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ABSTRACT

To extract intrinsic polarization parameters of a buried object
from electromagnetic induction (EMI) responses, one has to first
find its location. We developed an efficient method to find the
approximate locations of multiple ordnance items using time
domain electromagnetic data. The procedure was based upon
the principle of multiple signal classification which exploits
the orthogonality of signal and noise subspaces of multistatic
EMI data. For an arbitrary multistatic array, we formulated
transmitter-based and receiver-based imaging or steering vector-
ial operators that related with the left and right singular vectors
of a multistatic response matrix. The operators were computed
at potential source locations and are mapped onto the noise sub-
spaces derived from data. A spatial metric function was there-
fore introduced to measure the magnitude of the projection. A
3D source imaging of the metric function could be obtained by

evaluating all potential locations over a region of interest. In
ideal cases, the perfect orthogonality between the computed sig-
nal subspace and measured noisy subspace can be achieved at or
near a target location, and rendered an imaging peak at that lo-
cation. Conversely, the peak image locations obtained from this
technique were used as the indicators for where targets were
most likely present. The number of targets could be estimated
from the rank of the data matrix, provided there were a sufficient
number of transmitters and receivers. In some instances the lo-
cations of multiple targets were imaged directly, but the proce-
dure was enhanced by stripping the effect of a larger or
shallower target from the image. The technique was evaluated
using the test-stand and field data, and compared with the
standard nonlinear inversion. The results showed that it
has potential capability to accurately localize sources in EMI
sensing.

INTRODUCTION

The source localization problem arises when using an electro-
magnetic induction (EMI) sensor to detect objects and discriminate
unexploded ordnance (UXO) from clutter (Das et al., 1990; Bell et
al., 2001; Pasion and Oldenburg, 2001; Zhang et al., 2003; Smith
and Morrison, 2004; Pasion, 2007; Beran and Oldenburg, 2008;
Snyder et al., 2008; Gasperikova et al., 2009; Billings et al.,
2010). To accurately extract polarization tensor parameters from
the EMI response, we need reasonably accurate estimates of the
location of the source. We also need to decide if the observed anom-
aly is due to a single object or two or more objects (Bell, 2006;
Grzegorczyk et al., 2009; Song et al., 2009; Miller et al., 2010; Shu-
bitidze et al., 2010; Song et al., 2011). Recent advances in EMI
instrumentation have produced systems that are able to acquire

multistatic/multicomponent data. Full exploitation of such data sets
necessitates the development of new signal processing techniques.
In this paper, we present a new 3D imaging technique for EMI
source detection and localization using the idea of multiple signal
classification (MUSIC) (Schmidt, 1986).
The MUSIC algorithm proposed by Schmidt (1986) is based

upon the orthogonal property of a signal subspace and a noise sub-
space contained in a data matrix. A metric which measures the de-
gree of orthogonality is used to search for sources. This technique
has been extensively investigated in radar and acoustics for estimat-
ing directions or locations of multiple sources (Krim and Viberg,
1996). Recently Devaney (2005), using a multistatic radar antenna
array, combined time-reversal methods and the MUSIC algorithm to
image hidden targets.
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When using electromagnetics for UXO problems, the standard
processing method of finding buried sources is to formulate a
nonlinear data-fitting optimization problem that is solved for source
location and polarizations of the UXO from an initial model (Pasion
and Oldenburg, 2001; Smith and Morrison, 2004; Bell, 2006; Grze-
gorczyk et al., 2009; Song et al., 2009; Shubitidze et al., 2010; Song
et al., 2011). However, the problem of finding source location can
be completely separated from the estimation of polarization spectra.
Once the source location is determined, the estimation of source
polarization in principle reduces to the problem of a simple linear
least-squares fit. For example, Shubitidze et al. (2007) proposes a
method of combining total normalized surface magnetic charge
model (NSMC) with a pseudospectral finite difference (PSFD)
method for localizing a buried object. (Song et al., 2008) adapt
a beamforming technique (Van Veen and Buckley, 1988) to localize
sources using traditional monostatic measurements (i.e., transmit-
ters and receivers are colocated).
New-generation EMI instruments have multiple transmitters and

multiple receivers. Each transmitter is fired independently, and data
are recorded at all of the receivers. This results in a richer and more
coherent data matrix than could be obtained from monostatic equip-
ment. As in the radar case (Devaney, 2005), we expect that by com-
bining the multistatic response measurements and the MUSIC
principle an improved technique might be obtained, compared to
the standard one (Pasion and Oldenburg, 2001; Smith and Morri-
son, 2004; Bell, 2006; Grzegorczyk et al., 2009; Song et al., 2009;
Shubitidze et al., 2010; Song et al., 2011).
In this paper, we present the theory and formulation of our MU-

SIC imaging technique for an EMI sensor array, by dealing with
vectorial magnetic fields, the polarization tensor, and wideband re-
sponses. Then we evaluate the MUSIC algorithm using the test-
stand and field data collected with the TEMTADS (Nelson,
2008) and MetalMapper (Snyder et al., 2010) systems, and compare
and contrast its performance with the standard nonlinear inversion
techniques.

