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Abstract. This paper presents a robust, flexible and efficient algorithm to solve large scale linear
inverse problems. The method is iterative and at each iteration a perturbation in a g -dimensional
subspace of an M-dimensional model space is sought. The basis vectors for the subspace are
primarily steepest descent vectors obtained from segmenting the data misfit and model objective
functions. The efficiency of the algorithm is realized because only a g x ¢ matrix needs to
be inverted at each iteration instead of a mateix of order M. As M becomes large the number
of computations per iteration is of order ¢/ ¥ M where N is the number of data. An important
feature of our algorithm is that positivity can easily be incorporated into the solution. We do
this by introducing a two-segment mapping which transforms positive parameters to parameters
defined on the real line. The nonlinear mapping requires that a line search involving forward
modelling is implemented so that at each iteration we obtain a model which misfits the data to
a predetermined level. This obviates the need to carry out additional inversions with triat and
ercor selection of a Lagrange multiplier. 1n this paper we present the details of the subspace
algorithm and explore the effect on convergence of using different strategies for selecting basis
vectors and altering adjustable parameters which control the rate of decrease in the misfit and
rate of increase in the model norm as a function of iteration number,

1. Introduction

In a typical linear problem we are provided with N data d f"“ and mappings of the form
d, = £;[m] which express the relationship between the jth datum d; and a model m. The
data constitute a set of constraints upon the model and in the inverse problem we attempt
to find a model which acceptably reproduces these data. The fundamental difficulty is that
of non-uniqueness; there are generally infinitely many models which adequately reproduce
the observations. Practical inverse problems are therefore formulated by first designing a
specific objective functional of the maodel and then minimizing this functional subject to the
data constraints. Generally the objective function is tailored so that the solution from the
inverse algorithm is ‘close’ to a prespecified reference model and also that the constructed
model has ‘minimum structure” in some sense. A particularly useful objective function for
a three dimensional medel in a Cartesian coordinate frame is

Oy (m} = o, f

) ] - 2
w,(# — ag)” dv + oy [ Wy (M) dv
vol vol 9x

- 2 - 2
ta f - (u) dv -+ a, f w, (M) du. 0
T dval 3}' vol dz

In equation (1) the functions wy, wy, w,, w, are specified by the user and the constants o,
¢y, @y and e, control the importance of closeness of the constructed model to the reference
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model mg and control the roughness of the model in the three directions. Pragmatic issues
generally force us to discretize the model. Here we parametrize the model by a set of
M rectangular prisms and require that the model be constant within each cell. With this
parametrization the objective function can be written as

O (M) = (M —mo)” {0, WI W, + o WIW, + 0, WIW, + o, W W, (m—mg). ()

The elements in the M x M matrices W,, W,, W,, W, are related to the cell dimensions.
Equation (2) can be written generically as

$m (M) = (M —Mo)” WIW,, (M — myp) = {[W,,. (m —myg) ||*. €)

We will use this form for most derivations even though W,, may not be explicitly computed.
There is no loss of generality because our final computational equations will require only
WIW,, and this is easily evaluated by using equation (2).

With the same model parametrization the forward mapping £[m] = d takes the form
Gm = d where G is an N x M matrix. The inverse problem is now formulated as the
optimization problem:

minimize Gm = || W, (m = mp) |2

4)
subject to ¢y = ||[Wy (Gm - d°) |? = ¢ ¢

where ¢, is our misfit criterion, W is an N x N data weighting matrix and ¢ is the target
misfit. If the noise contaminating the jth observation is an uncorrelated Gaussian random
variable having zero mean and standard deviation o; then an appropriate form for Wy is
W, = diag {1/cy. ..., 1/oy}. With this assumption, ¢, is a random variable distributed as
chi-squared with N degrees of freedom. The expected value of ¢ is therefore approximately
equal to N and accordingly, the model sought from the inversion algorithm should reproduce
the observations to about this value.

The optimization in equation (1) can be attacked in a variety of ways. Three approaches
are standard.

OPT I. Let X = W, (m — mg) and define A = W,GW,,! and b = W, (Gmo — d°*). The
optimization problem becomes '

{ minimize b = |IX][2

5
subject to ¢a = |lAX — b|? = ¢]. ®

The problem is solved to find X and the model is recovered from m = W,'x + m,.

OPT II . Form the objective function
¢ (M) = g (M) + p™' (Pa(d) — 67) (6)

where p is the Lagrange multiplier. Differentiate with respect to the model parameters to
obtain

Bm=b
where

B = uW/W, + G"WIW,G
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and
b = ,u,Winmo + GTW5W4d°"'“.

The M x M matrix system is solved for m.

OPT M. Augment the matrix G with the equations pertaining to the model objective
function, and minimize the misfit of the overdetermined matrix system. That is, minimize

¢4 = ||Cm —f||* (&)
where
W,G W, dobs
MO VY ¢ Af Py W.m,

C= V#a'xwx and f= q#ﬂfxwxmo . o
B Wy B Wy mg
VoW, Ve Womg

This requires the solution of an (N + 4M) x M matrix.

