
H3DTD – MUMPS

A Program Library for Forward Modelling of Multi-Transmitter,
Time-Domain Electromagnetic Data over 3D structures.

Version 1.6

Developed under the MITEM consortium Research Project
Multi-Source Inversion of Time Domain Electromagnetic Data

UBC Geophysical Inversion Facility

Department of Earth and Ocean Sciences
University of British Columbia
Vancouver, British Columbia

http://www.eos.ubc.ca/research/ubcgif/

© UBC Geophysical Inversion Facility, September 2010

http://www.eos.ubc.ca/research/ubcgif/

Introduction

H3DTD is a software package for solving Maxwell’s equations in the time domain. The

equations are discretized in time using backward Euler method and discretized in space by

using a finite volume technique on a staggered grid. The sources can be grounded dipoles or

loop currents that reside in the air, on the surface, or inside the earth. The responses can be

any combination of components of E, H, or dB/dt. The transmitter waveform is user-defined and

there are no restrictions on the length or shape of the waveform. Data can be simulated in the

“on-time” or “off-time”. The earth model is an arbitrary 3D conductivity defined on a structured

rectangular mesh. The earth can also have an arbitrary 3D magnetic susceptibility.

The solutions are achieved by factorizing the forward modelling matrix and hence it is possible

to simulate data from many sources. This is one of the major benefits of this approach. H3DTD,

although it requires significant computing resources, can be run on single modern laptop or

desktop computer. Factorization of the forward modelling matrix is facilitated via the MUMPS

software for which documentation and downloads can be found at the following website:

http://graal.ens-lyon.fr/MUMPS/

The MUMPS routines are built-in to H3DTD and do not need to be installed separately.

However, since the forward modelling matrix is large and its decomposition is computationally

intensive, H3DTD is most efficiently run on an array of computers, or on a single multi-core

computer with lots of RAM (~ 12GB). The parallel implementation is carried out using the

Message Passing Interface standard (MPI). MPI installation and usage will be discussed further

in this document.

To obtain quality numerical results from the algorithm, the problem must be discretized properly

in both space and time. An important step in determining whether discretization is sufficiently

accurate is to compare the fields from H3DTD with those from another algorithm. For this

purpose we use a 1D code, developed at UBC and “field-tested” for almost a decade now. To

assist the user in designing an appropriate mesh and time stepping, and to help validate the

mesh, we have generated GUI utilities that are supplied with this package. A list of the major

components of this package is provided below.

http://graal.ens-lyon.fr/MUMPS/
http://graal.ens-lyon.fr/MUMPS/

List of the input files and Graphical User Interface utilities (GUI’s)

Programs and GUI’s Input files File names

H3DTD.exe Input control file h3dtd.inp (fixed name)

 Model files (conductivity,

susceptibility)

model.con (user specified)

model.sus (user specified)

 Tx-Rx location file trx_loc.txt (user specified)

recv_loc.txt (user specified)

Mesh_builder.exe GUI Mesh file mesh.txt (user specified)

Wave_builder.exe GUI Wave file wave.txt (user specified)

 Time gates file gates.txt (user specified)

Table 1. List of H3DTD components and control files (green means these files are not mandatory
to run the code.

Setting up the control files

“H3DTD.exe” is the executable for the 3D forward simulation. It has to be run in a separate

folder that also contains the input file “h3dtd.inp”. The remainder of the input files do not have

any strict naming convention and can be located in any hard drive or network location under

any name, as long as they are properly entered in the “h3dtd.inp” file.

The input control file has the following 6 line format, as follows:

../../mesh.txt ! mesh file

FILE ../../background.con ! conductivity file

0 ! susceptibility file

trx_loc.txt ! transmitter location file

wave.txt ! wave file

gates.txt ! output time values

In this file there is several supplementary control files listed with full paths to their locations.