THE DATA MODEL

Consider a standard EMI system consisting of a transmitting coil
and a receiving coil; they may be colocated or not. In active sensing,
a primary field emitted from a transmitter illuminates the subsurface
and its changes with time-induced eddy currents in the metal object.
These induced currents produce a transient secondary magnetic
field that is measured by a receiver. In practice, an array of sensors
is generally positioned above the surface. For a UXO survey where
the target dimension is often small relative to the target-sensor dis-
tance, the primary fields around the target are approximately uni-
form and the induced eddy currents in the target are localized and
predominantly produce dipole responses (Grant and West, 1965;
Jackson, 1975). The EMI nature of a metal target generally can
be well represented by an equivalent induced dipole. Here we as-
sume that dipole location and orientation are independent of time. If
the target location is denoted by r then the induced dipole moment
mðtÞ at time t is represented by (Das et al., 1990; Pasion and
Oldenburg, 2001; Smith and Morrison, 2004)

mðtÞ ¼ PðtÞBTðr; rTxÞ; (1)

where BT is the exciting magnetic field vector at the target location
from a transmitter at rTx and PðtÞ is a 3 × 3 symmetric magnetic
polarizability tensor (MPT)

PðtÞ ¼

2
64
p11ðtÞ p12ðtÞ p13ðtÞ
p12ðtÞ p22ðtÞ p23ðtÞ
p13ðtÞ p23ðtÞ p33ðtÞ

3
75: (2)

Physically, the element pijðtÞ of the tensor PðtÞ represents a di-
pole component in the ith Cartesian direction due to a primary field
in jth Cartesian direction. This polarizability tensor PðtÞ has an
eigen decomposition as

PðtÞ ¼ ELðtÞE 0; (3)

where E is the orthonormal matrix whose columns refer to principal
directions of dipolar polarization with respect to a reference system,
and LiiðtÞ of the diagonal matrix LðtÞ is the principal polarization
strength that is a function of the geometry and material of a target.
The prime denotes a transpose. PðtÞ contains the information re-
garding the geometry and material of a target as well as its orienta-
tion. The secondary response dij due to a target at r is given by (Das
et al., 1990; Miller et al., 2001; Smith and Morrison, 2004; Song
et al., 2011)

dijðrRxi ; rTxj ; tÞ ¼ B 0
Rðr; rRxiÞPðtÞBTðr; rTxjÞ; (4)

where BRðr; rRxiÞ and BTðr; rTxiÞ are the field vectors at target lo-
cation r generated by the ith receiver and the jth transmitter. Equa-
tion 4 describes the basic EMI process of illuminating, scattering,
and sensing. It is the model from which we begin our formulation of
the MUSIC imaging methodology.

MULTISTATIC RESPONSE MATRIX AND THE SVD

For an array consisting of M receivers and N transmitters, i.e.,
i ¼ 1 · · · M, j ¼ 1 · · · N, we can arrange the measured responses
at time t as

DðtÞ ¼

2
64
d11ðtÞ : : : d1NðtÞ

..

. ..
. ..

.

dM1ðtÞ : : : dMNðtÞ

3
75: (5)

We call this the “multistatic response matrix” (MRM). A row cor-
responds to measurements from the same receiver due to different
excitations (a transmitter array) and a column corresponds to mea-
surements from different receivers (a receiver array) due to the same
excitation.
Taking the singular value decomposition (SVD) (Horn and

Johnson, 1985; Golub and Loan, 1989) of D in Equation 5, yields

DðtÞ ¼ UΣV 0 ¼
Xp

i¼1

σiiuiv 0
i ; (6)

where p ¼ minðM;NÞ, U ¼ ½u1; · · · ; uM� is an M ×M orthonor-
mal matrix and V ¼ ½v1; · · · ; vN � is an N × N orthonormal matrix,
and Σ is an M × N matrix with elements σii along the diagonal and
zeros everywhere else. The matrix U is called the “left singular ma-
trix,” V is called the “right singular matrix,” and Σ is the “singular
value matrix.” If the singular values are ordered so that,
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σ11 ≥ σ22 ≥ · · · σpp ≥ 0 (7)

and if the matrix has a rank r < p, then the last singular values are
equal to zero, and the SVD of D becomes

DðtÞ ¼
Xr

i¼1

σiiuiv 0
i : (8)

Next, we interpret the singular values and the corresponding sin-
gular vectors with the principal polarizabilities of an object and the
vectorial fields in equation 4.

