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SUMMARY 
Controlled-source electromagnetic (CSEM) surveys have the ability to provide tomo- 
graphic images of electrical conductivity within the Earth. The interpretation of such 
data sets has long been hampered by inadequate modelling and inversion techniques. 
In this paper, a subspace inversion technique is described that allows electric dipole- 
dipole data to be inverted for a 2-D electrical conductivity model more efficiently than 
with existing techniques. The subspace technique is validated by comparison with 
conventional inversion methods and by inverting data collected over the East Pacific 
Rise in 1989. A model study indicates that, with adequate data, a variety of possible 
mid-ocean-ridge conductivity models could be distinguished on the basis of a CSEM 
survey. 

Key words: electrical conductivity, electromagnetic surveys, inversion, mid-ocean ridge, 
subspace. 

1 INTRODUCTION 

The ability of electromagnetic survey techniques to image 
Earth structure has improved significantly in recent years. 
This has been primarily due to advances in modelling and 
inversion techniques as well as increased computer power, 
and we are now approaching the point where realistic 
geologic complexity can be emulated with numerical models. 
The greatest impediments to inversion are the inability to 
represent the Earth in a model with very fine cellurization, 
and also the inherent non-uniqueness of the inversion result. 
Despite these limitations, inversion results can provide 
valuable information about the conductivity distribution in 
the Earth. 

The magnetotelluric (MT) inverse problem was one of the 
first to be satifactorily solved [see Whittall & Oldenburg 
(1992) for a review]. This is because the forward modelling is 
comparatively simple, due to the 1-D plane-wave source 
fields. MT data sets are now routinely inverted for a 2-D 
conductivity structure (Smith & Booker 1988; deGroot Hedlin 
& Constable 1990). However the 3-D source fields generated 
by a dipole source make the modelling and inversion of 
controlled-source electromagnetic (CSEM) data a much more 
involved task. Although, in principle, existing inversion 
methodologies can be extended to higher dimensions, the 
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increased computational cost can prohibit implementation, as 
is clear from the small number of solutions that have been 
published. Oristaglio & Worthington (1980) presented the 
results of inverting CSEM data from an infinitely long wire 
over a dike-shaped ore body and showed that inversion of 
the surface fields defined the location of the body. However, 
limitations in computer memory meant they could not finely 
parametrize their model, or consider the finite nature of a 
realistic source. More recently, a number of authors have 
considered the inversion of EM data acquired in a cross- 
borehole configuration. Newman (1992) used an integral 
equation approach and inverted for a 2-D conductivity 
model. Torres-Verdin & Habashy (1993) used a Born scat- 
tering approach to recover a 2-D conductivity structure 
located between two boreholes. Lee & Xie (1993) described a 
novel approach in which the diffusive electromagnetic fields 
are transformed into a domain in which they have the 
properties of waves. This allows the principles of seismic 
tomography to be used in the inversion. 

In this paper we report on an inversion method for dipole- 
dipole CSEM experiments with both transmitters and receivers 
located on the ocean floor. The earth model is 2-D but the 
transmitter and receiver dipoles are 3-D, so the method is 
referred to as 24-D. The paper begins with an outline of the 
theory behind the forward modelling and inversion method- 
ologies, and the features that have reduced the computa- 
tional costs are emphasized. The utility of the method is 
then demonstrated by a model study of a CSEM survey of a 
mid-ocean ridge. 
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2 THEORY 

2.1 Inversion methodology 

In a general inverse problem, such as obtaining a conductivity 
model of the Earth from surface observations of eIectromag- 
netic fields, we are provided with N data. dq", some estimate 
of their uncertainties, e j ,  and mappings of a form which 
expresses the relationship between the j th  datum d j  and a 
model m, which in our case will be the logarithm of electrical 
conductivity. The goal is to recover an m which adequately 
reproduces the observations and at the same time has desirable 
attributes so as to facilitate geophysical interpretation of the 
conductivity. The primary difficulty in solving the inverse 
problem lies in the non-uniqueness of the solution. Accordingly, 
a practical and common inversion methodology is to introduce 
an objective function Qm(m) and a data misfit functional 
and solve the inversion problem by finding that m which 
minimizes Qm subject to the restriction that Qd=Q:, where 
Qb is a desired target value for the misfit functional. We are 
thus lead to minimizing @(m) = Qm + p(@d -a:) where p is a 
Lagrange multiplier. 