The mesh file can be located in any folder and can have arbitrary name, as long as it is in

ASCII format. The design of the mesh can be handled by the GUI utility “Meshbuilder.exe”.

Selection of mesh parameters is very important and it will be discussed further in this document.

In figure 1 there is a screenshot of Meshbuilder GUI with explanations of described parameters”

In setting the mesh parameters, the cell size of “volume of interest” (“smallest cell” in the menu)

should depend on the actual geometry of the survey (primarily on density of stations defined by

line spacing and sampling rate). The user has to maintain a balance between saving computing

time (by coarsening the mesh) and getting more accurate solution of the forward simulation by

making the mesh finer. The padding distance, depends on the latest data acquisition time gate

and is calculated automatically equal to diffusion distance defined by equation (1):

(1) D(t) = 1250*√𝒕 𝝈⁄ (meters)

Figure 1. Mesh file builder GUI parameters setup and graphical representation.

In this equation t is the latest time gate and is the conductivity of the background half-space

in Siemens per meter (S/m).

The background conductivity in meshbuilder is only used to calculate the diffusion radius and is

not being further assigned for the forward starting model. The expansion rate is the geometric

progression coefficient used for building the padding cells. Generally values between 1.3 and

1.6 are reasonable choices for the expansion rate.

The format of the mesh file is:

nx ny nz (number of cells in the X, Y, and Z directions)

x0 y0 z0 (coordinates of the top south west corner of the mesh)

dx_1 dx_2 ... dx_nx (cell widths in X)

dy_1 dy_2 ... dy_ny (cell widths in Y)

dz_1 dz_2 ... dz_nz (cell widths in Z)

The conductivity and the susceptibility model files together compose the starting model

for the forward simulation. They are referenced in the second and third lines of the input control

file, and each of them is defined in the usual GIF format; that is, a single column of values with

one value for each cell. The first value corresponds to the top south-western cell. The values are

ordered such that Z (depth) changes the fastest, followed by X (easting), followed by Y

(northing). For constant half-space model parameters, a single value entered in the input control

file can be used as a substitute to the model files. When a file is entered, the line in the input file

should start with “FILE”, and when a constant value is entered, the line should start with VALUE.

For example, in our “h3dtd.inp” file example above, electrical conductivity model is set

to be read from a file “background.con”, located two directories up from the working

directory, while the magnetic susceptibility is set to zero (SI units). Instead of “0”, “NULL”

can be used. Therefore all cells below Z=0 will then be set to these values. The cells above

Z=0 will be set to 10-8 S/m and zero susceptibility (air).

One of the most important features of the H3DTD is the ability to simulate data from multiple

transmitters. This feature facilitates simulation of airborne time domain surveys. A location file

is used to define the transmitter (TRX) and receiver (RECV) locations and fully defines the

geometry of the survey.

N_TRX 1 (Number of transmitters is 1)

TRX_ORIG (Transmitter type set to “Original”)

5 (5 nodes describing TRX geometry)

 -2.00000E+01 -4.20000E+02 7.5 (Coordinates of the nodes 1 to 5)

 -2.00000E+01 -3.40000E+02 7.5

 6.00000E+01 -3.40000E+02 7.5

 6.00000E+01 -4.20000E+02 7.5

 -2.00000E+01 -4.20000E+02 7.5

INCLUDE recv_loc.txt (Calling for receiver geometry file)

Figure 2 shows and explains the structure of the file. The file contains coordinates for all

transmitters and receivers and its architecture is transmitter-based. First, the number of

transmitters (N_TRX) is specified. Then, for each transmitter location, all of the receivers must

be listed, followed by the next transmitter location, followed by relevant receiver array (see

figure 2), and so on. The number of receivers is specified as N_RECV. Each receiver location is

defined by the coordinates X, Y, Z. If multiple transmitters share a common receiver array, the

Figure 2. (A) Tx-Rx geometry for airborne TDEM survey (TRX_LOOP is used as an example); (B) Tx-Rx

geometry for ground loop multiple source survey (TRX_ORIG is used as an example).

latter can be included in a separate 3-column “recv_loc.txt” file and specified by for each

transmitter by adding “INCLUDE recv_loc.txt” instead of “N_RECV”.

