our numerical examples only treated
the ATEM survey, but the procedure is applicable to other types
of inductive source TEM survey such as a large-loop TEM with
many receivers. There will be details that need to be addressed for
those applications but the work presented here provides the funda-
mental background for those future studies whose goal is to extract
some information about polarization from an inductive time domain
system.
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A P P E N D I X A : E F F E C T I V E
P S E U D O - C H A RG E A B I L I T Y

A1 Handling multiple transmitters in ATEM surveys

The work for inductive sources in the main section of the paper has
been developed for a single transmitter and 3-D information about
chargeability can be obtained if there are multiple receivers. For
ATEM data however, we have only a single receiver location for each
transmitter but we have multiple transmitter locations. Our goal is
to alter the problem to work with an effective pseudo-chargeability.

In our linearized eq. (39), each transmitter has its own sensitivity
and pseudo-chargeability. For our airborne case the sensitivity for
the kth transmitter is the kth row of J and the pseudo-chargeability
is η̃k . The corresponding IP datum is

d IP
k (t) =

nC∑
i=1

Jk,i η̃
k
i (t), k = 1, . . . , nT x, (A1)

where nTx is the number of transmitters, nC is the number of cells
in the domain, and Jk, i indicates an element of the Jacobian matrix
for the kth transmitter and the ith cell. We want to replace η̃k

i with a
single effective pseudo-chargeability η̃i and therefore write the IP
datum as

d IP
k (t) =

nC∑
i=1

Jk,i η̃i (t), k = 1, . . . , nT x . (A2)

The waveforms are different for each transmitter and hence this
representation cannot be exact. To examine the implications of this
it suffices to look at the contribution of any volumetric pixel. Each
pixel contributes to all of the IP data but in differing amounts. The
total contribution of the ith pixel to the nTx data set at a single time
is

qi =
nT x∑
k=1

Jk,i η̃
k
i (t), i = 1, . . . , nC. (A3)

Our goal is to find an effective chargeability that produces the
same net effect on the measured data. We search for a transmitter-
independent η̃i such that

qest
i =

nT x∑
k=1

Jk,i η̃i (t), i = 1, . . . , nC. (A4)

Minimizing the least squares difference between eqs (A3) and (A4)
yields

η̃i (t) =
∑nT x

k=1 J 2
k,i η̃

k
i (t)∑nT x

k=1 J 2
k,i

=
nT x∑
k=1

ak
i η̃

k
i (t), i = 1, . . . , nC, (A5)

where the normalized weight (pk
i ) is

pk
i = J 2

k,i∑nT x
k=1 J 2

k,i

, i = 1, . . . , nC. (A6)
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Figure A1. Normalized weights for the conductive case for all transmitter locations. A single pixel located at (0 m, 0 m, −75 m) is used.

With the above understanding about how η̃i relates to the η̃k
i from

each transmitter we can proceed as follows. First, from eq. (28) we
have

η̃k
i (t) = η̃ I ⊗ ŵk

i (t) (A7)

Substituting eq. (A7) into eq. (A5) allows us to write

η̃i (t) = η̃ I (t) ⊗ we
i (t), (A8)

where we define the effective time history of the electric field, we
i (t)

as

we
i (t) =

nT x∑
k=1

ak
i ŵ

k
i (t), i = 1, . . . , nC. (A9)

The above equations shows that the pseudo-chargeability for any
pixel recovered from the inversion is equal to the convolution of the
impulse pseudo-chargeability, η̃I (t), with an effective time history
of the electric field we(t). Although it is somewhat involved, the we(t)
associated with each pixel can be evaluated by knowing the electric
fields associated with the fundamental EM problem. Ultimately this
allows us to estimate the parameters associated with the impulse
pseudo-chargeability in the same manner as outlined for the case
with a single transmitter. Our ability to evaluate the we(t) and test
the validity of eq. (A2) is treated in Appendix A2.

A2 Effective pseudo-chargeability for ATEM data

In Appendix A1, we showed how to define an effective chargeability
when we have multi-transmitters. For each pixel we have equation:

η̃i (t) = η̃ I
i (t) ⊗ we

i (t), (A10)

where η̃ I
i (t) is the impulse pseudo-chargeability associated with an

individual pixel. The effective time history of the electric field, we
i (t)

is a linear combination of the fundamental electric fields due to the
individual transmitters. We can calculate we

i (t) and carry out the
convolution to evaluate the effective pseudo-chargeability. The IP
data can then be forward modelled using eq. (39). This allows us
to validate eq. (A2), which demonstrated linear form of dIP data at

all transmitter locations, by comparing results with the true IP data
obtained via forward modelling. It is only necessary to apply this to
the conductive model.