To proceed numerically for the 2-D inverse problem, we 
divide the earth into a set of M rectangular cells and let mj 
denote the constant value of log conductivity of the j th  cell. 
The model objective function is the discretized version of 

Q,(m) = a, w,(m - m,)' ds 
L e a  

a(m - m,)' 
ds 

and is written as 

@,(m) = (m - m,)'(a,WfW, + a,WTW, + azWTWz) 

X (m - mo) 

= IW,(m-mo)IZ, (2) 
where W,, W, and W, are M x M matrices. In eq. (1) the 
constant a, controls the importance of closeness of the con- 
structed model to the reference model m,, and a, and a, 
control the roughness of the model in both spatial directions. 
The reference model can be omitted from the derivatives terms 
in eq. (1) if desired. With the same model parametrization, the 
forward mapping is written as d = F(m). Let the data misfit 
functional be 

(3) 

where wd is an N x N data weighting matrix. For this paper 
we shall assume that the noise contaminating the j th  obser- 
vation is an uncorrelated Gaussian random variable having 
zero mean and standard deviation c j .  Correspondingly, Qd is 
the chi-squared variable with N degrees of freedom. 

Our inversion problem is solved by finding the model m 
and the Lagrange muliplier p such that the objective function 

~(m)=4m(m)+I*-'C4d(d)-#d*I (4) 
is minimized, where 4 is the global misfit. The problem is non- 
linear and so iteration is required. Let m'") be the model at 

the nth iteration and let d(") denote the predicted data. We 
search for a perturbation 6m which reduces Q. Performing a 
first-order Taylor expansion of the data about m'") yields 

( 5 )  d(m'") + 6m) = d(") + J6mI 

where the N x M sensitivity matrix J has elements J i j =  
adi/amj. The perturbed objective function is 

#(m(") + 6m) = I Wm(m(") + 6m - m,) 1' 
+ p-'[1Wd(d(") + J6m - dobs)l' -#$I. (6) 

The details of how to compute the sensitivity elements Jij for 
the 24-D problem considered here are given in Appendix A. 

Minimization of eq.(6) with respect to the variable 6m 
yields an M x M system of equations to be solved. For the 
problems considered here, where M is typically lo00 or more, 
we reduce the number of computations by employing a sub- 
space technique (Skilling & Bryan 1984; Kennett & Williamson 
1988; Oldenburg, McGillivray & Ellis 1993). Let m'") be the 
model at the nth iteration and let vi, i = 1,q be arbitrary 
vectors which form a q-dimensional subspace of RM. We 
seek a model perturbation of the form 6m= C a i v i = V a .  
Substituting this into eq. (6) yields 

#(a) = (Wm(m(") + Va - mo)\' 

+p-l[IW,Jd'"'+ JV~t-d'~~))l'-#$]. 

Setting V&a) = 0 yields 

Ba = b, 

where 

B =VT(JTW:WdJ + pW',Wm)V 

and 

b =  -pV TWfWm(m(n)-m,) 

-VTJTW%Wd(d'"'-dob*). (10) 
The matrix B is a q x q positive definite and symmetric matrix, 
and is easily inverted provided that q is relatively small. 

The success of the subspace method clearly lies in the choice 
of vectors. As in Oldenburg et al. (1993) we choose vectors 
that are obtained by segmenting @d and am, computing 
associated gradient directions, and converting these to steepest- 
descent vectors by multiplying by (WHW,)-'. For this paper 
we have generally grouped the data according to frequency, 
and then had one vector associated with amplitudes and one 
with phases. We have also used vectors which corresponded 
to rows of our model. This facilitates the recovery of layered 
earth models. The inversion algorithm starts with an initial 
conductivity model, and in each iteration this is updated by 
6m until the model fits the data and is as smooth as possible. 

In the following section we present examples using various 
choices of basic functions, and compare the results to those 
obtained via the more conventional method of solving directly 
for a conductivity perturbation in each cell. 