Array Green’s functions and the SVD

To make the following derivation simple, we consider a single-
object case. Recall that equation 4 represents a mathematical ex-
pression for the measured EMI response to a single object when
using a single transmitter and a single receiver. Replacing each entry
in equation 5 with equation 4, we have

DðtÞ ¼

2
6664

B 0
Rðr; rRx1 ÞPðtÞBTðr; rTx1 Þ : : : B 0

Rðr; rRx1 ÞPðtÞBTðr; rTxN Þ
..
. ..

. ..
.

B 0
Rðr; rRxM ÞPðtÞBTðr; rTx1 Þ : : : B 0

Rðr; rRxM ÞPðtÞBTðr; rTxN Þ

3
7775

¼

2
6664

B 0
Rðr; rRx1 Þ

..

.

B 0
Rðr; rRxM Þ

3
7775PðtÞ½BTðr; rTx1 Þ : : : BTðr; rTxN Þ �: (9)

Setting

GRx ¼

2
64
B 0
Rðr; rRx1Þ

..

.

B 0
Rðr; rRxMÞ

3
75; GTx ¼

2
64
B 0
Tðr; rTx1Þ

..

.

B 0
Tðr; rTxN Þ

3
75; (10)

then we have

DðtÞ ¼ GRxPðtÞG 0
Tx; (11)

where GRx ∈ RM×3 is the Green’s function matrix of a receiver ar-
ray and GTx ∈ RN×3 is the Green’s function matrix of a transmitter
array. Viewed as a mapping process from the transmitter to receiver
space, D is spatially characterized by the two array functions GRx

and GTx.
Equation 11 is of similar form to the SVD of equation 6. It im-

plies that there are correspondences between the array Green’s func-
tions and the left and right singular vectors. To elaborate this, we
introduce two additional weighting matrices (Horn and Johnson,
1985)

WRx ¼ ðG 0
RxGRxÞ12; WTx ¼ ðG 0

TxGTxÞ12: (12)

Using WRx and WTx, we can rewrite equation 11 as

DðtÞ ¼ ðGRxW−1
RxÞWRxPðtÞWTxðGTxW−1

TxÞ 0: (13)

To facilitate the discussion, we set

URx ¼ GRxW−1
Rx; VTx ¼ GTxW−1

Tx; Ω ¼ WRxPðtÞWTx;

(14)

where URx and VTx have orthonormal columns, i.e., U 0
RxURx ¼ I3

and V 0
TxVTx ¼ I3, and Ω can be viewed as the weighted polarizabil-

ity tensors. Taking the SVD of Ω, Ω ¼ UΩΛV 0
Ω, we can derive an

orthonormalized version of equation 11

DðtÞ ¼ URxUΩΛðVTxVΩÞ 0: (15)

What we see is that equation 15 is an exact SVD representation of
the data matrixD, and that it will have three nonzero eigenvalues. In
other words, it shows that the rank r is equal to three for a single-
object case. Its left and right singular vectors are the columns of the
matrix URxUΩ and the matrix VTxVΩ, respectively. The nonzero
singular values of D are the diagonal entries of Λ, i.e., the eigen-
values of the weighted polarizability tensor Ω. The diagonal matrix
Λ is related to the principal polarizabilities L as

ΛðtÞ ¼ U 0
ΩWRxELðtÞE 0WTxVΩ: (16)

For perfect data, the two SVDs in equations 15 and 8 are identical
and the rank of D will be three if there is a single object. Therefore,
equation 16 explains that the singular values derived from measured
data are the combination of the intrinsic target polarization and its
orientation and field strength and may be regarded as the apparent
target strengths or apparent principal polarizabilities. By equating
the singular vectors in the two SVDs,

GRxðW−1
RxUΩ;iÞ ¼ ui GTxðW−1

TxVΩ;iÞ ¼ vi i ¼ 1; · · · ; 3;

(17)

whereUΩ;i and VΩ;i represent the ith column ofUΩ and VΩ. We see
that for σii > 0 the singular vector ui are the linear combinations of
the receiver array Green’s function matrix GRx and form an orthor-
normal basis for receiver array space, while the singular vectors vi
are linear combinations of the orthornormalized transmitter array
Green’s function matrix GTx and form an orthornormal basis for
transmitter array space. Left and right singular vectors in the data
contain information of the target location and can be used to find
sources.
If there are η objects, we replace PðtÞ in equation 11 with a 3η ×

3η block diagonal matrix, i.e, diagonal ðP1; · · · ; PηÞ, where Pi; ði ¼
1; · · · ; ηÞ is a polarizability tensor of the ith object. Then the above
analysis is similarly applied to a general case of multiple objects.