The matrix equations in the above problems can be solved using a variety of approaches.
Direct decomposition methods (e.g. singular value decomposition) are most appealing but
they become computationally expensive if A, B or C becomes large. For this reason iterative
approaches are generally used. In OPT I the minimum norm solution for X lies in the row
space of the N x M matrix A. Row action methods (e.g. SIRT} can be used if the equations
Ax = b are rescaled and if the iterative process is initiated with the zero solution (van
der Sluis and Van der Vorst [987). Alternatively a projection method such as LSQR (Paige
and Saunders 1982) can be viable. This is particularly true if the technique, like LSQR,
minimizes ||AX — b{|?> + A]|x|[* so that solutions for multiple values of A can be had with
little extra effort. The M x M matrix B in equation (7} is positive definite and symmetric.
A viable, and popular approach to solving this system is to use a projection method like
Conjugate Gradient (Hestenes 1980, Golub and Van Loan 1989). Similarly a (bi)conjugate
gradient method (Press ¢7 ¢/ 1992) or LSQR can be used to solve the (N +4M) x M matrix
C in equation (9).

OPT 1, OPT II and OPT Il methodologies have successfully solved many inverse
problems. In our inversions however, they have not always met our needs. OPT I
requires the formation of W, and its inverse. Because our objective functions are generally
complicated, W' is not available. The strategy of OPT I is therefore prohibited by this task
alone. The impediments to using OPT Il and OPT III are that the matrices B and € can be
large, -dense and poorly conditioned. In addition, our desire to find a model which misfits
the data by a target value ¢ requires that the correct value of the Lagrange multiplier be
specified. Since this is unknown, the solutions via OPT II and OPT III must be carried out
a number of times to achieve this result.

In this paper we concentrate upon a fourth strategy which embodies elements of OPT 1
and OPT II. We formulate the optimization as per OPT II but choose to solve the equations
iteratively. At each iteration we search for a model perturbation §m € R¥ which is a linear
combination of vectors {v,}, i = 1,g. The model perturbation ém = f=l o;v; which
lies in a g-dimensional subspace of RY, ig therefore specified once the parameters «; are
determined. The principal advantage of this approach is that only a ¢ x g matrix needs
to be inverted. An immediate disadvantage is that in restricting the activated portion of
mode] space, it may be that vectors which are important in finding the global minimum of
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the desired objective function are not available and an inferior solution is obtained. The
success or failure of a subspace approach therefore hinges upon the selection of the spanning
vectors for the activated subspace. Our philesophy for selecting vectors is based upon the
following ideas. The two objective functions of importance to the inversion are ¢, and ¢.
Steepest descent vectors associated with each of these quantities are therefore fundamental
to the inversion process. Importantly we can partition each of these objective functions and
compute steepest descent vectors associated with each segment. Steepest descent vectors
formed from segments of ¢y are intimately associated with the vectors in QPT I while
vectors formed from segments of ¢, are associated with vectors from OPT II and thus the
subspace approach has elements of both of the standard techniques. In our approach a best
estimate for the Lagrange multiplier is found at each iteration and this obviates the need to
solve the inverse problem with trial values of y as required when using OPT II. The caveat
to this statement is that in practise the errors on the data, which include additive noise and
the effects of discrepancies between the mathematical model and the physical system being
emulated, are sometimes unknown. Under such circumstances it may be required to carry
out inversions with different target misfits and it can be argued that this is equivalent to
solving the inversion with different values of p. Nevertheless, in our work we have found
it advantageous to specify a desired misfit a priori and then to alter that misfit depending
upon the performance of the inversion.

In the following sections we present the subspace approach and examine the effect of
different choices of search vectors and the effects of adjusting parameters related to the
selection of the Lagrange multiplier. To illustrate convergence characteristics we invert
synthetic induced polarization (IPy data taken over a 2D earth. We next show how the
equations can to be altered to enforce positivity of the solution and apply the technique
to inverting our 1P data. The paper closes with our thoughts about practical utility of the
subspace approach in sclving linear inverse problems.

2. Subspace algorithm

The basic philosophy of using subspace inversion is common place in the mathematical
literature. In fact many of the earliest inversions resorted to representing the model as a
linear combination of chosen basis elements (often sinusoids) and finding coefficients of
these vectors which produced acceptable agreement to the observations. More recently the
computational efficiency of the subspace method and its application to large scale inverse
problems has been presented by Skilling and Bryan (1984) who maximized an entropy
norm suitable for image reconstruction, by Kennett and Williamson (1988) and Kennett et
al (1988) in their inversion of seismic data and by Oldenburg et a! (1993} in their inversion
of DC resistivity data. Those papers all dealt with nonlinear problems. Here we concentrate
upon the linear inverse problem.
Consider a model objective function

2 2z
P(m) = oz,,.f w,(m — mg)” dv +ozxf Wy (3_m) dv +oz}.f wy (a_m) dv
vol vol dx vol ay

2
+a'zf W (a—m) dv. (10)
val 0z

This is the same objective function as in equation (1) with the exception that the reference
model has been removed from the derivative terms. The reason for this is practical. In
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many inversion problems we are willing to provide an estimate for the value of the model
at a specific location but we are less confident about gradients. In such circumstances we
do not want to penalize differences in the gradient between the constructed and reference
model and we therefore omit m1g in the gradient terms. Discretization of equation (10) yields

Pr(M) = oy (M — M) WIW,(m —mg) +m" {o, WIW, +o,WIW, +o,W/W,}m.

