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SUMMARY

A simple derivation is presented for the computation of sensitivities needed to solve
parametric inverse problems in electromagnetic induction. It is shown that sen-
sitivities for any component of an electromagnetic field can be obtained by solving
two boundary-value problems which are identical except for the specification of the
source terms and (possibly) prescribed boundary conditions. The electric fields from
these primal and auxiliary problems are multiplied and integrated to produce a
numerical value for the sensitivity. Although the final formulae derived here are
equivalent to those developed through the use of formal adjoint or Green’s
functions approaches, our work does not require explicit derivation of the adjoint

operator and boundary conditions and does not formally invoke reciprocity.
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INTRODUCTION

Electromagnetic methods are routinely used in geophysical
surveys. The goal of these experiments is to determine the
distribution of electrical conductivity in the earth and
inverse-theory techniques are required to extract this
information from the observations. Although electrical
conductivity is a function with infinitely many degrees of
freedom we are invariably forced to parametrize the
conductivity so that both forward and inverse modelling can
be carried out. A major computational difficulty in solving
the parametric inverse problem is to compute the
sensitivities, or partial derivatives of the data with respect to
model parameters. These sensitivities, which establish a
linear relationship between changes in the conductivity
model and changes in the forward-modelled responses, are
used to refine an initial model so that an improved fit to the
observed data can be obtained.

General procedures exist for computing the sensitivities.
McGillivray & Oldenburg (1990) present a review of
commonly used methods and offer an introduction to
relevant literature. Numerical procedures generally adopt
one of the two following routes: the sensitivity-equation
approach or the adjoint-equation - approach. In the
sensitivity-equation approach the initial operator s
differentiated with respect to a model parameter and the
subsequent boundary-value problem is solved. If there are
M parameters, then the solutions of M new boundary-value
problems are required. For the electromagnetic induction

induction, Fréchet derivative, inverse problem,

problem this approach has been used by Rodi (1976), Jupp
& Vozoff (1976) and others. In the adjoint-equation
approach the adjoint equation is solved and the sensitivities
are obtained by a subsequent integration of electric fields. If
there are N observation sites then solutions of N adjoint
problems are required. Because the number of unknown
parameters in inverse problems usually exceeds the number
of data, the adjoint approach is generally computationally
more efficient. Our derivation below is guided by this
philosophy.

Formal derivations for the adjoint-equation approach
exist (e.g. Lanczos 1961; Morse & Feschback 1963; Roach
1982) and its application to electromagnetic induction
problems have been presented by Weidelt (1975), Park
(1987), Madden & Mackie (1989), Madden (1990),
Oldenburg (1990), Ellis & Oldenburg (1993) as well as
others. The usual procedure for implementation requires the
development of an adjoint operator, i.e. an adjoint-
differential operator and appropriate boundary conditions.

. This is done through the use of the bilinear identity. That

identity also establishes the reciprocity condition for EM
data which is needed so that the sensitivity computations can
be carried out efficiently. The procedure for carrying out the
adjoint solution is elegant and general in its conclusions, but
it does involve mathematically sophisticated steps. In the
work presented here we derive the expression for calculating
numerical sensitivities without formally introducing the
adjoint operator or appealing to reciprocity. Ultimately this
means that our work is less general then formal Green’s
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function approaches. Nevertheless, the simplicity of the
following derivation will be appreciated by those who are
faced with solving inverse problems in electromagnetics.