2.2 Forward modelling 

The inversion algorithm is written so as to minimize the 
number of forward modellings per iteration. Even so, the 
algorithm used for forward modelling should be as fast as 
possible, as well as being accurate (it should be accurate to a 
higher degree than the standard errors of the data being 
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inverted), Throughout this study, the 24-D finite-element code 
developed by Unsworth, Travis & Chave (1993) has been used. 
This computes the electromagnetic response of a 2-D earth to 
the electromagnetic fields of a dipole transmitter by reducing 
the 3-D problem to a set of 2-D ones by a Fourier transform. 
The code uses a combination of infinite elements and an 
iterative solution to reduce computation time and memory 
requirements. The iterative solution is particularly effective in 
an inversion when the electromagnetic fields are being com- 
puted for a set of generally similar conductivity structures. The 
first forward modelling starts the iteration with the fields set 
to zero. As the inversion proceeds and the conductivity model 
is updated, the iteration begins with the electromagnetic fields 
from the previous conductivity model. This results in a signifi- 
cant saving in computation time. The efficient calculation of 
sensitivities is also a key part of inversion. We calculate the 
sensitivities exactly, using the adjoint method described by 
McGillivray, Oldenburg & Ellis (1994), and the calculation is 
described in Appendix A. 

3 VALIDATION O F  CODE 

3.1 Sea-floor example 

Logistical problems apart, the ocean floor is an excellent place 
to use controlled-source electromagnetic techniques. The con- 
ductive ocean layer screens out high-frequency noise and 
produces an electrically quiet environment in which weak 
signals may be detected. The electrical conductivity contrast 
between the sea-water and the sea-floor ensures that electro- 
magnetic energy detected more than a few ocean skin depths 
from the transmitter will have travelled through the sea-floor 
and be sensitive to its conductivity. Chave, Edwards & 
Constable (1990) give an overview of theory and instrumental 
considerations for sea-floor CSEM. 

This example simulates a controlled-source electromagnetic 
survey on the ocean floor. It will be used to demonstrate how 
the choice of subspace vectors influences the final conductivity 
model produced by the inversion. 

The electrical conductivity model used to generate synthetic 
data is shown in the upper left panel of Fig. 1. It represents a 
range of features with spatial scales and conductivities that 
might be found at a mid-ocean ridge, although the asymmetry 
does not imply that such ocean ridges are necessarily asymmet- 
ric. The model is overlain by a conductive half-space rep- 
resenting the ocean, with a conductivity of 3Sm-'  (this is not 
shown in the figure). On the right-hand side, the sea-floor 
has a uniform conductivity of 0.01 Sm-', and on the left it 
has a 0.01 Sm-' layer overlying a 0.001 Sm-' half-space. In 
the centre is a conductive prism (0.3 Sm-I), similar in size to 
that proposed for a mid-ocean-ridge magma chamber by 
Unsworth (1994). 

Synthetic data were then generated by using a horizontal 
electric dipole at each of the 11 locations marked by 'x' in 
Fig. 1. The signals are recorded by receivers at the other 10 
locations at frequencies of 8, 2 and 0.5Hz. Both transmitter 
and receiver are oriented out of the plane of the paper. Each 
observation consists of a field strength and a phase measure- 
ment, giving a total of 660 data. The data are displayed in 
Fig. 2, and it can be seen that, when the transmitter is located 
in the centre of the model, the fields attenuate most rapidly 

over the conductive zone to the right. The synthetic data were 
then contaminated with 2 per cent Gaussian noise. 

The data were then inverted using the subspace technique. 
The model m with which we attempt to reproduce the data 
has 798 cells, and the weighting matrix W, was chosen to 
produce the smoothest model (a, = a, = 1, a, = 1). The 
first inversion used 28 subspace vectors consisting of 21 
horizontal row vectors, one gradient vector of the model norm, 
&, and six gradient vectors of the data misfit, subdivided by 
field strength, phase and frequency. The starting model was a 
uniform half-space with CT = 0.01 Sm-', hence 4, = 0. The 
convergence is shown in Fig. 3. Initially, the data misfit 
decreases rapidly, down to a value of dd=2.0, but after this 
the convergence is much slower. The inversion converges at 
the 35th iteration with a data misfit Qd = 1.0, and a model 
norm of Q,,, = 1.7. The model norm slowly increases as structure 
is added to enable a model to be found that fits the data. The 
final conductivity is shown in the upper right panel of Fig. 1. 
The layered structure on the left is clearly imaged, as is the 
shape and conductivity of the conductive prism in the centre. 
Structure below 5 km is poorly imaged, and horizontal streaks 
of high conductivity at a depth of 1-2 km do not suggest that 
the smoothest possible model has been found with this set 
of vectors. 