(11)
This can be written as
$m(M) = (M — mo)" WI W, (m — myg) + 2m" WIW,mg — mJ WIW,m,
= [[W,,(m — mp)|* + 2m" WIW,mq — ||W,my||? (12)

where WEWU = t)z,,,WIWJt + a}.W;.”W}- -+ a;WIWz. We note that when myg is constant,
W.mg = 0 and the model objective function reduces to that given in equation (4).

Let m*™ be the model at the nth iteration and let {v,}, i = I, 4 be arbitrary vectors
which form a g-dimensional subspace of RM. We seek a model perturbation of the form
dm =3 ;v = V. Substituting into (6) yields

Pla) = |[Wn(m® + Vo — mg)| P + 7 ([[W(GmM®™ + GV — d™)|* — ¢]). (13)
Setting V¢ {a) = 0 yields

Ba=Db (14)
where

B = VI(GTWIW,G + uWIW, )V
and
b= —uVIWIW, (m"® —mg) — uV WTW, my — VI GTWIW,(Gm™ — d°).

The matrix B is a g x ¢ positive definite and symmetric matrix and is easily inverted
provided that g is relatively small. We note that this is the same matrix as in OPT I except
it has been contracted with the matrix V.

The success of the subspace methodology depends strongly upon the choice of basis
vectors. As in Oldenburg et al (1993), we partition the misfit and model objective functions.
The misfit objective function ¢, = (d — dg)” Wi W:(d — d;) may be partitioned as

ba=Y & ' (15)
where the kth subset is ¢% = (d* — d)"WAT W (d* — df) and the gradient is v, = V5.
Our norm on model space is controlled by the symmetric positive-definite matrix W7 W,,,.

A steepest decentf direction can be obtained by muitiplying the gradient by (W7 W,,)~!
(Gill et al 1981, p 102). We therefore choose vectors

vk = (WIW,) "'V ,,¢% (16)

t Ascent, really, but we are interested only in directions and therefore ignore the minus sign.
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as elements in our subspace. The application of (WZW,,)~" produces precise steepest
descent vectors only when myg is a constant for then WY W,my = 0 in the definition of
the objective function. If my is not constant then application of WIW,,)™! provides only
approximate steepest descent vectors. However, it was shown empirically in Oldenburg
et al (1993) that convergence in the subspace inversion is not substantially altered so
long as the vectors are converted to approximate steepest descent vectors and that the
pperator generating the vectors is applied uniformly to all gradient vectors. This empirical
result also permits setting o = 0 in the model objective function. The approximate
steepest descent vector V; is then found by using a conjugate gradient algorithm to solve
(WIW,, + elyv, = V¢ where € is a small positive quantity and [ is the identity matrix.

Partitioning of the data misfit objective function can be carried to the extreme so that a
gradient vector is obtained for each datum. In this case ¢f = W (dx — doe)* where Wy is
the kth diagonal element of the matrix W,. The gradient vector for qu is

Vil = 2Wj, (dp — dox) Vindy

a7
= 2W, (dy — dox)9k
where ¢ is the kth row of the matrix G. If only these vectors are used in the inversion then
the activated portion of model space is limited to that spanned by the rows of G. This is
an implementation that is often used when faced with solving an underdetermined inverse
problem and it requires the solution of an N x N matrix.

The partitioning of ¢y can be effected in a variety of ways. Data groups can be selected
arbitrarily, or since physical data are often acquired so that numerous data are associated
with a particular source or receiver then data may be grouped on that basis. A more
systematic approach is to select data groupings according to misfit. Let ¢§") be the misfit
at the nth iteration and let n; denote the number of data groupings. The data equations are
first reordered in terms of misfit with the first equation having the largest misfit. The data
groupings are then established by successively including data equations until the cumulative
misfit of each group is approximately qbi,") /ng.

The next set of vectors to be included in the subspace should be sensitive to ¢,,. The
steepest descent vector ¥ = (W;Wm)‘"'Vm 15 always useful but more flexibility to
construct a minimum norm model is achieved by subdividing the model objective function.
Let % (k = 1,4) denote the kth term in the model objective function in equation (10).
Steepest descent vectors

Vi = (Wi W) Vg (18)

are routinely used in our algorithm. In addition we use the constant vector. We note that
the sum of the vectors in equation (18) is equal to the steepest descent vector for ¢,.
Potentially useful vectors can also be obtained by partitioning this vector. For 2D problems,
the cells along individual rows or individual columns can be grouped and the projection of
(W;Wm)“qubm onto those rows or columns provide good search directions, especially
if the earth model has strong lateral or vertical continuity. The analogous situation in 3D is
to use horizontal or vertical planes of cells.