The transmitter label (i.e., TRX_ORIG) indicates the type of transmitter. There are four options

for describing the transmitter source:

 TRX_LOOP: circular loop with arbitrary orientation

 TRX_MAGNETIC_DIPOLE: magnetic dipole

 TRX_ORIG: connecting individual wire segments to form a grounded or inductive

source.

 TRX_LINES: primary field is generated from analytic expressions for wires in free space.

TRX_LOOP: an analytical circular loop (Figure 2A). This type is described by X, Y, Z location,

circular loop radius. This type is a good approximation for large airborne transmitters (VTEM,

HeliGeotem, AeroTEM II and IV, HoisTEM, NewTEM, etc). The following is an example of the

TRX_LOOP source description format:

 TRX_LOOP

 x y z radius theta alpha

Here x, y and z are the coordinates, “radius” is the loop radius, “theta” is the vertical angle

from positive Z (up) axis and “alpha” is the vertical angle from positive Y (North) axis. For a

loop parallel to XY plane use alpha = theta = 0.

TRX_MAGNETIC_DIPOLE : an analytical magnetic dipole (Figure 2A). This is a good

approximation of small radius airborne TDEM systems (AeroTEM I, II) and small loop ground

TDEM systems (Geonics EM61, EM63, etc). The following is an example of the

TRX_MAGNETIC_DIPOLE source description format:

 TRX_MAGNETIC_DIPOLE

 x y z theta alpha m

In this file format, x, y and z are the coordinates, “theta” is the vertical angle from positive Z

(up) axis, “alpha” is the vertical angle from positive Y (North) axis and “m” is the dipole

moment of the transmitter, which should be listed in SI units. Similar to previous example, for a

loop parallel to XY plane use alpha = theta = 0.

TRX_ORIG : the “original” distributed current source – closed loops or grounded wires (Figure

3B). This type is a good approximation of any conventional large square loop system (ground

and airborne), including, Crone, Geonics (EM47, 57, 67), Zonge, GeoTEM, MegaTEM,

MegaTEM II, SkyTEM, etc. The source in this case is described by number of nodes (4 for

grounded wire or n>4 for closed loop) and XYZ coordinates for each node (see example below).

 TRX_ORIG

 n

 x1 y1 z1

 x2 y2 z2

 :

 xn yn zn

Conceptually the source involves a uniform current density within the cells where the source

current flows. The grounded wire (Figure 2B) is strictly defined over the air/ground boundary,

with nodes 1 and 4 being in the ground domain and 2, 3, in the air. For a closed loop (Figure

2B), the first and last nodes must be identical (i.e., a square loop is specified with 5 nodes).

Current in the transmitter is assumed to be 1 Ampere.

TRX_LINES: an analytical general closed loop of line currents. It is designed to handle arbitrary

complex transmitters with user defined number of nodes. The format for this source type is

same as for the TRX_ORIG, the difference is in how the transmitter currents are handled.

The format of the wave file is similar to previous UBC-GIF codes (EH3DTD). The same

wave file is used for all transmitters. Users will likely have their own wave file for their

transmitter. The discretization of the waveform in the “on-time” and discretization in the off-time

is of great importance. A new factorization of the modelling matrix is required whenever the

stepping time “t” is changed. The most computationally efficient discretization is when a single

value of t can be used for the full time range of interest. Most systems consist of an “on-time”

portion (exponential, half-sign, ramp, etc) followed by an “off-time”. The on-time portion of the

waveform may be modelled using a large value of t. Data acquired in the off-time often spans

a few decades of time (Figure 3).