To see if a smoother model could be obtained by using more 
subspace vectors, a second inversion of the same synthetic 
data was performed using 88 subspace vectors. A set of 66 
vectors was obtained by dividing the data misfit functional 
with respect to field strength, phase, frequency and transmitter 
location. The row vectors and model norm gradient vectors 
from the previous inversion were also used, producing a total 
of 88 subspace vectors. The convergence is shown in Fig. 3, 
and the desired misfit was achieved by the 7th iteration, but 
two more iterations were needed to smooth the model and 
reduce the model norm to a value of Q, = 1.5. The final model 
has a lower model norm (i.e. it is smoother) than that obtained 
with 28 vectors, The final conductivity model is shown in the 
lower left panel of Fig. 1. The shallow structure is imaged as 
clearly as in the previous case, but below 3 km the original 
structure is more faithfully reproduced. The resistive zone on 
the left is more clearly resolved, but below 5 km the resolution 
is poor. This is principally due to the maximum transmitter- 
receiver offset being 12 km, and, with sensitivity limited to a 
depth of the order of half this value, we cannot expect to 
image clearly below this depth. Only signals diffusing from the 
transmitter at + 6 km to a receiver at -6 km will sample the 
lowest part of the structure. The distribution of conductive or 
resistive structure along this energy path is non-unique, and 
the inversion simply produces the smoothest model that fits 
the data. The fit to the data is shown by the solid line in Fig. 2. 

To demonstrate that the conductivity model obtained with 
88 subspace vectors is not an artefact of the choice of subspace 
vectors, a final inversion was performed in which every cell 
was defined as a subspace vector (this is equivalent to not 
using the subspace approach at all). The convergence rate 
with these 798 vectors is shown in Fig. 3 and is indistinguish- 
able from that with 88 vectors. The computation time, however, 
das  increased by a factor of 5. This increase is not as dramatic 
as expected since a large proportion of the computation time 
is taken up with forward modelling, which does not depend 
on the number of subspace vectors used. The time spent on 
the inversion was increased by a factor of 20. The final 
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Figure 2. Synthetic data for the model shown in Fig. 1 with error bars. The solid lines show the fit to the data for the inversion with 2 per cent 
errors and 88 subspace vectors. For each profile the field strength [upper panel) is log,, of the electric field strength for a source with unit dipole 
moment. The phase of the electric field is in degrees, relative to the source. The four columns show data with the source located at -6000, -2400, 
1200 and 4800 m, respectively. 

conductivity model is shown in the lower right panel of Fig. 1, 
and is virtually identical to that obtained with just 88 subspace 
vectors. Thus inversions performed with the reduced set of 88 
subspace vectors will image conductivity structure as effectively 
as the slow computation that uses 798 vectors. 

the results for inversion of 8 Hz data collected over the ridge 
crest. The left-hand panel show the data (solid squares) with 
their standard errors and the response of the smoothest 
subspace conductivity model. The right-hand panel shows the 
conductivity models for the subspace inversion (solid line) and 
the 1-D inversion of Evans et al. (1994) (circles). Both models 
were required to be smooth in a first-derivative sense and can 
be seen to agree well. The minor differences that exist are due 
to the different parametrizations used in the two inversions. 

3.2 Test on East Pacific Rise data 

To date, no CSEM data sets have been acquired with sufficient 
data to constrain a 2-D conductivity structure. Hence the 2-D 
subspace inversion has been tested on 1-D controlled-source 
data collected in 1989 over the East Pacific Rise at 13"N. The 
analysis of these data is described by Evans et al. (1994), who 
binned the data by range and then used a regularized inversion 
to obtain a 1-D conductivity model. Since this binning effec- 
tively averages out any 2-D structure, the subspace inversion 
was required to produce a 1-D model, while still performing a 
fully 2$-D forward modelling. Fig. 4 shows a comparison of 

4 MODEL S T U D Y  O F  MID-OCEAN-RIDGE 
(MOR) DATA 

Unsworth ( 1994) considered the sensitivity of a controlled- 
source electromagnetic experiment to MOR structure on the 
basis of forward modelling, and showed that, providing the 
effects of near-surface conductivity variations were not extreme, 
various end-member conductivity models could be distin- 
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Figure 1. Inversion results for a sea-floor survey using a range of subspace vectors. The true conductivity model is shown in the upper left panel. 
The other panels show the inversion results when 2 per cent noise was added to the data. It can be seen that 28 vectors are inadequate to recover 
the information present in the data. 88 vectors produce a model almost indistinguishable from that with 798 vectors, but at a fraction of the 
computational cost. 