We offer no definite way to prescribe an optimum strategy for subdividing V,¢,, nor for
specifying additional vectors. The process can be dynamic in that it changes with iteration.
For instance cells associated with rows could be used at one iteration and cells associated
with columns used on the next. The process can also be interactive. Viewing the model
can prompt the hypothesis that a certain portion of the model has too much roughness or
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has other undesirable characteristics. This area can be subdivided into smaller groups of
cells to provide additional flexibility in the inversion. The attractive aspect of the dynamic
use of additional search vectars is that in the subspace inversion only a model perturbation
is sought. At worst, a poor choice of additional vectors produces little benefit. We note
that in the limit of subdividing V,,¢,, each cell becomes a basis vector. The resuiting
M vectors completely span model space and no further basis vectors are required. The
‘subspace’ solution reverts to the traditional solution and the inversion of an M x M matrix
is demanded.

Despite the variety of possible search vectors that can be tried for any problem, we have
adopted a simple and automatic strategy which requires no user input other than to specify
the number of vectors associated with the data misfit objective function. In all examples
we use only the vectors given by equation (16), equation (18) and the constant vector.

3. Numerical considerations and implementation

In addition to selection of search vectors there are other practical issues to be addressed in
the subspace methodology. These include guarding against poor conditioning of the matrix
V, solving the matrix system of equations and assessing computational requirements. We
address these items here.

The subspace formulation demands the inversion of the matrix V7 (GTWIW,G +
uWIWm)V. This matrix is singular if the column vectors of V are linearly dependent.
We guard against poor conditioning by orthonormalizing the descent vectors prior to using
them in the subspace equations. This is done by using a singular-value decomposition
algorithm.

The solution of the matrix system in equation (14) is attacked in the following manner.
At each iteration the tradeoff between the Lagrange multiplier. the model objective function
and the misfit is typified by the curves in figure 1. At the beginning of the (m+ 1)th. iteration
the data misfit and model objective value are given by @5 and ¢, respectively. Let ¢2
denote the asymptotic data misfit as p approaches zero. Our goal is to find a perturbation
such that the misfit is reduced (if we are not already at the target misfit ¢%) and which does
not allow the model chjective function to increase too much. Generally, we are willing to
accept a slower convergence path involving smooth models than a route which permits a
great deal of roughness to be built up in the model and which subsequently requires a large
number of iterations to remove. To achieve this we introduce user supplied constants S,
B2, 5. Define u"" as that value of 1 such that the misfit is equal to ¢ = ,quﬁi,"), where f
sets the rate of misfit reduction. If ;2" does not exist, that is if ¢ < ¢J then set ™ =0.
Define ™ as that value of /1 such that the misfit is equal to £,¢% and define 1™ as that
value of w such that the model objective function is equal to B3¢, where B3 limits the rate
of model norm increase. The selected value of p is defined by ¢t = max {u”". [TA ,um"d}.

A primary motivation for developing the subspace computation is to obtain a numerically
efficient algorithm to solve linear inverse problems as M becomes large. The major
computations are listed in table I and the total number of operations per iteration of the
subspace Inversion is approximately (14 (1/NY2g + (r + D)+ g/ M)gNM. Under usual
conditions M >» N » ¢ > [ so the majority of the computations are taken up 'in the
matrix multiplications to form V" GT W/ W,GV and V"W W, V. The number of iterations
required for convergence is problem dependent but is principally controlled by the number
of search vectors used and the selection of §), Bz, B which control the model perturbation
at each iteration.
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Figure 1. A typical misfit curve ¢y (pe} at the {n - 1)th iteration is given at the top and a typical
model nonn curve ¢, (i) is shown below. qﬁj") and qﬁ,‘,:’) are the objective functions at the nth
iteration, ¢ is the asymptotic misfit as & approaches zero, and 8, f2 and f3 are parameters
specified by the user. The curves were obtained from an iteration of the subspace program and
all axes)darc logarithmic. The Lagrangian multiplier is chosen as the maximutm of p*, mu'™,
and I“"“ i

Table 1. The major computing operations are listed on the left with the number of operations
the right. There are M cells in the model. N data, and g search vectors. [ is the number of
non-zerd elements in each row of wgw,,, (f =7 for a 30 problem). r is the number of iterations
in the conjugate gradient solution required to generate descent vectors (r is typically 20).

