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Nonlinear Inversion for Multiple Objects in Transient
Electromagnetic Induction Sensing of Unexploded

Ordnance: Technique and Applications
Lin-Ping Song, Member, IEEE, Leonard R. Pasion, Stephen D. Billings, and Douglas W. Oldenburg

Abstract—We develop an inversion technique to process over-
lapping data that arise from closely spaced targets. In contrast
to a usual single-object inversion model, a multiobject problem
is more challenging because of the increased number of param-
eters to be found and because of the additional nonlinearity and
nonuniqueness. Our solution strategy is to break down the full
problem into a sequence of smaller problems so that optimization
is conducted in a lower dimensional model space. In the numerical
implementation, a set of nonlinear model parameters, e.g., the
locations of the underlying sources, is sought while the set of linear
model parameters, i.e., their polarization tensors, are updated
accordingly in a nested manner. This is an explicit separable
nonlinear optimization technique that we cast. We employ a joint
diagonalization to find an average principal direction among mul-
tiple magnetic polarizability tensors. Since the principal directions
are more sensitive to the inaccuracies in the estimated polarization
tensor, we suggest a subsequent procedure to optimize the two sets
of parameters: orientation and principal polarizations of objects.
For initialization, we propose a selected multistart nonlinear algo-
rithm for source localizations that paves an efficient way to find a
good initial guess of model parameters and makes the nonlinear
inversion effectively automated. We report the new applications
of the technique to the test-stand and field data acquired with
next-generation sensor systems of the TEMTADS and MetalMap-
per and study the issue of the spatial resolution of overlapping
anomalies through inversions and using the metric defined as the
total uncertainty of the polarizabilities.

Index Terms—Electromagnetic induction (EMI), multiple ob-
jects, nonlinear inversion, transient response, unexploded ord-
nance (UXO) .

I. INTRODUCTION

IN electromagnetic induction (EMI) sensing of unexploded-
ordnance (UXO)-contaminated sites, data inversion of target

signatures (e.g., dipolar polarizabilities) plays a central part in
the signal processing for its aim to provide accurate inputs for
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discrimination of UXO from metallic debris [1]–[24] in both
time and frequency domains. It is commonly assumed that EMI
sensors sense a nearby object, and thus, such inverse problems
are preceded with a single-object parametric model. In practice,
this is not always the case. In sites where subsurface muni-
tions are distributed closely in space, EMI sensors can record
overlapping signals from multiple objects. The processing of
data from multiple objects has been a practical issue and has
received growing attention in the EMI community.

For example, Hu and Collins [25] adopted the well-known
blind source separation (e.g., independent component analysis
[26]) technique and attempted to separate unknown dipolar
signatures of each object in the frequency domain and to iden-
tify the objects by comparing the extracted source signatures
with those in a library. Bell [27] attempted to invert tran-
sient overlapping signals for parameters of equivalent dipoles.
Shubitidze et al. [28] applied their normalized surface magnetic
charge model to process overlapping signals using frequency-
domain experimental EMI data. Grzegorczyk et al. [29] demon-
strated a Newton method to detect multiple objects using
numerical and experimental time-domain data. In [30], we
developed an inversion technique that attempts to recover pa-
rameters for each object from overlapping data. We examined
our multiobject inversion technique using Geonics-EM63 sim-
ulated and field data collected at Camp Sibert, Albama. The
blind tests of our proposed methodology using the EM63 field
data were encouraging and demonstrated that it was possible to
invert for multiple target signatures from overlapping signals if
data quality was adequate.

In this paper, we extend to our previous presentation [30]
and evaluate its practical applicability. For the fact that most
transient experimental and field measurements are widely used,
our development is formulated with time-domain data. The
technique is, in principle, easily adapted to frequency-domain
data. In Section II, the necessary forward modeling equations
are presented. In Section III, we cast the multiobject inversion
problem as a separable nonlinear optimization problem and
implement a selected multistart nonlinear search for source
localizations. A joint diagonalization method is then used to
find an average principal direction of each object. In Section IV,
we apply the technique to test-stand and field data recorded by
the next-generation sensor array systems of TEMTADS [32]
and MetalMapper [33]. Extensive inversions are carried out
to provide insight about the practicalities of resolving closely
spaced objects. Our results, using field data, demonstrate that
the technique is practical.

0196-2892/$26.00 © 2011 IEEE
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II. PHYSICAL MODEL AND THE PROBLEM FORMULATION

Consider a standard EMI system consisting of a transmitting
coil and a receiving coil which may be colocated or not. In
active sensing, a primary field emitted from a transmitter illu-
minates a nearby object and its changes with time induce eddy
currents in the metal object. These induced currents produce
a transient secondary magnetic field that is measured by a
receiver. In practice, an array of sensors is generally positioned
above the surface. For a UXO survey where the target dimen-
sion is often small relative to the target-sensor distance, the
primary fields around the target can be approximately uniform
and the induced eddy currents in the target are localized and
dominantly produce dipole responses [34], [35]. As a leading
order approximation, the EMI nature of a metal target can be
well represented by an equivalent induced dipole. Here, we
assume that dipole location and orientation are independent of
time. Let the target location be denoted by r; then, the induced
dipole moment m(t) at time t is represented by [1]–[15]

m(t) = P (t)BT (r, rTx) (1)

where BT is the exciting magnetic field vector at the target
location from a transmitter at rTx and P (t) is a 3 × 3 symmetric
magnetic polarizability tensor (MPT)

P (t) =

⎡
⎣ p11(t) p12(t) p13(t)
p12(t) p22(t) p23(t)
p13(t) p23(t) p33(t)

⎤
⎦ . (2)

Physically, the element pij(t) of the tensor P (t) represents a
dipole component in the ith Cartesian direction due to a primary
field in jth Cartesian direction. This polarizability tensor P (t)
has an eigendecomposition

P (t) =

3∑
i=1

Li(t)eie
T
i (3)

where ei (i = 1, 2, 3) is the orthonormal eigenvector repre-
senting the ith principal direction of dipolar polarization with
respect to a reference system and Li(t) is the principal polariza-
tion strength that is a function of the geometry and material of a
target. In other words, P (t) contains the information regarding
the geometry and material of a target as well as its orientation.
In the time domain, the P (t) in (1) includes a convolution with
a transmitter waveform I(t) [24], i.e., P (t) = Ps(t) ∗ I ′(t),
where Ps(t) is an impulse response and ′ denotes a derivative
operation. For an abrupt switch-off excitation, P (t) might be
viewed approximately as an impulse response tensor. For most
off-time measurements, we usually do not need to deconvolve
this tensor but rather directly use it in practice (e.g., see [4], [5],
[8], [10], and [13]–[15]).