MUSIC

Assuming that the matrix has a rank r, as described in equation 8,
we can group these SVD-constructed orthonormal vectors into the
left and right signal subspaces, i.e., Us ¼ ½u1; · · · ; ur� and
VS ¼ ½v1; · · · ; vr�. The remaining singular vectors, Un ¼ ½urþ1;
· · · ; uM� and Vn ¼ ½vrþ1; · · · ; vM�, are correspondingly grouped
as the left and right orthonormal noise subspaces. The left and right
singular vectors in the signal subspace are related with 3C fields
generated from receiver and transmitter at a location where a target
is present. Because the fields in the problem are vectorial, and those
signal space vectors are linear combinations of the fields, as shown
in 17, we cannot relate a singular vector with a component field for
a source detection or localization.
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From the orthogonal property between the signal and noise sub-
spaces, we expect that the projection of array Green’s functions in
the signal subspace onto the noise subspaces spanned by Un and Vn

will be zero. Namely, given the orthogonal projectors onto the re-
ceiver and transmitter noise spaces as

P⊥
u ¼

XM
i¼rþ1

uiu 0
i ¼ UnU 0

n; P⊥
v ¼

XN
i¼rþ1

viv 0
i ¼ VnV 0

n;

(18)

then

P⊥
uGRx ¼ 0; P⊥

vGTx ¼ 0: (19)

Due to various approximations and errors from the modeling, in
particular an incorrect estimate of the target location, the projection
might not be zero as suggested by equation 19. To evaluate the mag-
nitude of array Greens’s functions GRxðrÞ and GTxðrÞ lying on the
noise subspace and consider their vectorial nature, we introduce a
function,

SðrÞ ¼
X3
i¼1

kGRx;iðrÞk2
kP⊥

uGRx;iðrÞk2
×
X3
i¼1

kGTx;iðrÞk2
kP⊥

vGTx;iðrÞk2
; (20)

to measure the size of such projections. The denominators are the
Frobenius norms of the projections of components GRx;iðrÞ and
GTx;iðrÞ onto each individual noise subspace. We use a multiplica-
tion between the GRx- and GTx-related terms to enhance imaging
ability. By varying r, we would expect that SðrÞ peaks at or near
a target location where GRxðrÞ and GTxðrÞ are largely in the signal
subspace. This is a MUSIC-type functional or spatial spectrum for
source imaging or localization.
The MRM-based imaging technique is, in principle, applicable to

arbitrary sensor array geometries, but requires that the number of Tx
and/or Rx be larger than the number of dipolar polarizations that
need to be resolved. Equation 20 is designed for the case in which
receiver and transmitter noise subspaces exist and can be used for a
sensor system that has multiple transmitters and receivers like the
TEMTADS (Nelson, 2008). For the case where there exists only the
receiver noise subspace, like a sensor system that consists of multi-
ple receivers but a few transmitters, e.g., the Berkeley UXO discri-
minator (Gasperikova et al., 2009), and MetalMapper (Snyder et al.,
2010), equation 20 can be used just with P⊥

u term. Similarly, if there
is only the transmitter noise subspace, like a sensor system that has
multiple transmitters but a few receivers, equation 20 can be used
with only the P⊥

v term.
For multisource detection, a strong target or shallow one can

mask a weak or a deep target. To automatically detect all possible
sources in various situations, we can eliminate the contribution of
the first detected source r1 from the signal subspace by applying the
projectors P⊥

GRx;1
toGRxðrÞ and P⊥

GTx;1
toGTxðrÞ in a second MUSIC

search, where P⊥
GRx;1

¼ I −GRxðr1Þ½G 0
Rxðr1ÞGRxðr1Þ�−1G 0

Rxðr1Þ
and P⊥

GTx;1
¼ I −GTxðr1Þ½G 0

Txðr1ÞGTxðr1Þ�−1G 0
Txðr1Þ. As a result,

the quantities of the numerators in equation 20 are replaced with
P⊥
GRx;1

GRxðrÞ and P⊥
GRx;1

GRxðrÞ. This process can be applied con-
tinually, and is equivalent to a subtraction of the known source con-
tribution from the data.

Having obtained the object locations from the imaging, we can
compute the principal polarizations for the objects by solving a con-
strained linear least-squares problems (Song et al., 2011).