[tem Number of iterations
Applying (WIW,)~! to gradient vectors  rgiM
Orthogonalization of vectors M

(GV)T (GV) gNM +g?N
viwliw, v gM{ +g)

In synthetic moedelling, where the data errors are known and correctly specified, the
algorithm has performed well. When inverting field data however, we have not always found
a model which fits to a desired misfit. 'We attribute this non-convergence to an incorrect
specification of the standard errors of the data. In a typical non-convergent situation, the data
misfit changes very little with successive tterations while the model roughness progressively
increases. When this occurs, it is necessary to adjust the target misfit to be somewhat above
the achievable misfit (or equivalently, to adjust the estimated standard deviations of the
data), and restart the inversion.

The algorithm always uses the vectors (WZW,)"'V¢,, and (WIW,,)"'Vg,. Since
these vectors can be combined into a steepest descent vector of the total objective function
it would seem that all theorems pertaining to the convergence of iterative solutions for our
matrix system by using steepest descent vectors can form a foundation for convergence
analysis of the subspace method. Beyond this, there is no quantitative statement that can
be made about the general convergence properties of the algorithim. Convergence rates are
dictated by the selection of the number and type of search vectors and the three adjustable
constants.
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4. Subspace inversion of induced polarization data

To illustrate the subspace algorithm we invert computer simulated data from an 1P
experiment. The interested reader is referred to Sumner (1976) or Fink et al (1990) for
more information about the 1P method and an introduction to the existing literature. The
reasons for choosing 1P as the example are twofold: (i} 1P surveys are commonly used to
find subsurface mineralization, and (ii) the nature of the forward mapping characterized by
the matrix G typifies matrices in other geophysical surveys. The matrix G is full and cells
close to the sources or receivers exercise great influence upon recorded data while cells at
depth have progressively smaller influence. Insight about the algorithm that is gleaned from
the 1P example will be beneficial in solving the IP inverse problem and also in solving other
practical linear inverse problems.

In an IP experiment a DC electric current is input to the ground and the electric potential
is measured away from the source. In the field, four electrodes are used. Two are connected
to the current generator to provide a closed circuit for the current and two electrodes are
needed for measuring a potential difference. However, because of superposition, we can
consider a pole—pole experiment in which one current electrode and one potential electrode
are moved to ‘infinity’. This geometry can be well approximated in field acquisition and is
modelled theoretically.

The relationship between intrinsic chargeability m and 1P data is Gm = d where

alnqb,'
alnrf_r-‘

G = (19)
In equation (19) ¢, is the ith potential in the 1P survey and o; is the electrical conductivity
of the jth cell. The conductivity structure shown in figure 2(a), and recovered from a
previous nonlinear inversion of DC potentials, is assumed known. The sensitivities G;;
can be calculated once electrode positions have been specified. The chargeability model is
shown in figure 2(»). It consists of a chargeable layer with m = 0.05 at the surface and
a chargeable block of m = 0.15 at depth. The centre of the chargeable block has been
offfset laterally from the position of the conductive high in figure 2(a) and the model has
undergone a slight smoothing. Both of these alterations make the synthetic model realistic.

The geophysical survey is carried out by placing surface electrodes every ten metres in
the interval x = {(—100, 100} metres. Each of the twenty one electrode positions can be
activated as a current site and when it is, electric potentials are recorded at the remaining
electrodes. The 1p potentials for this test are obtained by computing the elements Gj;
corresponding to the conductivity in figure 2(a) and taking the product Gm where m is
the chargeability in figure 2(b). Each of the 420 data is then contaminated with Gaussian
noise having a standard deviation equal to 0.001. This corresponds to about 3% of the
average value of the data. The P data are plotted in pseudosection form in figure 2(c). The
surface chargeable layer is visible in the data image but there is little manifestation of the
chargeable block which is the target for this inversion.

Our example inverse problem is of intermediate size and consists.of 1296 unknowns
which are to be determined from 420 data. This is smaller than many of the problems we
have been working with but it typifies how the algorithm works and it is small enough that
we can run many inversions to study the effects of parameter choices. The inverse problem
is attacked by forming an objective function as per equation (10) but neglecting the y-
dependence. Moreover, the general background chargeability is zero and correspondingly
we set Mg = 0. The discrete model objective function becomes

O =m" [, W W, + ;W Wx + o, W W.} m. (20)
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Figure 2. The conductivity model o from which the matrix G is formed is given in (a). The
grey scule is in mS/m. The chargeability model is in (4) and the noise contaminated 1P data are
displaycd in (¢). Each datum is plotted midway between the current and potential electrode and
at a depth «/2 where « is the separation between the electrodes. True chargeability is confined
to the range [0,1). The values displayed in (b) and (¢) are scaled by 100 and the respective grey
scales lie to the right and bencath the images.
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In equation (20) W, is a diagonal matrix with elements Az where Ax is the length of the
cell and Az is its thickness, W, has elements 4&=./Az/5x where 3x is the distance between
the centres of horizontally adjacent cells, and W, has clements 4./Ax/§z where 8z is
the distance between the centres of vertically adjacent cells. We have chosen o, = 1074,
&y = 1.0, ¥, = 1.0.

