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S U M M A R Y
Induced polarization (IP) surveys are commonly performed to map the distribution of elec-
trical chargeability that is a diagnostic physical property in mineral exploration and in many
environmental problems. Although these surveys have been successful in the past, the galvanic
sources required for traditional IP and magnetic IP (MIP) surveys prevent them from being
applied in some geological settings. We develop a new methodology for processing frequency
domain EM data to identify the presence of IP effects in observations of the magnetic fields
arising from an inductive source. The method makes use of the asymptotic behaviour of the
secondary magnetic fields at low frequency. A new quantity, referred to as the ISIP datum, is de-
fined so that it equals zero at low frequencies for any frequency-independent (non-chargeable)
conductivity distribution. Thus, any non-zero response in the ISIP data indicates the presence
of chargeable material. Numerical simulations demonstrate that the method can be applied
even in complicated geological situations. A 3-D inversion algorithm is developed to recover
the chargeability from the ISIP data and the inversion is demonstrated on synthetic examples.

Key words: Inverse theory; Electrical properties; Electromagnetic theory.

1 I N T RO D U C T I O N

The presence of polarizable material in the ground is an excellent
proxy for the distribution of metallic minerals and hence IP surveys
are routinely used for mineral exploration (Fink et al. 1990). Recent
studies have also applied the observation of IP effects to hydro-
carbon exploration (Davydycheva et al. 2006; Veeken et al. 2012),
hydrogeological mapping (Slater & Glaser 2003; Hördt et al. 2007),
and numerous other environmental and engineering applications.
The causes of electric polarization, or equivalently chargeability,
are varied but regardless of the cause, a chargeable material will
have a complex, frequency-dependent conductivity.

Traditionally, measurements of chargeability are carried out us-
ing the IP technique (Seigel 1959). This purely galvanic technique
injects current into the ground through a pair of transmitter elec-
trodes and then measures the voltage decay across another set of
electrodes after the current has been interrupted. An excellent sum-
mary of the historical development of the IP method was given by
Seigel et al. (2007). The method has a proven track record in min-
eral exploration and is widely considered the geophysical method
of choice when looking for porphyry copper deposits (Fink et al.
1990). These data are now commonly inverted to recover 2-D or 3-D
models of the chargeability distribution in the ground (Oldenburg
& Li 1994; Li & Oldenburg 2000).

Despite the method’s success, it’s application is not always prac-
tical. The time and cost required to survey large areas can often be
prohibitively large. Some geological settings can also cause tradi-
tional IP to fail. For example, the method struggles in regions where

highly conductive or highly resistive overburden exists. In areas of
high conductivity, the overburden essentially short-circuits the elec-
trode pairs. When high resistivity is present it becomes difficult to
inject enough current into the ground to excite the polarizable body.

Seigel (1974) proposed an alternate method for mapping charge-
ability that addresses some of these shortcomings. The method was
called the magnetic induced polarization (MIP) technique. In this
technique, current is again injected into the ground across two trans-
mit electrodes, but observations of the secondary magnetic field are
used rather than electrical potentials. This eliminates the time con-
suming requirement of placing receiver electrodes, and provides
improved performance when operating where highly conductive
overburden exists. A 3-D inversion technique for MIP data was
developed by Chen & Oldenburg (2003).

The MIP method requires that current be injected into the ground
and thus it still suffers in areas covered by highly resistive over-
burdens. To get away from this requirement, one must move to
a purely inductive method. The idea of inductive induced electri-
cal polarization was examined by Hohmann et al. (1970). They
considered frequency-domain measurements acquired above a 1-D,
chargeable 2-layer Earth as well as field data collected above known
conventional IP responses. They considered only the magnitude of
the magnetic field as data. In the synthetic tests, though the pres-
ence of a chargeable layer did affect the data, the changes were
very small. Although such changes could be explained in terms
of chargeable material it seemed that a heterogeneous model with
frequency-independent conductivity could provide another possible
explanation.
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The majority of literature on the effects of chargeability on in-
ductive EM focuses on concentric and in-loop TEM surveys where
the presence of negative responses have long been observed. Morri-
son et al. (1969) showed that these responses could be explained by
1-D layered structures exhibiting extreme chargeabilities. Weidelt
(1982) went further and theoretically showed that coincident loop
responses must be of the same sign in the presence of frequency-
independent conductivity and magnetic permeability. Thus, sign
reversals in these data must be associated with the presence of
polarization effects (Smith & West 1988).