Maxwell’s equations must be time-stepped with relatively small values of t. The stepping time

region begins one decade prior to the user-defined earliest time, and extends until the latest

data time is defined. It is divided into logarithmic segments, usually a decade in length. Each

segment is time stepped with a uniform t (linearly spaced). Generally 10-15 time steps are

adequate for each decade in time. The total computation time depends upon the number of

factorizations, the number of time steps, and the number of transmitters.

 A “Wavebuilde.exe” GUI has been generated to assist the user in generating the wave files.

Figures 4, 5 and 6 show the user interface generating different types of waveforms. Among the

GUI settings there are some general parameters, which specify any waveform and some other

parameters specific to every waveform type in particular. Among the general parameters are the

following:

 Max/min: “min” and “max” values denote the beginning and end values of the time

window through which equations are time-stepped. “min” should be smaller (typically about a

decade) smaller than the first datum time. “max” can correspond to the last datum time.

 #segments and # of samples per segment are the number of logarithmically spaced

segments and linearly spaced samples per each segment

Wave type: there are three options included in the present GUI.

Figure 3. Example: off-time steps (blue) shown vs actual off-time data acquisition time gates for

VTEM system (red).

 Step off

 UTEM

 Exponential plus a ramp

Each of these is described in further detail below. These are accompanied by explanations of

the parameters of the interface that are of relevance and also plots of the times at which the

equations are solved. For each waveform type all time values are referenced to the “time zero”,

which is the beginning of both: factorization time steps and data acquisition time gates.

 Step-off (Figure 4). The current prior to t=0 is assumed to be uniform and solution of the

steady state fields are generated by the program.

This reverse Heaviside function is the simplest waveform to model. No actual geophysical

system uses this exact waveform; however recorded signals can often be deconvolved to

conform to this waveform type. Peak current (maximum current) data are generally sampled

only in the log domain.

 UTEM (Figure 5). Also often referred to as “sawtooth”. This is another simple waveform,

which is periodic defined by the frequency and the amplitude. For UTEM waveform there is no

off-time, all measurements acquired in the on-time. The forward modelling begins with all field

values set to zero and hence ¾ of a cycle is usually modelled prior to data collection times. The

Figure 4. An example of “Step-off” waveform.

¾ cycle can be modelled in linear time steps and following data times in logarithmic steps. The

number of quarter cycles to be modelled prior to data collection is governed by a user-defined

parameter which has to be an odd number.

It is convenient to have the data times begin at t=0 and so the UTEM waveform will begin at

some negative time. The time stepping for the data channel portion of the waveform is

controlled by the “max-min” values on the interface.

 Exponential-on/ramp-off (Figure 6) This is a general expression that can approximate

the waveform from many systems.

Figure 5. An example of “UTEM” waveform.

Figure 6. An example of “Exponential rise/ramp-off” waveform.

This is an exponential rise in current followed by a ramp off. The ramp-on is defined by the

equation (2):

(2) I = 1 - 𝒆−𝒂(
𝒕
𝑻⁄)

, where I is the current, a is the exponential decay coefficient, T is a

user defined parameter equal to the desired length of the exponential ramp-on. Thus the

exponential ramp is defined for 0<t<T. For later times the waveform is a ramp-off and its length

is designated in the box “ramp time” in the interface. The end of the ramp is adjusted so that it

corresponds to “t=0” and subsequent times are logarithmically generated by the “max-min”

portion of the interface.

Figures 7 and 8 show examples of how to approximate boxcar pulse and triangular pulse with

off-time, using “exponential ramp-on/linear ramp-off” waveform type by changing the

exponential rise “a” coefficient and number of samples per exponent.

Figure 7. An example of simulating a boxcar waveform using the exponential ramp-on/linear ramp-

off approximation.

All of the described examples are suitable for data, de-normalized by peak current; however in

the “edit” menu “advanced” features there is a possibility to include user-defined peak current

value. The user should be especially careful, when dealing with the dipole transmitter types,

which contain peak current values in the dipole moment and ensure that current in the

waveform is de-normalized by the peak value.