At the observation location rRxi
, the magnetic vector poten-

tial A due to a moment m(t) is [35]

A(t) =
μ0

4π

m(t)× (rRxi
− r)

|rRxi
− r|3

. (4)

For a finite size of a receiver loop, we measure voltage that is
expressed as

d (rRxi
, t)=

∫

lRxi

A · dl= μ0

4π

∫

lRxi

dl×(r−rRxi
)

|r−rRxi
|3

·m(t). (5)

According to the Biot–Savart law [35], the line integral along
lRxi

in (5) is a magnetic induction field vector at dipole location
r produced by a receiver loop with unit current and may be
denoted as

BR (r, rRxi
) =

μ0

4π

∫

lRxi

dl× (r− rRxi
)

|r− rRxi
|3

. (6)

Substituting (1) into (5) and using (6), we have the secondary
response di compactly written as [1], [10], [13]

di (rRxi
, t) = BT

R (r, rRxi
)P (t)BT (r, rTxi

) (7)

where superscript T denotes a transpose and subscript i denotes
the ith measurement in M sensing locations. The derivation of
(7) illustrates the principle of reciprocity [1] and that an induced
dipole response in the receiver coil can be calculated as a scalar
product of BR and m. Equation (7) describes the basic EMI
process of illuminating, scattering, and sensing.

For the inversion development, we rearrange (7) as

di (rRxi
, t) = aTi (r, rRxi

, rTxi
)q(t) (8)

where ai(r, rRxi
, rTxi

) is a 6 × 1 column vector representing
spatial sensitivities of the ith sensor to the object located at r
and q(t) is a 6 × 1 column vector whose components are the
elements of the polarizability tensor P (t) of an object. They are
given by

ai (r, rRxi
, rTxi

)=

⎡
⎢⎢⎢⎢⎢⎣

Bx
RB

x
T

Bx
RB

y
T +By

RB
x
T

Bx
RB

z
T +Bz

RB
x
T

By
RB

y
T

By
RB

z
T +Bz

RB
y
T

Bz
RB

z
T

⎤
⎥⎥⎥⎥⎥⎦

q(t)=

⎡
⎢⎢⎢⎢⎢⎣

p11(t)
p12(t)
p13(t)
p22(t)
p23(t)
p33(t)

⎤
⎥⎥⎥⎥⎥⎦

(9)

where [Bx
R By

R Bz
R]

T and [Bx
T By

T Bz
T ]

T are the Cartesian
components of field vectors BR(r, rRxi

) and BT (r, rTxi
).

Alternatively, by substituting (3) into (7), we obtain another
scalar-product form of the secondary response

di (rRxi
, t) = gT

i (r, ξ, rRxi
, rTxi

) f(t). (10)

In (10), ξ denotes one set of Euler angles (φ, θ, ψ) that describes
the orientation of a dipolar object and hence determines the
Euler vectors ei and

gT
i (r, ξ, rRxi

, rTxi
) =

[
BT

Re1e
T
1 BT BT

Re2e
T
2 BT

BT
Re3e

T
3 BT

]
fT(t) = [L1(t) L2(t) L3(t)] . (11)
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Consider η multiple objects at locations of r1, . . . , rη with
orientations ξ1, . . . , ξη and characterized with polarizations
q1(t), . . . ,qη(t) or f1(t), . . . , fη(t), each of which is defined
in (9) and (11). In our following work, we assume that the elec-
tromagnetic interaction between the objects can be neglected.
Although this does not hold always [6], [31], our previous work
[30] and works by others [25]–[29] show that this assump-
tion may often be valid in practice. By neglecting interaction
and thus using linear superposition of individual contribu-
tions, we have di(rRxi

, t) =
∑η

k=1 a
T
i (rk, rRxi

, rTxi
)qk(t) =∑η

k=1 g
T
i (rk, ξk, rRxi

, rTxi
)fk(t), where ai(rk, rRxi

, rTxi
)

and gi(rk, ξk, rRxi
, rTxi

), defined in (9) and (11), are the
spatial sensitivities of the ith sensor to the kth object located
at rk with orientation ξk.

To simplify the notation, we now suppress the position
vectors of the sensor coils. It is understood that the sensor
information is a subscript indexed in the recordings and in the
sensitivity vectors. The measurements made at M sensing lo-
cations, in the presence of noise, can be conveniently expressed
in a vector-matrix notation

d(t) =

η∑
k=1

A(rk)qk(t) + n(t) (12)

or

d(t) =

η∑
k=1

G(rk, ξk)fk(t) + n(t) (13)

where d(t) = [d1(t), . . . , dM (t)]T is an M × 1 measured data
vector at time t, n(t) is the additive noise vector, and A(rk) is
an M × 6 matrix denoting the sensitivities of the M sensors to
the kth object located at rk. Its transpose is given by AT(rk) =
[a1(rk) . . . aM (rk)]. G(rk, ξk) is an M × 3 matrix denoting
the sensitivities of the M sensors to the kth object located at
rk and oriented at ξk. Its transpose is given by GT(rk, ξk) =
[g1(rk, ξk) . . .gM (rk, ξk)].