The inversion was carried out using 25 vectors consisting of 21 groupings of the data
(one group for each current electrode sounrce), three vectors from the model objective
function {as per equation {18} and the constant vector. The recovered model, shown in
figare 3, can be compared with the true model in figure 2. Both the surface chargeability
and buried chargeable block are well delineated. The amplitude of the chargeable block
is somewhat less than that of the true model and it extends to greater depth. This is
characteristic of our model objective function which discriminates against variation in the
horizontal and vertical directions. We also notice the large regions of small negative values
on the left- and right-hand sides of the model. The convergence plots shown in figure 3°
are typical for subspace inversions. The misfit reduction in the early iterations is limited
by the choice of 8; which is 0.5 for this example. As the misfit is reduced there is a
region where it is not possible to achieve the desired target without increasing the model
norm by a factor greater than B3 which has been set to 2.0 for this example. The final
target misfit is achieved at iteration 12 and is maintained with further iterations. At early
iterations ¢, is small and there is no restriction on its relative change between iterations.
When ¢4 approaches within a factor of 10 of the final target misfit, the restriction g3 = 2.0
is invoked and this is manifested as the straight line between iterations 4 and 8. Once the
final target misfit is achieved the inversion continues and generally produces a decrease in
the model norm. The algorithm is terminated at iteration 17 when the convergence criterion
[|ém||/|im]] < 0.01 was met.

5. Exploration of parameters

To obtain some insight about how the convergence and model are affected by using different
search vectors and by altering the parameters 8; and 5 (8> = 1.0001 for all inversions
carried out here} we present the following results. Unless explicitly stated, each inversion
is carried out with the same choice of search vectors and parameters as the base example
in figure 3. 7 '

We first investigate the effects of using various groupings of the data equations.
Convergence curves for ny = 1, 2, 4, 10, 21, 42, 63 are shown in figure 4. The
curves have the following characteristics. Irrespective of the number of data groupings
the algorithm is able to produce the desired reduction in misfit of a factor of 2 in the early
iterations. However, as the misfit decreases, the limitations of having very few vectors
prevent the algorithm from achieving a reduction of this magnitude. More basis vectors are
advantageous. At some limit. however, additional vectors provide imperceptible benefit and
the convergence is limited by B83. The model objective function curves all have the same
characteristics. They achieve a maximum at the iteration at which the desired target misfit
is achieved and then decrease and asymptote to a common value. The convergence curves
corresponding to 42 and 63 data groupings are indistinguishable and show that the benefit
of having extra vectors is limited.

One of our goals in designing a workable algorithm is to minimize the user input. In
figure 4 we explored the effects of changing the number of data groupings but did not
investigate the effects of vector selection in making up the groups. We therefore consider
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Figure 3. Inversion result obtained by grouping the data equation into 21 fixed groups. The
recovered chargeability in panels («) can be compared with the true chargeability in figure 2(b).
Convergence curves are shown below. Panel () is the data misfit and (c) is the model objective
function. The dashed line in (b} indicates the target misfit for the inversion.

the base example which has n, = 21 but at each iteration we order the misfit equations
according to misfit and group the data so that each grouping contributes equally to the total
misfit. The results of the inversion are presented in figure 5 and can be compared with
those in figure 3. The differences are not dramatic but some improvement is noticeable; the
desired misfit is achieved one iteration earlier, the maximum in ¢,, is slightly lower, and
final convergence is achieved in one less iteration.

The effects of altering the choices of B; and B3 are displayed in figure 6. The contour
plots, generated from 100 inversion runs, indicate the number of iterations required before
the target misfit of ¢, = 420 is achieved and the number of iterations required before
the final convergence criterion is satisfied. In order to make the comparisons meaningful
the convergence criterion was the achievement of ¢, < 0.042. This was the value of
¢m achieved in the base example at iteration 17. The results in figure 6 are generally
as expected. The number of iterations required to achieve the desired misfit decreases as
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Figure 4. Convergence curves obtained by using ny = 1. 2, 4, 10, 21, 42, 63 groupings of the
data equations, respectively. The data misfit and model objective function are shown in panels
(a) and () respectively. All the convergence curves have the same characteristics. The madel
objective function peaks at the iteration at which the desired misfit is achieved, and asymptotes
to a common value in the subsequent iterations. 82 iterations are required before the inversion
with n; = | achieves the target misfit of 420. The curves for ng = 42 and ny = 63 are
indistinguishabfe.