Multichannel wideband responses: Joint
diagonalization

So far, all discussions and the singular vector fields are based on
an MRM at a single time. We might obtain a series of imaging snap-
shots by applying the MUSIC functional of equation 20 to MRMs at
certain time channels and get an average of these images.
Instead, we can find common singular vectors across a range of

times using a joint diagonalization technique (Cardoso and Soulou-
miac, 1996; Wax and Sheinvald, 1997). Assume a set of real-valued
symmetric matrices fC1; : : : ; CKg of size q × q. The goal of a joint
diagonalization algorithm is to find a best orthogonal transforma-
tion Y that in some sense “diagonalizes” all the given matrices:
C1 ¼ Y ~Σ1Y 0; · · · ; CK ¼ Y ~ΣKY 0, where ~Σ1; · · · ; ~ΣK are found as
q × q diagonal matrices. Y represents an average eigen structure
shared by the matrices C1; · · · ; CK . In our imaging application
of the joint diagonalization method, the common left and right sin-
gular matrices are used rather than those obtained at each time chan-
nel. Generally, there is no guarantee that the MRM is square and
symmetric and we cannot directly apply the joint diagonalization
method to the MRM. However, from the SVD representation in
equation 6 we know that the columns of V make up the eigenvectors
of D 0D, and the columns of U are the eigenvectors of DD 0; i.e.,

D 0Dvi ¼ σ2i vi DD 0ui ¼ σ2i ui: (21)

Therefore, we can form C1 ¼ D 0
1D1; · · · ; CK ¼ D 0

KDK to obtain
the common set of the right singular vectors vi and C1 ¼ D1D 0

1; ·
· · ; CK ¼ DKD 0

K the common set of the left singular vectors ui.
Then these average singular vectors are used in the MUSIC imaging
to localize the objects.
The MUSIC is a noniterative method to find a source in contrast

to a standard nonlinear inversion algorithm. Its main computation of
equation 20 is the construction of array Green’s functions GRx

ðrÞ
and GRx

ðrÞ over a 3D grid. Its algorithm complexity is on the order
of OðMLgÞ þOðNLgÞ, where Lg is the number of a 3D grid. Note
that there are two advantages of implementation of the MUSIC:
(1) the array Green’s functions can be precalculated and stored
for subsequent application; (2) the computation of the MUSIC spa-
tial spectrum of equation 20 can be parallelized. Therefore, the MU-
SIC can be implemented very fast. In the MATLAB environment
with a 3.2 GHz PC, the computation time of a two-object inversion
of a TEMTADS data set is about 0.6 ∼ 1.4minutes depending upon
its iterative convergence speed. However, the computational time of
the MUSIC for searching two objects of a TEMTADS data set is
only 0.13 minutes.

APPLICATIONS

In this section, we present some evaluations of MUSIC-based
source localization and imaging using the test-stand and the field
data collected at Camp Butner, NC.
To demonstrate our methodology, we present the results mainly

using TEMTADS (Nelson, 2008) data. TEMTADS is a new single-
component multistatic system. It consists of a horizontally arranged
coplanar array of 5 × 5 transmitters and receivers (Figure 1a) with a
sensor footprint of 2 × 2 m. The sizes of its transmitters and
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receivers are 35 × 35 cm and 25 × 25 cm, respectively. It has 115
logarithmically spaced gates between 0.042 and 24.35 ms. For each
transmitter excitation, TEMTADS records the response at all recei-
vers. Thus it has spatial-temporal data of 625 × 115 at one static
sounding location.

Test-stand data

This set of test-stand data was taken from a two-object config-
uration consisting of a 4.2 0 0 mortar þ half shell. Figure 1b schema-
tically shows the configuration in which the 4.2 0 0 mortar is
horizontally centered 61 cm below the array and is kept stationary
during the experiment. The clutter, consisting of a half shell at a
depth 44 cm relative to the sensor in Figure 1b was moved horizon-
tally at increments of 10 cm from 0 to 150 cm from the center of the
array. A horizontal separation between the two objects is marked as
Hd in the figure.
Figure 2 shows the data eigenvalues versus

time when Hd is equal to 50 cm; · · · ; 0 cm.
As shown earlier, the significant eigenvalues of
D can be interpreted as those for the weighted
polarizability tensor or as apparent principal
polarizabilities. In these examples, we see six
significant eigenvalues at larger horizontal se-
paration (Hd > 20 cm). When the two objects
are closely spaced, i.e., Hd < 10 cm, the gap be-
tween one set of significant eigenvalues and the
noise is reduced. In these examples, the eigenva-
lue distribution indicates that there are two ob-
jects needed to produce the data.
To accurately estimate sources, we apply the

MUSIC imaging technique to the data measured
under these large and small separation configura-
tions. In the imaging experiments, the scanning
volume of 2 × 2 × 1 m is discretized with
intervals of Δx ¼ 0.05 m, Δy ¼ 0.05 m, and
Δz ¼ 0.025 m. The total scanning grids are
41 × 41 × 41 ¼ 68921. Given that data eigenva-
lue distribution, we choose r ¼ 6 in equation 18
in the MUSIC evaluation. The sensor height was
set at 0.175 m above the surface. For those easier
scenarios, where separations between the objects
are large, the MUSIC accurately localizes the
two objects and a subsequent analysis is able
to accurately recover the polarizabilities (not
shown here). The more challenging scenario is
to test whether we can recover the polarizations
when the two objects are much closer. Our results
are encapsulated in Figure 3, where the first two
columns present the MUSIC 3D imaging and the
last two columns the recovered polarizations
using the imaging peak locations and the
nonlinear inversion. In the following, we use
subscripts “mu” and “nl” to denote source loca-
tions either obtained by the MUSIC imaging or
the nonlinear inversion.
For the horizontal separation Hd ¼ 20 cm