The observed EMI response, as illustrated in (12) and (13),
is a linear combination of the finite dipole polarizations of
multiple objects with spatial weighting coefficients that depend
upon the locations and/or orientations of objects. Both formu-
lations are the generic dipole-based expressions for modeling
and inversion of EMI anomalies and are used interchangeably
in our development.

III. INVERSION TECHNIQUES

In a transient electromagnetic (TEM) system, we usually
have measurements of D = [d(t1), . . . ,d(tN )] at a series of
time instants t1, . . . , tN . Given space–time data D and pro-
vided that the number η of buried objects is known or as-
sumed, the goal of our inverse problem is to determine the
locations, orientations, and principal transient polarizations,
i.e., [r1, ξ1, . . . , rη, ξη, f1(tj), . . . , fη(tj)], j = 1, . . . , N , of the
multiple objects that best explain the spatial–temporal data.

The inversion of a data set that includes multiple objects
is conceptually simple, but numerically nontrivial. It involves
more parameters to be solved for, and thus, the nonlinearity

and nonuniqueness of the inverse problem is greatly increased.
In this high-dimensional model space, the choice of an initial
guess becomes critical.

To tackle these numerical challenges, we use the fact that the
EMI response is linear with respect to dipolar polarization and
nonlinear with respect to the locations and/or orientations of ob-
jects. In [30], we presented a solution strategy (similar to that in
[36] used for solving for a single-object case) that decomposed
the inverse problem into several steps, in each of which one
major set of model parameters is sought. Briefly, we first find
an estimate for the nonlinear location parameters and their as-
sociated linear polarization parameters. The orientation of each
object is then extracted from the polarizability tensors through
an eigendecomposition in (3). These steps as well as improve-
ments to our earlier work [30] are elaborated in the following.

A. Extracting Source Locations and Polarization Tensors

We first group our model parameters into two parts: a non-
linear part consisting of source locations r = vec[r1, . . . , rη]
and a linear part consisting of source polarizations v(t) =
vec[q1(t), . . . ,qη(t)] at time instant t. Here, vec[·] represents
a vectorization operation, i.e., stacking all vectors into a single
column. Referring to (12), we say that both parameter sets are
separable since the matrix A is independent of source polar-
izations qk(t). Using this separable property, we treat finding
source locations as a primary step and estimating polarizations
as an intermediate step.

1) Finding Multistart Points: To start the inversion, we need
an initial guess of the locations of η objects. This might be
done by examining the EMI responses and using the centroid
of each anomaly peak as an initial horizontal location for a
causative source. In practice, however, the spatial pattern of the
response can vary significantly depending upon the orientation
of the object and the transmitter–receiver configuration, e.g., the
data may show a two-peak anomaly for a single object or just
a one-peak anomaly for two closely spaced objects [15], [30].
Thus, this technique cannot be guaranteed to yield good initial
locations. This has previously been discussed in [30], and it will
be seen again here when we work with some new-generation
sensor systems.

We propose the following algorithm to find starting guesses
for a nonlinear inversion. First, define a region of interest (ROI)
that is sufficiently large to cover the active objects. In this
initial sampling process, one might use a uniform grid and
create potential combined locations in the ROI. However, we
consider that this way can be unpractical since it can produce
an undesirably large number of possible source configurations,
e.g., 1252, to be evaluated even for a two-object case in a
coarse grid of 5× 5× 5 over a volume of 1 m × 1 m × 1 m.
Therefore, we chose to randomly create trial (typically a few
hundred) locations for η objects within the ROI. Our processing
experience shows that this amount of random sampling gives a
good balance between computational efforts and accuracy.

For each trial set of locations, we evaluate the misfit

Φd(r) =

N∑
j=1

∥∥∥Wj

(
dobs(tj)− d̃(tj)

)∥∥∥2 . (14)
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Wj is a diagonal data weighting matrix for the data at time
tj , and its diagonal entries correspond to estimated standard
deviation of the uncertainty for each datum. Generally, we
estimate a baseline uncertainty that is proportional to 1/

√
(t)

[15] and assign a standard error as a summation of the baseline
error δj and a percentage ϑ of an observed datum. Then, the
diagonal entry of Wj is written as Wj,ii = δj + ϑ|d|obs,i(tj).
d̃(tj) are the predicted data and are evaluated via

d̃(tj) =

η∑
k=1

A(r̃k)q̃k(tj) (15)

where r̃k denotes the trial locations and q̃k denotes the es-
timated polarizations. These are computed by solving a con-
strained linear inverse problem

ṽ(tj) = arg min
v(tj)

∥∥∥∥∥dobs(tj)−
η∑

k=1

A(r̃k)qk(tj)

∥∥∥∥∥
2

s.t.

pk,ii(t) ≥ 0

|pk,ij(t)| ≤
1

2
[pk,ii(t) + pk,jj(t)] . (16)

The constraints imposed in (16) arise from the fact that the
principal polarizations Li(t) are physically positive in (3) and
from the numerical equivalence that P (t) in (2) and (3) is a
symmetric positive definite matrix [37], [38]. From the theorem
in [37], [38]: A symmetric matrix is positive definite if and
only if all principal minors are positive. In our case, the MPT
is a 3 × 3 symmetric matrix, and for its positive definiteness,
the corresponding seven principal minors are required to be
positive: det(P ) ≥ 0, piipjj − p2ij ≥ 0, pii ≥ 0, i, j = 1, 2, 3.
The first two constraints are nonlinear. However, using the
inequality of (

√
p
ii
−√

p
jj
)2 ≥ 0, we can convert piipjj ≥ p2ij

into the equivalent linear inequality constraints (pii + pjj) ≥
2|pij |. The nonlinear inequality constraints of det(P ) is not
easily handled and is excluded in our current implementation.
The linear inequality constraints used in (16), which can be
easily implemented using Matlab function lsqlin [39], are
consequently necessary but not sufficient for a matrix to be
semipositive definite. We say a “semi-” because of the equal-
ities included in those constraints. To impose a full positive
definite property on the polarization tensor, we may need
further development [40].