ML 
12 km 

MC MC + HT 

x x x x x x x x x x x  x x x x x x x x x x x  x x x x x x x x x x x  
.- 0 
> .- 

Figure 5. Electrical conductivity models for three possible MOR structures and the models obtained by inverting synthetic EM data at various 
noise levels. In each case field strength and phase data at 8, 2 and 0.5 Hz were inverted. All inversions start from a 0.01 Sm-’  half-space. Instrument 
locations are marked by ‘X’. 



Inversion of electromagnetic data 165 

3.0 

2.5 

E2.0 

- 1.5 
e 
0 
U ; 1.0 

0.5 

- 
4 798 vectors 

88 vectors 
- + 28  vectors 

- 

- 
- 
- 

0.0 r‘ I 
‘ 0  6 10 16 20 26 30 35 40 

I I I I I I I 

it era tion 

4l L 
E 3  

E 
u) .- 

6 798 vectors 
88 vectors 

+ 28  vectors 

“ 0  6 10 16 20 26 30 35 40 ’ I I I I I I I I I 

iteration 

Figure 3. Model norm and normalized data misfit versus iteration 
number for inversion of symmetric data with 28, 88 and 798 sub- 
space vectors. 

guished. A more rigorous assessment of these experiments can 
be obtained by generating synthetic data, adding noise and 
then using an inversion algorithm. This approach can demon- 
strate whether certain features of the model can be recovered 
through inversion. This is superior to answering the same 
question by merely examining the forward modelled responses 
of the models and showing that they differ. 

To compare the results of a theoretical inversion study with 
a real experiment, a number of factors must be borne in mind. 

(1) The magnitude of the uncertainties/errors that are to be 
expected in the data must be estimated. Since very few CSEM 
ocean-bottom data sets exist, the magnitude of this quantity 

103  I 04 

range ( m) 

is very poorly constrained. Errors arise due to uncertainties in 
navigation and the location of receivers, as well as because of 
electrical noise present at the sea-floor. Topography and near- 
surface conductivity variations can spatially alias the data. 
While not strictly errors, these effects distort the data and limit 
the precision to which they can be interpreted. In the following 
section, the term ‘errors’ will be used to include both statistical 
errors and spatial aliasing. In locations with a relatively 
uniform sea-floor, errors in the range 5-25 per cent are possible 
[see experimental data of Evans et al. (1994) and the theoretical 
study by Unsworth (1994)l. However, in regions of rugged 
topography and very large horizontal variations of near-surface 
conductivity, these values could increase by several orders of 
magnitude. It is unlikely that a time-domain experiment would 
improve the situation. In both the time-domain (TD) and the 
frequency-domain (FD) surveys considered here, the magni- 
tude of the electric field is the measurement most heavily 
distorted by near-surface structure. In both domains, the 
traveltime (TD) and the equivalent phase (FD) will be much 
less influenced by near-surface structure. 

(2) The characteristics of the errors in the data are also 
important. It is not clear from existing data sets if errors are 
random or systematic, i.e. are phases systematically increased 
by near-surface scatter, or just randomly perturbed? The 
differences between the two cases is important in both the 
binning of the data [see ( 3 ) ]  and in computing the misfit of 
the data set to a given model. 

( 3 )  A likely experiment would utilize of the order of 10 
receiver instruments. However, with a moving transmitter, it 
is quite possible that data will be transmitted from 1000 
distinct locations. The computation required to model this is 
prohibitive, so data is binned by transmitter location, i.e. all 
signals transmitted from locations within say 500m of a point 
are averaged as if they came from that single point. This 
reduces the number of transmitter locations to be considered, 
and the averaging may reduce the errors in the data. However, 
some knowledge of the statistics of the data errors is needed 
to avoid introducing artefacts into the data [see (2)]. 