Numerous works have been published on the explanation and
interpretation of these effects, whereas very little has been published
on the effects of chargeability on frequency domain surveys, or on
surveys with geometries other than centre loop. Some exceptions
are Gasperikova & Morrison (2001), who looked at IP effects in MT
data, and Hoheisel et al. (2004) who studied IP effects in LOTEM
data.

In this work, we propose a new data collection, processing and
inversion methodology to map the distribution of chargeability us-
ing inductive sources and observations of magnetic fields in the
frequency domain. We exploit the asymptotic behaviour of the
magnetic fields at low frequencies to identify the presence of an
IP response, and develop an inversion scheme to recover the 3-D
distribution of chargeability.

2 A M AT H E M AT I C A L M O D E L F O R
I N D U C T I V E S O U RC E I P

In this section, we examine the behaviour of Maxwell’s equations at
low frequency. In particular, we are interested in how the presence
of a chargeable material will affect the resulting magnetic fields.

Maxwell’s equations in the frequency domain are

∇ × E − iωμH = 0 (1)

∇ × H − σE = s. (2)

Here, E and H are the electric and magnetic fields, σ is the con-
ductivity and μ the magnetic susceptibility. Define H such that
H = H0 + Hs and ∇ × H0 = s. Here, H0 is the magnetic field gen-
erated by the loop at zero frequency, which can be calculated using
the Biot–Savart law. We can rewrite eq. (1) in terms of Hs as

∇ × E − iωμHs = iωμH0 (3a)

∇ × Hs − σE = 0. (3b)

Eliminating E from the system yields an equation for Hs

∇ × ρ∇ × Hs − iωμHs = iωμH0, (4)

where ρ is the resistivity, ρ = 1
σ

. This equation represents the for-
ward problem for magnetic fields arising from an inductive source.

Now, assume a frequency-independent (non-chargeable) resistiv-
ity distribution ρ. We can compute the derivatives of Hs with respect
to ω by differentiating eq. (4). Differentiating once we obtain

∇ × ρ∇ × ∂Hs

∂ω
− iωμ

∂Hs

∂ω
= iμ (H0 + Hs) . (5)

Eq. (5) is a partial differential equation for ∂Hs

∂ω
. It has the same form

as the system for Hs but a different right-hand side. From eq. (5) we
see that as ω → 0 the derivative ∂Hs

∂ω
becomes is purely imaginary,

giving

Im [Hs (ω, ρ)] ≈ ∂Hs

∂ω

∣∣∣∣
ω=0

ω (6)

or

Im [Hs (ω, ρ)]

ω
≈ ∂Hs

∂ω

∣∣∣∣
ω=0

≈ const. (7)

2.1 Inductive source IP

So far we have shown that the behaviour of the imaginary part of the
magnetic field can be easily predicted at low frequencies when no
chargeable material is present. This property can be used to detect
chargeability.

Consider the magnetic response of a non-chargeable Earth to
forcing from an inductive source operating at two closely spaced,
low frequencies ω1 and ω2. If the frequencies are sufficiently low
then the skin-depth is very large compared to the geometric decay
of the source fields and the measured response is sensitive to the
same volume of Earth. From eq. (7) we can say that

Im [Hs (ω2)]

ω2
− Im [Hs (ω1)]

ω1
≈ 0. (8)

This observation motivates us to introduce a new quantity dISIP

which we define as the inductive source IP (ISIP) data

d ISIP = Im [Hs (ω2)] − ω2

ω1
Im [Hs (ω1)] . (9)

A datum is obtained by taking a scaled linear combination of two
recorded magnetic fields, thus the ISIP data are secondary sig-
nals that are directly related to the chargeable Earth. For any real,
non-dispersive resistivity distribution the ISIP data, dISIP, should
approximately equal zero. Non-zero values indicate the presence of
chargeable material. This is an important benefit.