After a forward evaluation using (14), the trial starting loca-
tions are ranked according to their misfit. A small population
of points (typically a few tens) with low Φd(r), and whose
locations are significantly distinct from other trial locations, are
selected as multistart points for a nonlinear inversion.

2) Nonlinear Optimization: In the next step, we use the
suite of starting locations and find both locations and polar-
izations by carrying out a nonlinear optimization. Either a
Levenberg–Marquardt approach or trust region interior point
method [41], [42] can be used. If the current location is rc,

the updated location and polarizations are found by solving the
following optimization problem:

r̃ = argmin
r

N∑
j=1

∥∥∥Wj

(
dobs(tj)−d̃(rc, tj)−J(rc)(r−rc)

)∥∥∥2

d̃(rc, tj)=

η∑
k=1

A(rc,k)q̃k(tj)

subject to ‖r− rc‖ < Δr (17)

where J(rc) is the Jacobian for furnishing the descent direction
in the local linearized search, d̃(rc, tj) are the predicted data
at rc, and Δr is a positive scalar used to provide a local ball
within which r is allowed to change w.r.t. rc (for details about
the algorithms, see [41] and [42]). Note that these local searches
are conducted within the ROI. Evaluation of the predicted data
requires that q̃k be evaluated. This is done as before by solving
the constrained least square problem (16). The iterations in
(20) are continued until convergence criteria are satisfied. This
yields final locations r̃k and polarizations q̃k, k = 1, . . . , η.

B. Determining Principal Directions and Polarizations

The previous computation has provided us with the estimated
locations of each object and an MPT for each object at time
tj , j = 1, . . . , N . From the estimated P̃ (t) at time t and its
eigendecomposition, the corresponding orientation angles ξ =
(φ, θ, ψ) can be obtained through their relationship with the
components of the Euler vectors ej [30]. This was the approach
we used in [30]. Each time channel yields its own orientation,
and generally, there is no guarantee that they are close to each
other. For the dipole model assumed here, the principal polar-
ization directions are assumed not varying with time, and hence,
a better approach is to determine an average principal direction
across a range of times using a joint diagonalization technique
(see [43] and [44] for details). For instance, the technique
can be employed to find the best orthogonal matrix Ẽ so that
P (t1) = ẼL1Ẽ

T, . . . , P (tN ) = ẼLN ẼT, where L1, . . . , LN

are found as 3 × 3 diagonal matrices as possible. In other
words, Ẽ represents an “average eigenstructure” shared by the
matrices P1, . . . , PN . We have implemented this but have still
found unsatisfactory results in a few cases. The reason can
be seen from first-order perturbation analysis. For eigenvector
(principal direction) perturbations Δei due to error in P , we
have [13], [38]

Δei =
∑
i�=k

eTk,0ΔPei,0

Li,0 − Lk,0
ek,0, i, k = 1, . . . , 3 (18)

and this can become erroneously large even for small pertur-
bations ΔP of the MPT if there are small differences between
the principal polarizations. Considering this potential instability
problem, measurement errors, and possible tradeoff among the
magnetic polarizability tensors of multiple objects, we have
used the following strategy. We use the orientation found by
the joint diagonalization aforementioned as a starting value and
then do a nonlinear update to determine optimal orientations of
multiobjects by fixing their locations. In this case, formulation
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(13) is used and the separable parameter sets are the orienta-
tions of objects and their principal polarizations. The nonlinear
optimization algorithm is analogous to that used to find the
locations of the objects. Defining ξ = vec[ξ1, . . . , ξη] and from
a set of starting or current orientations ξc of multiple objects,
we obtain their optimal estimate as

ξ̃=argmin
ξ

N∑
j=1

∥∥∥Wj

(
dobs(tj)−d̃(ξc, tj)−J(ξc)(ξ−ξc)

)∥∥∥2

d̃(ξc, tj)=

η∑
k=1

G(r̃k, ξ̃c,k)fk(tj)

subject to ‖ξ−ξc‖<Δξ (19)

where J(ξc) is a Jacobian matrix with respect to the orienta-
tions, Δξ is a positive scalar representing the trust region size
[41], [42] and plays a similar role as in (20), and d̃(ξc, tj)
denotes the predicted data. The evaluation of fk(tj) is done
similarly to finding qk(tj) in the location search. That is, we
solve the linear subproblem minimizing

ũ(tj) = arg min
u(tj)

∥∥∥∥∥dobs(tj)−
η∑

k=1

G(r̃k, ξ̃c,k)fk(tj)

∥∥∥∥∥
2

s.t. Lk,i(t) ≥ 0 (20)

where u(t) = vec[f1(t), . . . , fη(t)]. Thus, the process of nested
inversions for orientation is identical to that for location. This
estimate of source orientations and polarizations is chosen
when there is improvement in data fit over eigendecomposition-
based estimation.

With the completion of the calculations about locations,
orientations, and polarizations of multiple objects, in the fol-
lowing, we apply the technique to test-stand and field data sets
using a two-object model since this scenario appears frequently
in practice.

IV. APPLICATIONS

To demonstrate our methodology, we present the results us-
ing TEMTADS and MetalMapper TEM data. These are recently
developed new-generation EMI sensor systems. TEMTADS
[32] is a single-component multistatic system. It consists of
a horizontally arranged coplanar array of 5 × 5 transmitters
and receivers [Fig. 1(a)] with a sensor footprint of 2 m × 2 m.
The sizes of its transmitters and receivers are 35 cm × 35 cm
and 25 cm × 25 cm, respectively. It has 115 logarithmically
spaced gates between 0.042 and 24.35 ms. For each transmitter
excitation, TEMTADS records the response at all receivers.
Thus, it has spatial–temporal data of 625 × 115 for a static
(cued) survey.