(Figure 3a), the MUSIC derives the first peak
location (marked as a cross on each imaging
plot) at rmu;1 ¼ ð−0.20; 0.00;−0.31Þ m and the

second peak at rmu;2 ¼ ð0.05; 0.00;−0.41Þ m. The imaging peak
locations are very similar to those obtained by the nonlinear inver-
sion: rnl;1 ¼ ð−0.22;−0.01;−0.31Þ m and rnl;2 ¼ ð0.03;−0.01;
−0.40Þ m. Both sets of source locations are close to the ground truth
locations shown in Figure 1b. Correspondingly, in the MUSIC and
nonlinear inversion, one sees that one set of the recovered polariza-
tions at r2 agrees well with the known polarizabilities of the 4.2 0 0

mortar. At r1, the three recovered polarizabilites decay fast and are
distinct, indicating that it is a piece of clutter.
From the study in Song et al. (2011), an accurate polarizations

recovery of smaller spatial separation between two objects is not
impossible, but it can become difficult, particularly if two objects
also have comparable polarization strength like the two-object case
of the half shell and the 4.2 0 0 mortar in the test-stand data.
Figure 3b shows the MUSIC estimation when Hd ¼ 10 cm,

where it predicts the two objects at rmu;1 ¼ ð0.05; 0.00;

Half shell

4.2'' Mortar

TEMTADS Array

26.5 cm

43.5 cm

Hd

17.5 cm
Surface

a)
b)

Figure 1. (a) TEMTADS: a single-component multistatic system consisting of a hor-
izontally arranged coplanar array of 5 × 5 transmitters (thick line squares) and receivers
(thin line squares). Each transmitter is 35 × 35 cm and each receiver 25 × 25 cm.
(b) TEMTADS multiple-object measurement configuration: 4.2 0 0 mortar þ half shell
(deep and big clutter); Hd denotes a horizontal separation between the two objects.
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Figure 2. TEMTADS test-stand data example. Data eigenvalues. Mortar þ HR at dif-
ferent horizontal separation: (a) Hd ¼ 50 cm; (b) Hd ¼ 40 cm; (c) Hd ¼ 30 cm;
(d) Hd ¼ 20 cm; (e) Hd ¼ 10 cm; (f) Hd ¼ 0 cm.

MUSIC in EMI sensing of UXO WB131



−0.39Þ m and rmu;2 ¼ ð−0.15; 0.00;−0.31Þ m. Comparing with
the true locations, rtrue1 ¼ ð0.00; 0.00;−0.435Þ m and rtrue2 ¼
ð−0.10; 0.00;−0.265Þ m, we see that all coordinates agree to within
5 cm and the polarizations of the objects are still well recovered.
4.2 0 0 mortar can be clearly identified. The nonlinear inversion
achieves the similar good performance shown at the fourth column
of Figure 3b.
When Hd ¼ 0 cm, i.e, the large piece of clutter is directly above

the ordnance. The MUSIC algorithm results in Figure 3c estimates
the peak locations at rmu;1 ¼ ð0.00; 0.00;−0.34Þ m and
rmu;2 ¼ ð−0.10; 0.0;−0.34Þ m. This suggests there are two objects
at the same depth and separated horizontally by 10 cm. On the other
hand, the nonlinear inversion derives rnl;1 ¼ ð0.08;−0.01;
−0.35Þ m and rnl;2 ¼ ð−0.10;−0.01;−0.35Þ m, but with a horizon-
tal separation of about 18 cm. In terms of recovered polarization, the
nonlinear inversion predicts two identical rod-like objects (Song
et al., 2011). Nevertheless, the MUSIC results predict a rod-like
object (one major polarizabiltiy and two equal minor polarizabil-
ties) that matches most features of 4.2 0 0 mortar, and a piece of
clutter.