With consideration of these factors, an inversion study was 
undertaken for three of the fast-spreading mid-ocean-ridge 
conductivity models that were considered in the forward 
modelling study of Unsworth (1994). These models are shown 
in the top row of Fig. 5 (opposite page 165), and in each the 

100 101 102 103  104 

depth (m) 

Figure 4. Results of inverting 8 Hz CSEM data collected over the East Pacific Rise in 1989. The left-hand panel shows the electric field strength 
with standard errors along with the response of the best-fitting smooth conductivity model. This model is shown by the solid curve in the right- 
hand panel, and is compared with the result of a 1-D inversion (circles) by Evans et al. (1994). 
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background conductivity model is the same with a 1 km thick 
Layer 2 with conductivity O.Olsm-' underlain by a more 
resistive, 0.001 Sm-', Layer 3. In model ML, a thin melt lens 
is present at the depth suggested by the seismic reflection study 
of Harding et al. (1989). The melt lens is lOOm thick and has 
a conductivity of 1 Sm-'. In model MC, a low-melt-fraction 
magma chamber is present with a conductivity of 0.05 S 
and extends to the Moho at 6km depth. In the third model, 
MC + HT, an active hydrothermal system is present, resulting 
in a more conductive Layer 2 above the magma body, and 
providing a conductive path from the ocean to the magma 
chamber. 

The first set of inversions used data generated with transmit- 
ter and receiver dipoles parallel to the MOR. The geometry of 
the electromagnetic fields is analogous to the transverse electric 
(TE) mode in magnetotellurics. Receiver instruments were 
placed 1 km apart across the ridge, and a transmitter was 
deployed at each receiver location. The synthetic data were 
contaminated with 5 per cent random errors and then inverted 
for the smoothest conductivity model that fits the data. The 
data were fitted to a confidence level of 5 per cent, giving 
Qd = 1. The inversion used the set of 88 vectors whose validity 
was justified in the previous section by comparison with 
traditional inversion methods. The resulting models are shown 
in the second row of Fig. 5. In each case the conductive Layer 2 
is well resolved. Model ML clearly shows the melt lens, and 
the data from model MC shows the top of the conductive 
magma chamber, although its conductive base is not clearly 
imaged. Data from MC + HT clearly show the presence of a 
conductive hydrothermal zone extending from the melt body 
to the sea-floor. The lack of resolution of the resistive zone 
beneath the magma chamber is due to the fact that the 
dominant current flow is parallel to the ridge. The minor 
asymmetry of the models is due to the asymmetry of the noise 
added to the data. 

The next set of inversions considers data in the same 
configuration as in the previous example, but with 10 per cent 
random errors added. The data were fitted to a confidence 
level of 10 per cent with Bd = 1. Most of the features resolved 
at the 5 per cent error level are still resolved. The ML model 
can be distinguished from MC, and the presence of the 
hydrothermal zone, HT, is still discernible. However, the 
models have become significantly blurred. 

In many electromagnetic exploration techniques, it is neces- 
sary to use orthogonal transmitters to image conductivity 
structures fully. This is true both for plane-wave sources, such 
as MT, and also for dipolar transmitters. Thus the next set of 
inversions uses dipoles oriented across the ridge and is ana- 
logous to the transverse magnetic (TM) mode in magnetotel- 
lurics. Data generated in this configuration will have electric 
fields in only the y-direction at the receivers. Synthetic data 
for this configuration were computed for the three conductivity 
models, and 5 per cent errors were added. The E ,  data were 
inverted and the results are shown on the 4th row of Fig. 5. 
As before, the layered earth is imaged, and features in the 
upper 2km of each model are distinct. This configuration 
produces a much clearer image of the lower crust, with the 
conductive-resistive transition at the base of the magma 
chamber being imaged. This is possible since significant electric 
current is crossing the base of the chamber, and the charge 
accumulation produces electric fields that are detectable at the 
surface. These effects are weaker than those in the dipole- 

parallel configuration, as is shown by a set of inversions at the 
10 per cent uncertainty level in the next row of models. Neither 
the melt lens nor the magma chamber is imaged and only a 
near-surface conductor such as the hydrothermal zone pro- 
duces fields that are detectable above a 10 per cent error level. 