B3 increases provided that 8y is sufficiently small. In the region 3.5 < 3 < 4.5 and
0.01 < B, < 0.1 only 6 to § iterations are required to reach the desired misfit. Those
parameters are not optimum for overal! convergence however, since about 24 iterations are
required. This is a reflection that too rapid achievement of the desired misfit may produce
unwanted structure which requires additional iterations to eliminate. There is fine scale
structure in figure 6(&) but the general conclusion is that good choices for the parameters
are B; < 0.6 and 1.5 < B3 < 3.0. Qur values of p; = 0.5 and B3 = 2.0 were reasonable, if
not slightly conservative choices, )

A practical difficulty encountered in field data inversions is that we do not know the
‘error’ in the data. BEven if the data errors did satisfy the criteria of being Gaussian
and independent {which is unlikely) there is still the difficulty in estimating a standard
deviation for each datum. If the assigned standard deviation is too small then the algorithm
will attempt to fit the noise and the constructed model will have artifacts. To illustrate
the performance characteristics of the subspace algorithm in the event of asking for an
unrealistically small data misfit (or equivalently an assignment of standard deviations which
are too small) we redo the base inversion but ask for a target misfit of 10 instead of 420.
The result in shown in figure 7. The misfit is 420 at iteration 12 and continues to decrease,
but slowly. It decreases to 380 by iteration 100 and to 359 by iteration 500. The model
norm is characterized by a general increase as a function of iteration. By iteration 500
it has reached 0.108 and is still increasing. The additional structure can be evidenced by
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Figure S, Inversion result obtained by grouping cquations according to data misfit. ny = 21
and each group contributes equal amounts (¢f1"' /ng) to the total misfit. The recovered model in
(er) is virtually identical to that in figure 3(a) which was obtained using fixed data groupings.
The data misfit and modcl objective functions are shown in panels (b) and (c), respectively.

comparing with the result in figure 3. Overall, the results in figure 7 are encouraging. The
true misfit between the accurate and inaccurate data is 442, In asking for a misfit which
is substantially lower than this value, the algorithm enters a mode where it is unable to
significantly reduce the misfit and yet the model norm continues to increase. Setting a
target misfit somewhat above the asymptotic misfit value and restarting the inversion would
seem to be a viable methodology.

6. Subspace solutions with a positivity constraint
In many inverse problems the unknown variable is positive. Intrinsic chargeability is in

this category and is confined to the region [0,1). However, without explicit imposition of
a positivity constraint the constructed model can be expected to have regions of negative



Subspace linear inverse method 929

85

50
45 61.5
4.0 42.5
a5 34.6
3.0 .
2.8 21.6
20 17.8
13.5
1.5k 10.5
8.5

10~% 101!
Bq

1.5

102 10-!
By

Figure 6. The effect on the convergence by varying 8, and B3 which determine the selection
of the Lagrange multiplier at each iteration. The number of iterations required to find a model
which misfits (he data to a final target value of 420 is presented in panel (@). The number of
iterations required to achieve convergence defined by having ¢y = 420 and ¢n < 0.042 is in
panel (). All inversions start with a common initial model.
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Figure 7. The model and convergence curves obtained when an attempt is made to overfit the
data. The target misfit is 10. Five hundred iterations are performed. The final misfit was 359,
Note the additional structure in the model compared to that in figure 3.

values. This is illustrated by the solution in figure 3(a). In that example the amplitude of the
negative numbers is small enough that the interpretation is not greatly hindered. However,
that is not always the case for 1P inversion, nor is it the case when inverting other data types
when the model is strictly positive.

Our goal therefore is to introduce a modification to the subspace optimization so that
the recovered model remains positive. The subspace algorithm intrinsically works with
functions which have positive and negative values and so to invoke positivity we introduce
a mapping between the positive model and a function p € (—o0, ). Let m = f(p) and
p = f~'(m) be mappings linking the two functions. Let p" denote the model at the
nth iteration and ép denote the sought perturbation. Performing a Taylor expansion of the
perturbed model objective function about the point p* yields

S (P™ + 6p) = ||W,,Fép + W,,(m™ — my)||?
+2(m"™ + F§p)" WIW,mg — [[W,my||? 1)
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where F is a diagonal matrix with the elements

_ o
ap;

am,-

e ~

(22)

o ey
A similar Taylor expansion applied to the misfit objective functional ¢;(p™ - &p)
yields

by = [[WoJF8p + W, (d(p®) — d™)|2. (23)

The minimization of equation (21) subject to ¢y = ¢ is solved in precisely the same
manner as in section 2. The perturbation §p is represented as Vo and the objective function
¢ = ¢ + u"py — ¢3) is solved by minimizing with respect to the coefficients ce. The
final equations are

Ba=hb
B =V'F (uGTWIW,G + W W, FV (24)
b= —uVTFTGTWIW,(d — d°™) — VIFTWI W, m™ — mg) — uV'FTWT W, m.

These are the same equations as in equation (14) with the exception that the matrix V
has been replaced by the matrix FV. The only computational difference in the solution with
positivity from that presented earlier is that the line search to find the appropriate Lagrange
multiplier must now invoke a forward modelling. This involves an extra x N M operations
where x is typically four to six.