MATHEMATICAL DERIVATION

Consider a finite or infinite spatial domain D which is
characterized by constant electrical permittivity €, constant
magnetic susceptibility y, and by a variable conductivity
o(x). With the usual constitutive relationships, and
assuming a harmonic time dependence ', Maxwell’s
equations become

VXE=—iouH+ M,

e (1)
VXH=(0+iwe)E+J,

where E and H are the electric and magnetic field strengths
due to imposed electric and magnetic current densities J,
and M,. The primal electromagnetic problem is solved by
satisfying (1) subject to a boundary condition applied on 8D
which is the boundary of D. The general form of the
boundary condition is

ag(AXE)+ (XX VXE)=S8g
or (2)
ay(@XH)+ @ XAXVXH)=S,

where (ag, Bg, @y, Bu) are constants and Sg, Sy are
respectively, surface magnetic and electric currents. The
form of eq. (2) is general in that it allows electromagnetic
problems to be solved by specifying the tangential
components of the E or H fields, or by specifying an
impedance boundary condition. With the understanding that
the conditions in eq. (2) can be applied to different portions
of 3D it is convenient to write the boundary conditions as

(@AXU)+BAXAXVXU) =S 3)

where U can be either E or H.
Numerical solutions of the primal problem require that
o(x) be represented as

M
o) = 3, 09,3 ()
i=
where ‘0; are real constants and ,;(x) are chosen basis
functions. With this parametrization o is completely
specified by the M-vector 6 = (0, 0y, . . ., Op).

In the inverse problem we attempt to find a parameter
vector 6¢R* such that the forward-modelled data
adequately fit the observations. This necessitates computing
the sensitivities G;, = 9d,/ 30, where d; is the ith datum. d,
may take many forms; it can be an admittance, an
impedance, a component of E or H, an amplitude or a
phase. Irrespective of the choice of d;, the basic building
block for computing G, is the ability to compute JE/30,
and 0H/30,. We now turn attention to this aspect.

Substituting (4) into (1) and differentiating with respect to
o, produces the sensitivity equations,

)
JH . JE
v X'a—o;= (0 + le)%;*‘ ‘lpk(X)E

and homogeneous boundary conditions

a(ﬁxaU>+ﬁ(‘x‘xanU) 0 éD
— fi X il — = .
30, 90y on ©)

Our goal is to derive equations from which SE/8a, and
0H/30, can be evaluated, and in which we need to solve
only an equation of the form (1). To this end consider an
auxiliary Maxwell problem,

VXE=—iopH+ M,

_ - . 7
VXH=(0+iwe)E +J, @

where the electric and magnetic sources J; and M, have yet
to be defined. The boundary value problem can be solved
once the conditions appropriate to J, and M, are specified
on 3D. These have the form

aAxU)+BEXAXVXTU)=0. €))

We note that these boundary conditions may differ from
those used to solve the primal problem. For instance, the
primal problem might be a magnetotelluric problem whose
source is a sheet of current at height, but the source for the
auxiliary problem is likely an electric or magnetic dipole
inside 8D. With the exception of the changes in the specifics
of the boundary conditions and practical details regarding
meshing of the domain, the solution of the forward and
auxiliary problems can likely be obtained by using the same
computing algorithm.
Use of the vector identity,

V- (AXB)=B-(VXA)—A-(VXB) ©)

allows (5) and (7) to be combined, yielding,

v (Bx 2% q)
8o, 90,
- JH . 3E _
=M, —+J. 5 ——E-Ey,(»). (10)
30, 3o,

Integrating (10) over D and using the divergence theorem
yields

- oH JE _ _
[ (Ex i) cna
aD aUk aok
cH JE

=fD [Ms°gg—k+Js 'ga—k—'E -Ewk(x)] dv. (11)

Our desired result for computing sensitivities arises when the
left-hand side of eq. (11) can be shown to be equal to zero.
The circumstances in which this occurs depends upon
whether or not the boundary 9D extends to infinity. The
fields E, H, 5H/30,, 9E/30,, all originate from finite
sources, and hence the left-hand side of (11) approaches
zero as the boundary 8D extends to infinity. The proof of
this is given in Harrington, 1961 p. 117. For a finite domain
D the integral is also identically zero if the auxiliary and
primal problems have the same boundary conditions. This is
often the case in controlled-source experiments and the
proof that the left-hand side of (11) vanishes under this
condition is given in Appendix 1.