The evaluation of the effective pseudo-chargeability is carried
out on a cell by cell basis. For each cell we first evaluate we(t)
(eq. A9). This requires calculating normalized weights shown in
eq. (A6). Fig. A1 shows these weights at a single pixel located at
(0 m, 0 m, −75 m). These decay away from the centre pixel be-
cause of the decay of the sensitivity functions. Because those are
weights used to compute we(t), we could expect that the computed
we(t) will be mostly affected by ŵk from a few stations close to
the centre. In Fig. A2, we provide both ŵk (dashed lines) from all
transmitter locations and we(t) (solid line) averaged by them. The
we(t) is dominantly affected by the ŵ(t) at the centre transmitter
location (solid circles)). Considering that the transmitters are 50 m
apart, the decay of the sensitivity from centre transmitter location
to others is substantial (∼1/r3). This results in the greatest nor-
malized weight at the centre transmitter location, and the observed
result about we(t) is caused by this. we(t) is convolved with η̃ I (t) to
compute the effective η̃(t) for that cell. When this is carried out for
each cell then the approximate IP responses can be computed using
eq. (39). These can be compared with the true IP responses. Fig. A3
shows the comparisons at 0.86 ms. The images are nearly identical
in shape but the approximate IP responses are nearly a factor of two
lower than the true values. This is not entirely unexpected. A similar
effect was observed for IP responses for a single transmitter shown
in Fig. 13. At 0.86 ms, the approximate value was about 70 per
cent of the true dIP. These results seem to be a worst case scenario.
The discrepancy for a conductive body lessens as time increases
and analyses for the canonical and resistive bodies shows that the
approximate and true IP data are in very good agreement.

A P P E N D I X B : E X T R A C T I N G I N T R I N S I C
I P PA R A M E T E R S

The output of our IP inversion is a 3-D distribution of the pseudo-
chargeability at multiple time channels. As its name suggests,
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Figure A2. Time decays of we(t) and ŵ(t) for the conductive case. A single pixel located at (0 m, 0 m, −75 m) is used. Solid line and dashed lines correspond
to we(t) and ŵk (t) for all transmitters (k = 1, . . . , nTx); ŵk at the centre transmitter located at (0 m, 0 m, 30 m) is marked as solid circles. A number of we(t)
curves are overlaid due to the symmetric position of transmitter locations to the conductive block.

Figure A3. Comparison of true and approximate bIP
z responses at 0.86 ms on plan view map.

pseudo-chargeability is not an intrinsic IP parameter like charge-
ability, but it is a convoluted property between η̃I (t) and ŵ(t):

η̃(t) = η̃ I (t) ⊗ ŵ(t), (B1)

with the definition of impulse pseudo-chargeability (eq. 4). We now
use the η̃(t) as the ‘data’ and recover intrinsic parameters such as
η, τ , c in a Cole-Cole model. Assuming a Debye model (c = 1), we
obtain

η̃ I (t) = η

(1 − η)τ
e− t

(1−η)τ . (B2)

Since we have σ∞ we can compute ŵ(t), which is the time history of
the electric field. Accordingly, we can unravel the recovered pseudo-
chargeability to extract intrinsic IP parameters such as chargeability
(η) and time constant (τ ). We use a gradient-based optimization and
thus we need the sensitivity function for the pseudo-chargeability

(eq. B1) with respect to η and τ . To simplify this procedure, we
rewrite impulse pseudo-chargeability as

η̃ I (t) = ae−bt , (B3)

where a = η

(1−η)τ and b = 1
(1−η)τ . Then we take the derivative of η̃(t)

with regard to a and b:

∂η̃(t)

∂a
= e−bt ⊗ ŵ(t), (B4)

∂η̃(t)

∂b
= −ate−bt ⊗ ŵ(t). (B5)

With these sensitivity functions, we can set up an inverse problem,
and recover a and b. The chargeability and time constant can be
obtained from a and b:

η = a

b
, (B6)
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τ = 1

(1 − a/b)b
. (B7)

We apply this inversion separately to each cell in the recov-
ered pseudo-chargeability in a manner similar to (Yuval &
Oldenburg 1997). For the better alternative (representation) of
time-dependent conductivity, a different parametrization such as
stretched-exponential (Kohlrausch 1854) or Cole-Cole model with
variable c can be implemented.