The MetalMapper [33] is a multicomponent system consist-
ing of three orthogonal transmitters (roughly 1 m × 1 m) and
seven three-component receiver cubes of 0.1 m [Fig. 1(b)].
The sensor footprint is 1 m × 1 m. The MetalMapper has
42 logarithmical time gates ranging from 0.106 to 7.91 ms. It
can be employed in two survey modes: a dynamic mapping
survey for target detection and a static (cued) measurement
over detected targets for use in discrimination. At one static

Fig. 1. (a) TEMTADS: A single-component multistatic system consisting of
a horizontally arranged coplanar array of 5 × 5 (red squares) transmitters and
(blue squares) receivers. Each transmitter is 35 cm × 35 cm, and each receiver
is 25 cm × 25 cm. (b) MetalMapper: A multicomponent system consisting of
(red squares) three orthogonal 1 m × 1 m transmitters and (in blue) seven three-
component receiver cubes of 0.1 m.

Fig. 2. TEMTADS multiple-object measurement configuration: (a) 4.2′′ mor-
tar + half shell (deep and big clutter) and (b) 4.2′′ mortar + nose piece (shallow
and small clutter). Hd denotes a horizontal separation between the two objects.

sounding, the MetalMapper can record spatial–temporal data of
63 × 42. In the summer of 2009, both systems were operated in
an Environmental Security Technology Certification Program-
sponsored classification study at the former Camp San Luis
Obispo (SLO), CA.

A. TEMTADS Test-Stand Data

Test-stand data from two-object configurations, i.e.,
4.2′′ mortar + half shell (deep and big clutter) and
4.2′′ mortar + nose piece (shallow and small clutter), are
used to evaluate our methodology. Fig. 2 schematically shows
the configuration in which the 4.2′′ mortar is horizontally
centered 61 cm below the array and is kept stationary during
the experiment. The clutter, either consisting of a half shell at a
depth 44 cm in Fig. 2(a) or a nose piece at a depth of 27 cm in
Fig. 2(b), was moved horizontally at increments of 10 cm from
0 to 150 cm from the center of the array. A horizontal separation
between the two objects is marked as Hd in the figures.

Fig. 3 shows the polarizabilities of all three items. These
polarizabilities have been obtained by inverting single-object
data when the 4.2′′ mortar, the half shell, and the nose piece
were positioned separately under the array center at the depths
of 61, 44, and 27 cm. We use this set of polarizabilities as our
“ground truth” to compare with polarizations recovered from
the overlapping data. Many inversions were carried out but the
essential results can be encapsulated by looking at some easier
scenarios where separations between the objects are large and
other scenarios where the objects are close together. For the
TEMTADS system, we choose to show the monostatic data
where transmitters and receivers are colocated.



4012 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 10, OCTOBER 2011

Fig. 3. Polarizabilities used in the TEMTADS test-stand experiments. (a) 4.2′′ mortar. (b) Half shell. (c) Nose piece.

Fig. 4. Example 1a of TEMTADS test-stand overlapping data: 4.2′′ mortar + half shell with Hd = 50 cm. Monostatic image at t1 = 0.042 ms. The white
dots in the images denote the center positions of the sensors. (a) Single-object inversion. (b) Two-object inversion. On the polarization plots, red and blue dash
curves represent the known polarizations of 4.2′′ mortar and half shell shown in Fig. 3(a) and (b).

1) Examples 1—Large Horizontal Separation: As example
1a, we use data from two objects, a 4.2′′ mortar + half shell,
when their horizontal separation is Hd = 50 cm. This is the
overlapping case from two strong objects.

Fig. 4 shows the monostatic image at t1 = 0.042 ms. It ex-
hibits a single peak. As usual, the data were inverted as a single
object. That predicts a location r1 = (−28.07,−0.56,−54.82)
cm which is not close to the location of either object. The
resultant misfit is shown in row (a) of Fig. 4 along with the
polarization curves. We note that there is considerable signal in
the residual map, showing that the inversion was not successful
in reproducing the data. Also, the recovered polarization curves
do not match well those of any of the library items. This poor
result suggests that the data might be better interpreted as being
from two objects.

For a two-object inversion, it is understandable that a pair of
locations in the 3-D Cartesian space is equivalent to one point
in a 6-D model space. In the following, we will interchangeably
use words “point” or “pair.” First, we define the ROI that
horizontally corresponds to the size of the sensor footprint and
vertically extends from the surface or bottom of the sensor

down to 1.36 m. We then randomly select 300 trial pairs of
locations and evaluate their misfits Φd using (14). These points
are sorted and plotted (circles) in Fig. 5(a). Fig. 5(b) shows Φd

versus the depths z1 and z2 for the sampled points. We use
these plots to select ten points that have a low misfit and also
have distinct horizontal and vertical locations. These are shown
by the crosses in Fig. 5(a) and (b). These ten selected trial
locations serve as input to the nonlinear inversion to recover
locations and polarization tensors. In this example, all selected
trials converged to the same locations. As an illustration, Table I
lists the first five initial and final locations ordered from the
final Φd values that have subtle differences. Fig. 5(c) shows
the convergence curve of Φd as a function of the iteration
number starting from one (marked as No. 1 in Table I) of
the trials, shown by a pair of circles in Fig. 5(d). It roughly
took seven iterations to reduce the value of Φd from an initial
value of 35 816 to 545. There were no significant changes in
Φd with further iterations. In Fig. 5(d), the inverted locations,
denoted as crosses r1 = (0.61,−0.74,−58.35) cm and r2 =
(−49.74,−0.52,−46.07) cm), are close to the true locations
marked as diamonds.
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Fig. 5. Example 1a of TEMTADS test-stand overlapping data: 4.2′′ mortar + half shell with Hd = 50 cm. Determining source locations by the multistart
algorithm. (a) (Circles, the vertical axis on the right) Ordered Φd values versus number of initial points; (crosses, the axis on the left) the top ten smaller Φd points.
(b) Three-dimensional scatter plot of Φd versus depths z1 and z2 of the 300 (circles) initial pair points and the (crosses) selected. (c) Convergence curve of Φd

as a function of the iteration number starting from one selected point. (d) Three-dimensional scatter plot of the (circles) selected starting locations, the (crosses)
inverted locations, and the (diamond) true locations.