Setting the left-hand side of eq. (11) equal to zero allows



us to write
. JH . OJGE
f <Ms-——+Js >d‘U—J’ E-Ey,.(x)dv. (12)
D a0, 30,

This is the main result and shows that the sensitivity for E or
H can be obtained by appropriately specifying the sources
for the auxiliary fields and by integrating the dot product of
the primal and auxiliary electric fields over the region on
which 1y, is non-zero. For example, to obtain the
sensitivities for H, at an observation location x,, let
M, = 8(x —x,)Z and J, = 0. Then (12) becomes

oH, ("") f - Ev.(x) dv. ' (13)

The primal problem is solved for the electric field E
throughout the domain. The auxiliary problem, with a unit
vertical magnetic dipole source placed at x,, is solved for the
auxiliary electric field E throughout the domain. The
quantlty E-E is then mtegrated to generate 6H,/J0,.

To compute the sensitivities for the magnetic field in any
other direction, the source for the auxiliary problem must be
a unit magnetic dipole in the same direction placed at the
observation location. To compute the sensitivities of the
electric field, the source must be a unit electric dipole. In all
cases the auxiliary electric field is computed using (7), and
(12) is then evaluated to generate the desired sensitivity.

EXAMPLE

As a demonstration of the ease with which sensitivities can
be derived with the above method, we present a simple
example. Let us assume we have a whole space of constant
conductivity o, with a plane §-polarized electromagnetic
field propagating in the % direction with angular frequency
. The primal electric field is given by

E(x, y, z) = §e %=, (14)

Let us assume that we wish to compute the sensitivity of the
magnetic field strength component H, located at the origin
with respect to variations in conductivity of a 2 Ax X 2 Ay X
2Az m? cell centred at x,y,2)=(xy, y1, z1)- Then, we
need to compute the auxiliary electric field resulting from a
unit amplitude harmonic vertical magnetic dipole located at
the origin. The auxiliary electric field (Ward & Hohmann
1988, eq. 2.56) is

z) (15)
where r = Vx? +y> + 2% and k = Vyew? — ipo,o.

Substituting eqs (14) and (15) into (13) yields

n iw,u . —ikr{ % &
E(x, y, z) =4Jrr2 (ikr + 1)e™* (;y -

=fE-f31p(x) dv
J»zl+AzJ» 1+AyJ'X'+AxlCOHZ
zi—Az Jyj—Ay Jxi—-Ax 475"

X (ikr + 1)e™*E* gy gy d. (16)
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APPENDIX 1
The quantity
- JE
f <EX§E——XH>-nd5 17
D o, 9o,

on the left-hand side of eq. (11) can be shown to be
identically zero under the condition that the domain D is
finite and that the auxiliary and primal problems satisfy the
same boundary conditions. Use of vector identities
A-(BXC)=C-(AXB)=B:(CXA) permits the left-
hand side of eq. (17) to be written as

LD[S—% (@ xE)- (ﬁx%)]ds

or as (18)
—LD[E ( xj—:c)—aif; (‘xﬁ)]ds.

Using eq. (1) with the assumption that the sources J, and M,
are finite and confined inside the domain D, the boundary
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conditions in eq. (2) can be written as
w(iXE)— Piop(i XixXH)=S

or (19)
a(i XH) + o+ ive)(i XX H) =8.

Differentiating these boundary conditions with respect to o,
yields

. OE oH
X—1 —fi & S _ | =
a(n k) ﬁzwy(n XnX ) =0

or (20)

SH OE
w(ﬁx—) +ﬁ(o+iwe)<ﬁxﬁx—) =0
aUk aa'k

where we assume that the probed medium does not extend
to the boundary 9D. If the auxiliary problem satisfies the
same boundary conditions as the primal problem (so the a's
and f’s are the same as those in eq. 20) then the boundary
conditions for the auxiliary problem are

a(@ix E) - Biop@xaxH)=§

or 21
a(@x H) + (o +ive)@xXiaxE)=§

where § is an arbitrary boundary-source term. Substitution
of eq. (20) and eq. (21) into eq. (18) shows that both terms

in eq. (18) are equal to zero if the applied boundary source
S=0.