A P P E N D I X C : D I S C R E T I Z AT I O N S

C1 Steady-state Maxwell’s equations

As shown in eq. (33), computation of our linearized kernel requires
solving steady-state Maxwell’s equations. We discretize this system
using a mimetic finite volume (FV) method with weak formulation
(Yee 1966; Haber 2014). For the discretization, we assume that the
electric field �e is discretized by a grid function e on cell edges and
the magnetic flux density �b is discretized by a grid function b on cell
faces. The electrical potential φ is discretized by a grid function φ

on the cell nodes. For a clear representation of the derivation, recall
Maxwell’s equations in steady state are

�j = σ∞�e = −σ∞ �∇φ, (C1)

−∇ · �j = ∇ · �js, (C2)

�j ∣∣
∂


· n̂ = 0, (C3)

where ∂
 indicates boundary surface of the system and n̂ is the
normal vector of the boundary surface. The weak form of those
equations can be written as

(�j, �w) + (σ∞ �∇φ, �w) = 0, (C4)

−(�j, �∇ψ) = (�js, �∇ψ). (C5)

The inner products (�j, �w), (σ∞ �∇φ, �w), (�j, �∇ψ) and (�js, �∇ψ) are
edge-based products. Here we define the inner product as

(�a, �b) =
∫




�a · �bdv, (C6)

where 
 is the volume of the system. By discretizing the �∇ operator
and the inner product in space, we obtain

Mej + Me
σ∞ Gφ = 0, (C7)

−GT Mej = GT Mejs, (C8)

where Me performs volume averaging, and Me
σ∞ is the mass matrix

of conductivity (σ∞), which discretizes the edge based inner prod-
uct. For further details on the formation of this matrix see Haber
(2014).

By substituting eq. (C7) into (C8), we have

Aσ∞φ = rhsDC, (C9)

where Aσ∞ = GT Me
σ∞ G and rhsDC = GT Mejs . We use SIMPEG’s

tensor mesh and solver classes to form and solve above linear system
(Cockett et al. 2015).

C2 Linearized kernel for IP responses

To obtain a linear form of eq. (39), we first discretize the Biot-
Savart law shown in eqs (37) and (38). In our discretization �j IP and
η̃ are defined at the cell centres, and those for each time channel are
constant in a cell volume, whereas �eref is defined on the cell edges.
We define the number of cells and edges in 3-D space as nC and
nE, respectively. The discretized IP current density, jIP

cc ∈ R
3nC
1 , is

defined at the cell centre. Since �j IP has three components, we first
discretize the integration operator including cross product (

∫
v

×r̂
r2 dv)

as

GBiot =

⎡
⎢⎣

eT 0 0

0 eT 0

0 0 eT

⎤
⎥⎦

⎡
⎢⎣

0 Sz −Sy

−Sz 0 Sx

Sy −Sx 0

⎤
⎥⎦, (C10)

where

Sl = diag

(
v ⊕ rl ⊕ 1

r2

)
, l = x, y, z

and the electric field, e ∈ R
nE
1 is a column vector, diag(·) is the

diagonal matrix and ⊕ is the Hadamard product. Then we discretize
�j IP shown in eq. (35) as

jIP
cc(t) = Sdiag

(
eF

max

)
Ae

c
T diag (v) diag(σ∞)η̃(t), (C11)

where Ae
c is a discrete averaging matrix from edge to cell centre

and

S=Ae
ccvMe−1[Me

σ∞ GA−1
σ∞ GT −I

]
diag

(
eF

max

)
Ae

c
T diag(v)diag(σ∞).

(C12)

Here Ae
ccv is a discrete averaging matrix from edge to cell centre

with consideration of three component vector: ∈ R
3nC
nE . Thus, we

can have a linear equation for a single time channel as

bIP = GBiotSη̃,

Finally, by letting

J = GBiotS, (C13)

we have

bIP = Jη̃, (C14)

where J is the Jacobian matrix of the linear equation, and since J is
static, we also obtain

− ∂bIP

∂t

∣∣∣ = J

(
−∂η̃

∂t

∣∣∣) . (C15)
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