Electromagnetic exploration methods use signals that are 
diffusive in nature, and thus they are poor at resolving sharp 
interfaces, but good at determining the bulk properties of a 
region. Thus it is meaningful to consider how an electromag- 
netic technique might be combined with a seismic reflection 
survey to produce a clearer image of a mid-ocean ridge. The 
final set of inversions simulates a combined seismic-electro- 
magnetic experiment in which the seismic reflection indicates 
that a sharp interface is located at 1.2 km depth beneath the 
sea-floor at the ridge crest. The E, data with 10 per cent errors 
are inverted again, except that the weighting matrix, W,, is 
chosen so that the conductivity model is allowed to be discon- 
tinuous where a sharp seismic reflection is observed. This 
permits the high conductivity of the ML to be resolved. The 
inversion of data for model MC shows the true value of 
conductivity beneath the interface, but the deeper structure is 
poorly resolved for reasons discussed above. In the presence 
of a hydrothermal zone, the discontinuity allows the deeper 
structure to be well resolved. 

To apply the results of this inversion study to the design of 
a real experiment, it is necessary to consider the factors ( 1 )-( 3) 
discussed above. The magnitude of errors to be expected in 
such data is one of the largest unknowns. In the presence of 
rugged topography or strong near-surface conductivity vari- 
ations (e.g. at a slow-spreading ridge) these effects could be 
very large, and very limited structural information would be 
obtained. The distortion of the data would hide responses 
from deeper conductivity structure. Using many transmitter 
locations to average out this geological noise might help, but 
would require a huge set to be collected. It is highly likely that 
the distortion is 3-D in which case the problem might not 
be tractable. 

The existent data and the calculations of Unsworth (1994) 
indicate that data with uncertainties in the 10-30 per cent 
range might be acquired in a region of relatively flat sea-floor, 
such as at a fast-spreading mid-ocean ridge. Limited spatial 
aliasing of the data would enable a CSEM technique to serve 
as a useful tool for studying mid-ocean-ridge crustal structure. 
A range of conductivity models could be distinguished, and 
the distribution of hydrothermal fluids and partial melt within 
the crust could be constrained. 
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APPENDIX A: SENSITIVITIES FOR 23-D 
PROBLEMS 

The ith datum is a signal transmitted from a source S to a 
receiver R, as shown in Fig. Al.  The sensitivity of this datum 
to the conductivity of the j th  region, J i j ,  can be computed by 
the adjoint method. McGillivray et al. (1994) show that it is 
given by 

where Es is the electric field due to the actual source at S, and 
ER is the field due to a source dipole of unit moment located 
at the receiver, R. Clearly, this method of computing the 
sensitivities requires that a forward modelling is carried out 
with a source at every receiver location. This computation is 
generally available, since arrays of instruments are considered 
in which data is generated by doing precisely this. 

X P 
Figure Al. Geometry for the computation of adjoint sensitivities in 
the 24-D electromagnetic induction problem. The source ( S )  and 
receiver (R) dipoles are located on the Earth's surface. The conductivity 
of the Earth is parametrized in 2-D and is invariant in the x-direction. 

In the 24-D problem, we calculate the sensitivity of the 
electric field transmitted from source (S) to receiver (R) to the 
conductivity of the prism (P). From McGillivray et al. (1994) 
this is given by 

The electric fields are computed in the ( k x ,  y ,  z) domain, and 
thus 

('43) 

('44) 

where the hat denotes a quantity in the Fourier transform 
domain. If we define the area integral of the two electric fields 
as 

x exp[-i(klx + kzx)]  exp(-ikzxd)dklxdkzxdx, (A6) 

where d is the offset in the x-direction between source and 
receiver. Integrating over x and noting that 
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where 6 is the Dirac delta function, gives 

1 
s = llX 12= @ L X j  k , , ) ~ ( k l x ,  k2.J 

x exp(-ik2x)dkl,dk,,. 

Integration over kXl simplifies the result to 

1 
S = - J E(-  k,,, k,,)exp(- ik,,d) dkzx .  

2.n kX2 

When the dipole is parallel to the x-direction, the term 
Esx(- k,)E,,(k,) will be symmetric in k,, and ESy(-  k,)E,,(k,) 
and Esz( -kx)Erz(kx)  will be antisymmetric in k,. Thus the 
sensitivity is given by 