TABLE I
EXAMPLE 1A OF TEMTADS TEST-STAND OVERLAPPING DATA: FIVE PAIRS OF INITIAL AND

FINAL LOCATIONS. THE TRUE LOCATIONS: (0.0, 0.0 −61.0) cm AND (−50.0, 0.0,−44.0) cm

Fig. 6. Examples 1 and 2 of TEMTADS test-stand overlapping data: 4.2′′ mortar + nose piece. (In black and green solid curves) Inverted polarizabilities
when (a) Example 1b of Hd = 50 cm, (b) Example 2a of Hd = 10 cm, and (c) Example 2b of Hd = 0 cm. Red and blue dash curves represent the known
polarizations of 4.2′′ mortar + nose piece shown in Fig. 3(a) and (c).

Having obtained the locations, the next step is to compute
the orientation and principal polarizations for the objects. Using
the methodology outlined earlier, the estimated Euler angles of
the two objects are (φ1, θ1, ψ1) = (181.14◦, 88.77◦, 9.66◦) and
(φ2, θ2, ψ2) = (182.97◦, 95.39◦, 0.05◦). This is an acceptable
agreement with the ground truth where the objects were ori-
ented horizontally.

In Fig. 4, row (b) presents the predicted data, residuals, and
recovered polarizations after the two-object inversion. Visually,
the multiobject inversion explains data well. Defining the rela-
tive error of data misfit as

εd =

√√√√√
∑N

j=1

∥∥∥Wj

(
dobs(tj)− d̃(tj)

)∥∥∥2∑N
j=1 ‖Wjdobs(tj)‖2

(21)

the single-object inversion has εd = 35.02%, while the two-
object inversion has εd = 6.53%. The two-object inversion
has 81.35% fit improvement over the single-object inversion
and accurately recovers the polarizations of each object as
compared with the ground truth.

Other examples were done that also included the
4.2′′ mortar + nose piece, and we found that when the
separation was large, Hd = 50 cm, the multiobject inversion is
able to accurately obtain the polarizations of strong and weak
objects, shown as example 1b in Fig. 6(a). Similarly, at other
large Hd separations, we can achieve satisfactory recovery
of object polarizations for both 4.2′′ mortar + half shell
and 4.2′′ mortar + nose piece configurations. The more
challenging scenarios are to test if we can well recover the
polarizations when two objects are much closer.
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Fig. 7. Example 2c of TEMTADS test-stand overlapping data: 4.2′′ mortar + half shell with Hd = 10 cm. Monostatic image at t1 = 0.042 ms. The white
dots in the images denote the center positions of the sensors. (a) Two-object inversion. (b) Single-object inversion. On the polarization plots, red and blue dash
curves represent the known polarizations of 4.2′′ mortar and half shell shown in Fig. 3(a) and (b).

2) Examples 2—Smaller Horizontal Separation: Here, we
present the examples when two objects have a horizontal sepa-
ration of Hd = 10 cm and of Hd = 0 cm.

We first consider the 4.2′′ mortar + nose piece. The
multiobject inversion produces accurate polarizations of
4.2′′ mortar at these smaller separations (as examples 2a
and 2b in Fig. 6(b) and (c)). However, for this small piece
of clutter, its recovered polarizations at Hd = 0 cm becomes
inaccurate.

We next consider the half shell at separations Hd = 10 cm
and Hd = 0 cm. Notice that, in Fig. 3, the half shell has a
comparable polarization strength with the 4.2′′ mortar. For the
case of a 4.2′′ mortar and half shell at small separations, it
is more difficult to get a good recovery of their polarizations.

For the case of Hd = 10 cm (example 2c), the two-object
inversion in Fig. 7(a) achieves a smaller residual distribution
than using a single-object model in Fig. 7(b) and predicts
the two objects at r1 = (5.99,−1.18,−55.20) cm and r2 =
(−14.06,−1.21,−48.63) cm. A single-object inversion pre-
dicts an object at r1 = (−6.51,−1.19− 51.82) cm. Comparing
with the true locations, rtrue1 = (0.00, 0.00,−61.0) cm and
rtrue2 = (−10.00, 0.00,−44.0) cm, we see that all coordinates
agree to within 6 cm and the polarizations of the objects are
well recovered. In this case, likely because the polarizations
of the two objects are quite similar, the single-object inversion
produces an object that lies midway between the two items
and the polarization curves are approximately those of the
4.2′′ mortar. With only a single-object analysis, the regulators
would have discovered the ordnance but would also have been
surprised to find a second item.

When Hd = 0 cm (example 2d), the large piece of clut-
ter is directly above the ordnance. The two-object inver-
sion in Fig. 8(a) predicts the locations at r1 = (−10.07,
−0.69,−51.71) cm and r2 = (7.64,−1.39,−51.20) cm, with

εd = 5.84%. In this difficult case, the polarizations from the
two-object inversion are inaccurately recovered. It predicts
two identical rodlike objects in terms of polarization char-
acteristics. The inversion tries to interpret the anomaly data
as two objects at the same depth with horizontal separation
of about 17 cm. In the single-object inversion, it predicts
the location at r1 = (−0.73,−1.05,−51.92) cm with εd =
8.32% and recovers some features of the ordnance polarizations
[Fig. 8(b)]. For understanding this overlapping problem, we
conducted an inversion by manually specifying locations of
the two objects at r1 = (0.61,−0.74,−58.35) cm and r2 =
(−0.49,−0.52,−46.07) cm according to the ground truth and
the inverted results of Hd = 50 cm. Fig. 8(c) shows that the
polarizations of the two objects, particularly the polarizations
for the ordnance, are much better recovered but the data fit
is εd = 8.79%. Among the three inversion results, the auto-
matic two-object inversion gives the smallest misfit but with
inaccurate recovery of polarizations of the objects. Thus, the
tests raise a question about how to select an inversion result
from multiple solutions for certain difficult data anomalies.
Judging solely upon a misfit-based metric may not always give
the best solution. In such a case, examination of the recovered
polarizabilities against the available library may provide sort
of complementary information in making a decision about
inversions.