The waveform file can be saved under user-defined name with arbitrary extension. The format

is shown below.

 0.0000000e+000 1.0000000e+000

1.0000000e-005 0.0000000e+000 15

 1.0000000e-004 0.0000000e+000 15

 1.0000000e-003 0.0000000e+000 15

 1.0000000e-002 0.0000000e+000 15

 1.0000000e-001 0.0000000e+000 15

Figure 8. An example of simulating a triangular pulse with off-time, using the exponential ramp-

on/linear ramp-off approximation.

This is the example of a step-off current. The first column is the time (in seconds) and the

second column is the current (in amperes). The optional third column indicates the number of

equal time steps to use. The first time value in the wave file does not necessarily have to be 0.

In fact, zero-time should be defined relative to the acquisition time gates, rather than beginning

of the pulse in the waveform. The on-time pulse can be in the negative domain. In this particular

example there will be 15 equal time steps between 0 and 10-5 s. The time steps will therefore

be 10-5 / 15 = 6.67*10-7 s. Between 10-4 and 10-5 s, there will also be another 15 equal time

steps equal to (10-4 - 10-5) / 15 = 6.0*10-6 s.

The time gates file is optional. It can be defined in the 6-th line of the h3dtd.inp file, or set to

“USE_WAVE” in which case the forward simulation will output model field values for the

discretization times set up in the “wave.txt” (see figure 3). The following is an example of time

gates input format:

 1.0000e-005

 1.5849e-005

 2.5119e-005

 3.9811e-005

 :

 1.0000e-002

In this format the time gates (seconds) are written in a single column. The name of the file is

user-defined and the extension is arbitrary.

Verification of the mesh

In setting the mesh parameters, the user has to maintain a balance between saving computing

time (by coarsening the mesh) and getting more accurate solution of the forward simulation by

making the mesh finer. In order to verify the validity of a particular mesh, it is suggested to

compare the 3D simulated decay curves to the 1D simulated decay curve. Changing the time

discretization can also affect the accuracy.

The first step is building a mesh. The importance of the correct mesh design is the key to

recovery of meaningful geo-electrical parameters; however a reasonable balance has to be

maintained in terms of keeping the mesh discretization at balance with the computing

capabilities of the workstation. For mesh validation “Data_viewer.exe” GUI can be used. Figure

9 shows how finer discretization of the mesh plays role in the modeling accuracy. In this

particular example the computing time differs between fine mesh and coarse mesh by a factor

of 10.

Running the forward model

It is recommended that for every forward model, a separate folder should be created with all the

control files stored there. This folder should be your working directory (further referred to as

“workdir”) Every time any of the modeling parameters are changed, a new “workdir” should be

Figure 9. (A) Comparison between dBz/dt decay curves simulated for a one loop source 100 Ohm m

half-space using 1D forward modeling and 3D forward modeling and a 38x38x27 mesh; (B) similar

comparison for a 67x67x63 mesh.

created specifically for the new model settings. Separate from the working directory, an

executable directory (“execdir”) should exist on the workstation. It is not recommended to keep

executable files in the same directory as the control files. The following table is showing, which

Files should be kept in which directory (please note that not all files listed in the “workdir” may

be necessarily needed for running the code, the bare minimum is having the “h3dtd.inp”;

“mesh.txt”; “wave.txt” and “trx_loc.txt”, the rest of the files is optional):

Execdir Workdir

h3dtd.exe h3dtd.inp

mkl_mc3.dll mesh.txt

mkl_intel_thread.dll wave.txt

mkl_def.dll model.con

mkl_core.dll model.sus

mkl_blacs_msmpi_lp64.dll trx_loc.dat

mkl_blacs_mpich2_lp64.dll rcv_loc.dat

mkl_blacs_lp64.dll time_gates.txt

mkl_blacs_intelmpi_lp64.dll machinefile.txt

libiomp5md.dll

Table 2. List of files specific for “workdir” and “execdir”.