The principle concern is the choice of mapping. The goal is to find a function which
keeps a linear relationship between m and p in the range of m which is characteristic of the
model values, and which maps a large range of p, comresponding to ‘small’ values of 1,
into zero. This has prompted us to use a two-segment mapping composed of an exponential
and a straight line. The mapping is defined by

0 P <P
m= el —eft ppSpsSpl- (25)
(p—p1+ e — el P>p

The mapping and the first derivative are continugus at the transition point p = p;. Values
for the parameters pp and p) can be assigned using the foilowing reasoning. Let m; denote
a characteristic value of the model and let m; be a threshold such that values of m below
this are not sensibly distinguished from zero. For example, setting m, is reasonable and
thus py = Inm, is defined. The specification of p; requires two considerations. In the
region near n, we desire a linear relationship between p and m and accordingly p; = Inni,
is a reasonable choice. However, the ith row of V is muliiplied by Fj; and if this value
is too small, the ith row of V is essentially annihilated and correspondingly there will be
no possibility of adjusting the value of the ith cell. Therefore the values of F; should not
be too disparate (factors of 10-100 might be reasonable limits) and this in turn limits the
relative sizes of p; and p,. Also p; and pp should not be too close because in the limit
P — P», the mapping in (25) degenerates to a linear truncation and the algorithm may not
converge.

The inversion of the IP data with a positivity constraint and choice of p, = —6.9
(mp = 0.001) and py = —3.0 (m; = 0.05) is shown in figure 8. The model is an improved
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Figure 8. The constructed model when positivity is invoked using the two-stage mapping with
pr =—6.9 and p; = —3.0 is shown in (a). The model has fewer artifacts and the chargeable
body at depth is better delineated than in the inversion without positivity shown in figure 3.

result from that obtained in figure 3. The structure outside the regions of chargeability is
reduced and the amplitude and confinement region of the chargeable block are in better
agreement with the true model in figure 2. The convergence curves are somewhat different
from their counterparts in figure 3 but the overall rate of convergence and number of
computations are comparable to that obtained in the inversion without positivity.

The convergence characteristics of the subspace inversion are dependent upon the
mapping parameters p; and p,. Eighty four inversions were carried out with different
values of the parameters and the results are presented in figure 9. The contour plots indicate
a substantial corridor for choices of p, and p; where good convergence is achieved. Our
choice of p, = —6.9 andp; = —3.0 was satisfactory but not optimum.
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Figure 9. The effect of choice of parameters for the two-segment mapping. The number
of iterations required to find a model which misfits the data to a final target value of 420 is
presented in panel (¢). The number of iterations required to achieve the asymptotic value of
the model objective function is in panel (b). The axes on the bottom and left indicate the
value of parameters 7 and p), respectively, while the axes on the top and right indicate the
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7. Discussion

The subspace algorithm is efficient, flexible and robust. The efficiency is evaluated by
the computational requirements per iteration which is approximately g N M as M becomes
large. This is equivalent to g forward modellings. The final computation count depends
upon the number of iterations required for convergence, and in our applications this is
typically 10-25. The flexibility of the algorithm lies in the ease with which arbitrary model
objective functions can be minimized, the ability for the user to incorporate positivity in the
solution. the ability for the user to incorporate special search vectors in the inversion, and
the ability to restart the inversion from any output result. The robustness of the algorithm
is primarily attributable to forming search vectors from segmented data misfit and model
objective functions. Our success in using the subspace method to solve linear inverse
problems is perhaps related to the inherent non-uniqueness of the solution. the fact that the
kernels (rows of Q) are generally smooth, and our desire to generate a ‘simple’ distribution
of the physical parameter so that the result is interpretable. Basis functions which are formed
from steepest descent vectors of the data misfit and mode! objective function are reasonably
smooth and therefore may be particularly good choices for generating our desired models.
Despite the endless possibilities for specifying the search vectors, the basic strategy outlined
in this paper seems to work well. We use ny vectors grouped according to misfit, one vector
for each component of ¢,, and a constant vector. The final number of iterations to achieve
convergence is not greatly altered by how the data equations are grouped nor by their number
once ¢ is sufficiently large. Although the choice for Lagrange multiplier depends upon user
constants Bi. B2, B there is a considerable range for which the algorithm works sensibly.
The same is true with the selection of the constants py, and p; for the two-stage mapping
to invoke positivity. A fundamental aspect of our formulation of the inverse problem is
that we desire to construct a model that misfits the data to a predetermined amount. Since
the appropriate Lagrange muitiplier is found as the inversion continues, this obviates the
need the carry out additional trial and error inversions. In the event that an unreascnably
small misfit is sought, the algorithm has the characteristic of plateaning toward a minimum
misfit. This situation can be recognized in practise, the target misfit can be readjusted and
the inversion restarted.

The numerical examples presented here were relegated to a problem of moderate size
having 1296 cells and 420 data but in a separate study of inverting magnetic data to recover
a 3D distribution of magnetic susceptibility we have routinely used 1000 data to recover
estimates of 40000 model parameters. The algorithm was equally successful and this
provides optimism for its utility in solving large-scale inverse problems.
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