3) Discussion Arising From Test-Stand Data: The numer-
ous tests show that there are a number of factors that can
affect our ability to resolve an overlapping anomaly. These
factors include spatial separation of the underlying sources
(e.g., deep and shallow, far and close) and their polarization
strengths. In an attempt to understand our previous results,
where we observed that the case of strong + weak configuration
(e. g, mortar + nose piece) is better resolved than strong +
strong configuration (e.g., mortar + half shell), we briefly
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Fig. 8. Example 2d of TEMTADS test-stand overlapping data: 4.2′′ mortar + half shell with Hd = 0 cm. Monostatic image at t1 = 0.042 ms. The white
dots in the images denote the center positions of the sensors. (a) Two-object inversion. (b) Single-object inversion. (c) Two-object inversion at the specified
locations. On the polarization plots, red and blue dash curves represent the known polarizations of 4.2′′ mortar and half shell shown in Fig. 3(a) and (b).

investigate the use of covariance of the recovered polarization
tensor elements. We use the metric given by [45]

εp = Trace
[
(ATA)−1

]
(22)

where A = [A(r1) A(r2)], as defined in (12). εp reflects the
size of the total uncertainty of polarizabilities and, therefore,
is a global measure of resolution. It is most informative when
used in a relative sense to compare two sources. Equation (22)
was similarly used in [13] and [46] to assess the relative merits
of different transmitter/receiver combinations and to measure
survey quality in EMI sensing. Here, we use (22) as a metric to
characterize how two-object problems can be resolved by a spe-
cific array. For example, given two overlapping configurations,
the one with a lower εp is likely better resolved by an array.

Using the TEMTADS array as a test, Fig. 9 shows εp as
a function of horizontal separation Hd between two objects
when their vertical separation is Vd = 17 cm and Vd = 34 cm.
This emulates the test-stand configuration of Fig. 2. The εp
values in the figure are normalized by εp at Vd = 17 cm and
Hd = 0 cm. For the case of Vd = 17 cm, εp is reduced to
50% when Hd = 10 cm, and it is further reduced to around
15% for the large separation of Hd = 50 cm. Conservatively,
for this smaller vertical separation, the minimum Hd that an

Fig. 9. Total uncertainty of polarizabilities against the horizontal separation
between two objects. (a) Vd = 17 cm. (b) Vd = 34 cm.

overlapping anomaly can be necessarily resolved might be
around 10 ∼ 20 cm. On the other hand, when the vertical
separation between the two objects is increased to 34 cm, the
normalized εp values become smaller at different Hd values
and the corresponding curve is flatter. The largest normalized
εp is only about 0.26 at Hd = 0. Probably, we would say that
an overlapping anomaly with this large vertical separation, even
with much smaller horizontal separation, can be resolved given
an adequate signal-to-noise ratio. This seems consistent with
the observations in our inversion tests in Fig. 6 for the case of
4.2′′ mortar + nose piece.
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Fig. 10. Monostatic observed data for anomaly 489 and the predicted data and residuals after the single-object inversion. The cross in one predicted image
denotes the inverted location of an object. The white dots in the images denote the center positions of the sensors. The first row is for t1 = 0.042 ms, and the
second row is for t53 = 0.99 ms. On the polarization plot, red dash curves represent the polarizabilities of the 60-mm mortar in the library.

B. Field Data

Here, we present the applications of the multiobject inversion
technique to field data that were acquired at San Luis Obispo
(SLO), CA. In the field survey, the TEMTADS and MetalMap-
per sensor heights are at 0.3 and 0.21 m above the ground,
respectively.

1) TEMTADS: The first example is to use a set of field data
marked with ID 489, which was included in the training data. It
was stated that the data are associated with a single object and
the ground truth is a 60-mm mortar.

Fig. 10 shows, from left to the right, the observed, predicted,
and residual data at (a) t1 = 0.042 ms and (b) t53 = 0.99 ms
using a single-object inversion. The recovered polarizations are
also shown. There is a strong anomaly at the corner of the
array that shows up in the early time channels, but it is not fit
by the single-object model inversion. By 1 ms, we see mainly
a centered anomaly with rather weak signal and the corner
anomaly has nearly disappeared. It predicts an object near the
center of the array at r1 = (0.06,−0.12,−0.50) m, denoted as
a cross on the modeled data. However, the polarizations of the
item in Fig. 10 are larger than those (in red) for a 60-mm mortar
(the polarization curves for the 60 mm were obtained from
inverting test-pit data), and they indicate a non-UXO object
which has two approximately equal major polarizabilities. In
summary, using a single-object model, we were unable to obtain
a solution that has a sufficiently good fit to the data and we
failed to get correct polarization signature of the target.

Next, we subjected the data to a two-object inversion. The
results are shown in Fig. 11. Examining the predicted data
and the residual distribution, we see that data are much better
explained. The strong corner anomaly at early times and the
center weak anomaly visible around 1 ms are well repro-
duced. With further inspection of the recovered polarizations,
one would confidently infer that the two-object inversion pre-

dicts one axis-symmetric object at r1 = (0.12, 0.19,−0.32) m,
whose polarizations (in black) match well with those of the
60-mm mortar (in red), and one clutter-like object at r2 =
(0.81,−0.81,−0.06) m, whose polarizations (in green) show
two almost equal major curves that are strong at early times but
fade out quickly after around 1 ms. The polarization character-
istics explain the signal of the anomaly near the corner.