Field data

Here, we present some MUSIC examples applied to the test-pit
data and field data collected at Camp Buter, NC for the ESTCP
demonstration.
One set of the test-pit data was acquired with a single object, 105-

HEAT, centered below the sensor array and oriented down. This is
all the ground truth information available for this data set except the
item depth. In Figure 4a, the data eigenvalue distribution indicates
there are six eigenvalues that are above the noise level and they
indicate the presence of two objects. Both objects have one major
eigenvalue and two smaller, almost equal ones. The three dominant
eigenvalue curves indicate that an object appears to be axially sym-
metric and has slow decay.
Turning to the MUSIC algorithm, we see that there are two

predicted peak locations at rmu;1 ¼ ð0.05; 0.05;−0.58Þ m and
rmu;2 ¼ ð0.00; 0.00;−0.29Þ m. Thus, there appears to be one deep
and one shallow object that are nearly on top of each other. By treat-
ing this anomaly as a single-object at rmu;1 the recovered polariza-
bilties in Figure 4d show that the primary polarization is close to
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Figure 3. TEMTADS test-stand data example. MUSIC 3D spatial imaging (column 1 and 2) and recovered polarizabilities using imaging peak
locations (column 3) and nonlinear inversions (column 4).Mortar þ HR at different horizontal separation: (a) Hd ¼ 20 cm; (b) Hd ¼ 10 cm;
(c) Hd ¼ 0 cm. On each imaging plot, the peak location is denoted as a cross. On the polarization plots, the solid curves represent the known
polarizabilities of 4.2 0 0 mortar and the dashes and dots are the recovered polarizabilities.

WB132 Song et al.



that of the 105-HEAT, but the recovered second-
ary polarizations are larger and have different de-
cay features. However, inverting as two objects at
rmu;1 and rmu;2 provides two sets of polarizations.
The polarization of the deep target agrees well
with the known polarizabilities of 105-mm ord-
nance. The polarization of the shallow object has
two equal major polarizabilities, accounting for
the tail part of the 105-HEAT which is a plate-
like object. The result shows that this big, verti-
cally oriented object is appropriate to model as
two objects.
As for the nonlinear inversion, a single-

object model gives a source at rnl ¼
ð0.03;−0.01;−0.46Þ m, and a two-object model
rnl;1 ¼ ð0.03;−0.01;−0.58Þ m and rnl;2 ¼
ð0.03;−0.01;−0.30Þ m. A comparison of Fig-
ure 4g with Figure 4e, shows that the two sets
of recovered polarizabilities from the two-object
inversion are similar to those using the imaging
peak locations, but the secondary polarizations of
a source at rnl;1 are offset relative to the known
secondary polarizabilities of the ordnance.
For the field data, we first examine one set of

data marked as target 603 that arises from a small
37-mm projectile. The ground truth depth is
20 cm. In this example, the data eigenvalue dis-
tribution in Figure 5a indicates that there is one
set of three significant curves whose dynamic
pattern quite resembles the polarizabilities of
37-mm projectile. There seems another set of re-
latively smaller eigenvalues above the noise le-
vel. Using r ¼ 6 and applying the MUSIC
algorithm, we obtain two peak locations; one
is at rmu;1 ¼ ð0.00; 0.20;−0.21Þ m, the other is
on the edge of the area of interest at
rmu;2 ¼ ð−0.75;−0.50;−0.11Þ m. Figure 5d
shows the two sets of recovered polarizabilities:
one at rmu;1 correctly identifies the ordnance and
the other one at rmu;2 is likely a piece of munition
fragment with a fast decay and is related to the
set of three smaller eigenvalues in Figure 5a.
The two-object inversion has a similar result
with rnl;1 ¼ ð0.03; 0.21;−0.21Þ m and rnl;2 ¼
ð−0.79;−0.49;−0.00Þ m, as shown in Figure 5e.
MUSIC and nonlinear inversion results mutually
confirm and might indicate that there was likely a
small piece of clutter around the measurement
edge that data collectors missed.
The second example is a set of field data

marked as target 62, arising from a 105 mm-
HEAT. The ground truth depth is 62 cm. Fig-
ure 6a is the data eigenvalue plot in which there
are three significant eigenvalues (one major one
and two approximately equal secondary ones),
visually showing similar decay behavior to the
ground-truth polarizabilities of 105 mm. How-
ever, unlike the example of Figure 5, it is uncer-
tain for this data set if there is another set of
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significant, even smaller eigenvalues among the noise eigenvalues.
In the MUSIC application to this example, we still use r ¼ 6.
Figure 6b and 6c shows the MUSIC 3D spatial imaging where

the peak locations are at rmu;1 ¼ ð−0.10; 0.15;−0.56Þ m and
rmu;2 ¼ ð−0.90; 0.15;−0.01Þ m. Using the peak locations, we
solved a linear inverse problem and obtained the two sets of the
polarizabilities for this target anomaly shown in Figure 6d.
Applying the nonlinear inversion to this data set, we have the source
locations at rnl;1 ¼ ð−0.10; 0.17;−0.50Þ m and rnl;2 ¼ ð−0.84;

0.27;−0.00Þ m and the corresponding recovered polarizabilities
shown in Figure 6e.
Comparing these two results, we observe that the MUSIC source

locations are similar to those obtained from the nonlinear inversion.
However, small differences in the two sets of locations appear to
have an important impact for this example. Particularly for object
1, the MUSIC algorithm detects an object that is 6 cm deeper than
the one derived in the nonlinear inversion, and it is closer to the
array center. The use of the MUSIC peak locations recovers the po-

larizabilities that are much closer to the ground-
truth polarizations than those recovered from the
standard nonlinear inversion. Again, the edge
anomaly predicted in both results might be likely
ignored in the site record.
The final example is to show the application of