For optimal performance of the forward modelling (H3DTD) it is best to use the Message

Passing Interface (MPI), which allows running multiple computational devices in parallel,

including commodity clusters, hi-speed networks and multi-core processors on local computers.

In order to install the MPI application library, download it from

http://www.mcs.anl.gov/research/projects/mpich2/

Linux:

For commodity clusters operated under Linux system, the code can be run on any number of

http://www.mcs.anl.gov/research/projects/mpich2/

processors listed in a description ASCII file. The following is an example of such description file:

 Compname01:nProc

 Compname02:nProc

 Compname03:nProc

The description file name is completely arbitrary. “Compname” is the network name of the

computer to be used and “nProc” is the number of processors to be employed for the

procedure. If the computer is on the local network and can be directly accessed, then no path is

needed to be specified. The following is an example of a command line to be used under Linux

operating system in order to start the forward simulation:

 mpiexec -machinefile machines.txt -n 20 ./h3dtd_mumps

In this command line “-machinefile” calls for a description file “machines.txt” and “–n 20”

indicates a total amount of processors to be used on all the machines listed in the description

file.

Windows:

For single multi-core computer usage, under Windows operating system, the command line will

look like this:

 "C:\Program Files\MPICH2\bin\mpiexec.exe" -localonly 4 h3dtd

In this line “–localonly” limits the computation to only one machine, from which the command

line is launched and “4” specifies the number of processors to be used..

For running the code on several computers or a network:

 Make sure each computer has the same version of MPI installed.

 The user running the program should have the same “UserID” and “password” on each

computer (the user does not have to be logged on to every computer, but has to have a

network account set up on each computer with same identification).

 Make your “workdir” and “execdir” folders shareable, and make sure that “workdir”

provides full sharing (read and write).

 Make sure your shared folders are visible on each computer then place the input files

and executables in sharable folders, as per Table 2.

 The firewall in each computer (except for the host) should be turned off, or else the

h3dtd program should be added to the exceptions list.

The command line to start the MPI job is:

mpiexec.exe -machinefile machines.txt -n 8 -priority 1 -dir

\\MYCOMP\share \\MYCOMP\share\exe\h3dtd.exe

In the above example:

machines.txt - file containing the names of the computers to use. Each computer name can

be followed be :p which indicates the number of processes to start on that machine.

-n 8 - total number of processes to start.

-priority 1 - (optional) indicates that all jobs should be started at low priority.

-dir \\MYCOMP\share - sharable folder that should be visible on all computers.

\\MYCOMP\share\exe\h3dtd.exe - full path of the executable. Other computers must be

able to see it.

For convenience, it is recommended to set up batch files (*.bat) for running H3DTD.exe on a

local network. Two examples of such batch files are provided with the documentation. The file

“run_h3dtd_local_mp.bat” is to be used for running H3DTD on local workstation alone and the

file “run_h3dtd_mpi.bat” is to be used for running the code on the local network.

In editing the file: “run_h3dtd_local_mp.bat” the editable text includes the path to the h3dtd.exe

file, which should be set to your “execdir” location. The editable parts of the “run_h3dtd_mpi.bat”

are listed in Figure 10 and include the following:

 machinefile.txt

 number of processors

 path to “workdir”

 path to “execdir”

In figure 10, the file “machinefile.txt” used for executing the code under local network has the

same format as the example shown above for Linux environment and should be located in the

“workdir”. Please note that for running the code on multiple network computers, the total number

of processors should be specified, equal to the sum of all processors on all computers listed in

machinefile.txt.

Output files

h3dtd.log - a log file showing the progress of the inversion.

times_out.txt - a file containing predicted data.

Mumps.log - a file showing the factorizations and cpu time.

Figure 10. Block diagram for editing batch file in order to run the code on the network.