Fig. 12 shows another example of applying the technique
to data that could include two objects. The single- and two-
object inversions have the normalized misfit values of 0.849
and 0.932, which indicate that both equally fit well the ob-
served data. The single-object predicts a shallow object at r1 =
(−0.02, 0.02,−0.05) m, while the two-object inversion pre-
dicts that one shallow object at r1 = (−0.02,−0.02,−0.04) m
and a deep object at r2 = (0.07, 0.01,−0.44) m. Their hori-
zontal separation is roughly 9.5 cm. Based on the good match
of the primary polarizability of the deep object with that in
our library, we would infer that it is likely a 60-mm mortar. In
fact, the inference agrees with the ground truth. From the single
object inversion, the anomaly is most likely misclassified as a
non-UXO.

2) MetalMapper: This is an example (with data ID of 1177)
of misclassification that occurred using a single-object in-
version. In a retrospect analysis, a two-object inversion was
conducted to evaluate whether we can recover the polarizations
of a discovered UXO. All of the MetalMapper data were
inverted, and we have plotted a few of the 63 multicompo-
nent measurements to show some data points where the dif-
ference between both inversion fittings is manifest under the
same excitations, e.g., Tx-Z (i.e., the horizontal transmitter).
In Fig. 13, one can see that the two-object inversion provides
a far better data fit than the single-object inversion in data
amplitudes and polarities, for example, see the components of
RxZ-1, RxX-2, and RxY-2. Here, we use RxZ-1 to represent the
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Fig. 11. Monostatic observed data for anomaly 489 and the predicted data and residuals after the two-object inversion. The two crosses in one predicted image
denotes the inverted locations of two objects. The white dots in the images denote the center positions of the sensors. The first row is for t1 = 0.042 ms, and the
second row is for t53 = 0.99 ms. On the polarization plot, red dash curves represent the polarizabilities of the 60-mm mortar in the library.

Fig. 12. Monostatic observed data at t1 = 0.042 ms for anomaly 1 285 and the predicted data and residuals. The cross(es) in one predicted image denotes the
inverted location(s) of an object or two objects. The white dots in the images denote the center positions of the sensors. (a) Single-object inversion. (b) Two-object
inversion. On the polarization plot, red dash curves represent the polarizabilities of the 60-mm mortar in the library.

z-component of receiver cube 1. The same notation rule applies
to other components. The single-object predicts the location
of an object at (−0.16, 0.25,−0.19) m, while the two-object
inversion predicts that the locations of the objects are at r1 =
(−0.17, 0.21,−0.09) m and r2 = (−0.16, 0.63,−0.32) m.
This corresponds to one shallow object and one deep object.
In fact, the two-object inversion with the normalized misfit of
2.88 attains a significant data fit improvement of 79.5% over the
single-object inversion that has a misfit of 14.07. Furthermore,
by matching the recovered polarizations with our MetalMapper
polarizability library, we can identify in Fig. 14 that the deep
target is likely a 60-mm mortar. Again, this is an overlapping

scenario where a small item of interest (here, a 60-mm mortar)
is deeply buried and is overlain by two smaller 60-mm tail
booms [33]. In this difficult case, the weaker signals arising
from the deep 60-mm mortar were dominated by the responses
of the two shallow 60-mm tail booms.

V. CONCLUSION

We have considered the problem of inverting multiple objects
using TEM data. This is of practical interest in the cleanup of
UXO-contaminated sites where items are closely spaced and
can be sensed simultaneously within the field view of sensors.
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Fig. 13. MetalMapper anomaly 1177. Some selected components from Tx-Z (the horizontal transmitter) excitation. (a) Single-object inversion. (b) Two-object
inversion. Observation: (Blue cross) Positive; (red circle) negative. Prediction: (Green cross) Positive; (black circle) negative. In the top left subplot of (a) and (b),
RxZ-1 represents the z-component of receiver cube 1. Similar notations appears in the other subplots.

Our methodology for this problem is to decompose a high-
dimensional model space into lower dimensional model spaces
and solve smaller decomposed problems separately and sequen-
tially. Numerically, the problem is cast into explicit separable

nonlinear optimization problems in which a set of nonlinear
model parameters, for example, the locations of the underlying
sources, are sought while the set of linear model parameters,
their polarizations, are updated accordingly in a nested manner.
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Fig. 14. MetalMapper anomaly 1177. Recovered Polarizabilities. (a) Single-
object inversion. (b) Two-object inversion. Red curves represent polarizabilities
in the library.

The technique, allowing to fix one set of model parameters and
to optimize another set, can have the capability of mitigating the
tradeoff between the different classes of model parameters. As
part of the process, we have proposed a selected multistart non-
linear algorithm for source localizations that paves an efficient
way to finding a good initial guess of the model parameters,
helps guard against getting trapped in potential local minima,
and makes the nonlinear inversion effectively automated.

The technique has been evaluated using data from the next-
generation sensors, namely, the TEMTADS and MetalMapper
systems. Using the TEMTADS test-stand data, we studied the
spatial resolution of overlapping anomalies through inversions
and with the metric defined as the total uncertainty of the po-
larizabilities. Spatial separation between two objects is a major
factor to govern overlapping level of an anomaly. Generally,
both vertical and horizontal separations are mutually dependent
factors that influence the resolution of multiple objects. This
initial study shows that an overlapping anomaly with a mini-
mum 10 ∼ 20 cm of horizontal separation might be resolved
for a vertical separation of 17 cm. When the vertical separation
of two objects is increased, even smaller horizontal separations
may be resolved. We should mention that these detailed infer-
ences are case dependent and that resolution numbers cannot
be blindly used for other configurations and noise backgrounds.
Rather, our work serves as a preliminary understanding of how
we can resolve closely spaced objects.

The tests of the technique using the field data demonstrate its
capability to recover target signatures of interest for a number of
difficult overlapping anomalies (e.g., deep and shallow objects
sensed together) and to be able to provide accurate input
to classification analysis for improving discrimination. Thus,
the technique can become a practical tool in UXO clearance
projects.
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