MRM-based MUSIC technique to a data set from
a system having a few transmitters and many re-
ceivers. As an introductory illustration of the
principle, we choose the MetalMapper (Snyder
et al., 2010) system with three orthogonal trans-
mitters (roughly 1 × 1 m) and seven 3C receiver
cubes of 0.1 m. Its configuration is given in
Figure 7a. The sensor footprint is 1 × 1 m.
The MetalMapper has 42 logarithmical time
gates ranging from 0.106 to 7.91 ms. At one sta-
tic sounding, the MetalMapper can record spa-
tial-temporal data of 63 × 42.
A set of field data marked as target 130, arising

from a 37 mm projectile, is used in this demon-
stration. The ground truth depth is given as
14 cm. Figure 7b is the data eigenvalues plotted
in a receiver space where there are three signifi-
cant eigenvalues (but not showing any axially
symmetric feature) and others are treated as noise
eigenvalues. In the MUSIC application to this ex-
ample, we still use r ¼ 3.
Figure 7c shows the MUSIC 3D spatial

imaging where the peak location is at
rmu ¼ ð0.10; 0.10;−0.11Þ m. Using the peak lo-
cation, we obtain the polarizabilities for this
target anomaly shown in Figure 7d. Applying
the nonlinear inversion to this data set, we
have the source locations at rnl ¼ ð0.07; 0.11;
−0.11Þ m and the corresponding recovered po-
larizabilities shown in Figure 7e. Both methods
achieve almost the identical results. Both recov-
ered polarizations identify the ordnance cor-
rectly. This preliminary illustration supports
the potential application of the MUSIC technique
to a sensor system that has multiple receivers
with a few transmitters.

CONCLUSIONS

We have established a 3D imaging technique
to estimate the source locations of UXO based on
the MUSIC principle for a multistatic EMI array.
In the development, we introduce transmitter-
based and receiver-based array operators that re-
late with the left and right singular vectors of a

0.01 0.1 1 10
10−6

10−4

10−2

100

102

Time (ms)

E
ig

en
va

lu
es

0.01 0.1 1 10
10−6

10−4

10−2

100

Time (ms)

P
ol

ar
iz

at
io

n

10−6

10−4

10−2

100

P
ol

ar
iz

at
io

n

(−0.10, 0.15, −0.56) m
(−0.90, 0.15, −0.01) m

105mm

0.01 0.1 1 10
Time (ms)

(−0.10, 0.17, −0.50) m
(−0.84, 0.27, −0.00) m

105mm

–1

0

–0.2

–0.4

–0.6

–0.8

–1

0
1 –1

–1
0

1 –1
–0.5

0 0.5
–0.5

0
0.5

de
pt

h 
(m

)

0

–0.2

–0.4

–0.6

–0.8

–1
de

pt
h 

(m
)

x (m) x (m)
y (m) y (m)

a) b)

d) e)

c)

Figure 6. Camp Butner TEMTADS field data example. Target 62: (a) Data eigenvalues;
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multistatic response matrix. A spatial metric function, which ac-
counts for the vectorial nature of the problem and is designed
for either both transmitter and receiver arrays or one array, is pro-
posed to measure the projection of the computed signal subspace
onto the noise subspace derived from data. A 3D source imaging
of the metric function can be obtained by evaluating all potential
locations over a region of interest. This is called the “MUSIC-type
spatial spectrum” in which peaks are at or near where targets are
present. Thus, they localize the objects in space. The joint diago-
nalization is used to effectively incorporate wideband multichannel
responses in the imaging process.
The technique was evaluated using the test-stand and field data

and compared with the nonlinear inversions. The results show that
the MUSIC can be implemented very fast and perform the source
localization with results comparable or superior to the iterative non-
linear inversion. This supports the position that the MUSIC can be a
potential processing tool for multistatic sensors in addition to the
standard nonlinear inversion. We also showed that the data eigen-
values of the MRMs are the eigenvalues of a weighted polarizability
tensor or called “apparent principal polarizabilities.” Thus, analysis
of apparent principal polarizabilities might provide extra useful in-
formation about unknown targets.
We note that the MUSIC algorithm makes use of a projection of

the array Green’s functions onto a noise subspace to find sources.
Determination of the dimension of the noise subspace or rank r
plays an important role in the technique. This is related to quantify-
ing the noise level and distribution characteristics of data eigenva-
lues. The detailed study and analysis about MUSIC algorithm
sensitivity and stability with respect to a noise subspace remains
to be explored.
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