It is interesting to note that a similar definition of data was used by
Beard & Zhou (1995), Wang et al. (2003) to correct downhole data
for unwanted noise that arises by a logging tool not being centred
in the borehole. These effects, caused by conductivity contrasts lo-
cated very close to the tool and in the low-induction number regime,
varied linearly with frequency and could be largely accounted for by
applying what they name a dual frequency approach. In their treat-
ment, they assume that conductivity structures are non-dispersive.
From our analysis, if the material near the borehole had a conduc-
tivity that was dispersive, then IP signal would still reside in their
processed data.

We now demonstrate the effectiveness of the ISIP data in recov-
ering chargeable targets using a few examples.

2.1.1 Synthetic example #1—two blocks in a half-space

We test the sensitivity of the ISIP data to chargeable material by
using two synthetic examples. The first test consists of two con-
ductive blocks in a resistive half-space. Both blocks have a resis-
tivity of 1 �m and the background has resistivity of 1000 �m.
One of the blocks is chargeable. In the second test we use the
same two blocks but embed them in a more complicated geological
background.

The frequency dependence of a material’s resistivity is commonly
parametrized by the Cole–Cole model (Cole & Cole 1941; Pelton
et al. 1978)

ρ (ω) = ρ0

[
1 − η

(
1 − 1

1 + (iωτ )c

)]
, (10)
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Figure 1. Geometry of the two block model. The tops of the blocks are
125 m below the surface, and they extend to a depth of 225 m. Block #1
is conductive (1 �m) but it is not chargeable. Block #2 is conductive and
chargeable, with Cole–Cole parameters ρ0 = 1 �m, η = 0.1, τ = 0.1 and
c = 0.5. The background half-space has a resistivity of 1000 �m. The dark
black line shows the layout of the transmitter wire.

where ρ0 (�m) is the resistivity at zero frequency, η is the charge-
ability, τ (s) is a time constant and c is the frequency dependence.
In this example, the chargeable block is modelled with Cole–Cole
parameters η = 0.1, τ = 0.1 and c = 0.5. Although this choice of
Cole–Cole parameters is not based on any specific set of measure-
ments, they are reasonable when compared to best fitting models of
porphyry deposits from Pelton et al. (1978), Wong (1979). The tops
of the blocks are buried 125 m below the surface of the half-space.
There is a single transmitter that is offset from the two conductive
blocks and the magnetic fields are simulated at 1 and 2 Hz (Fig. 1).
These parameters result in a change between the two frequencies of
1.0 × 10−2 �m in the real part and 2.4 × 10−4 �m in the imaginary
part of the resistivity of the chargeable block.

The resulting magnetic fields, and the calculated ISIP data are
shown in Fig. 2. The magnetic fields at the two frequencies are simi-
lar in form but have different amplitudes. It is difficult to determine
the presence of the blocks from the appearance of the magnetic
fields, let alone determine whether either of them are chargeable.
Eq. (9) was used to calculate the ISIP data from these magnetic
fields. The ISIP data are shown in the third column in Fig. 2. The
existence and approximate location of the chargeable block is easily
determined from looking at these plots.

2.1.2 Synthetic example #2—two blocks in a complex background

In the second synthetic example the same two blocks were placed in
a complicated 3-D background, and buried beneath a very resistive
overburden. The resistivity of the background units vary between
10 and 1000 �m. The overburden has a resistivity of 10 000 �m.
Cross-sections through this model are shown in Fig. 3. The resulting
magnetic fields, and the calculated ISIP data are shown in Fig. 4.
The anomalous ISIP response from the chargeable block is clearly
evident and it is very similar to that of the previous example despite

the fact that the chargeable body was buried in a host with a very
different conductivity structure.

3 S O U RC E S O F E R RO R

The results in the last section showed that ISIP data can be a direct
indicator of polarizable material. The important question pertains
to whether or not the ISIP signal is large enough to be measured
in field situations. To be useful the ISIP signal must be larger than
the ‘noise’. There are two factors to be considered. The first is the
intrinsic noise of the instrument; the second is the ‘noise’ inherent
in our analysis procedure when our low frequency assumption is
violated. We consider each of these in turn.

3.1 Noisy magnetic fields and error propagation

An ISIP datum is a linear combination of two measured data and
hence its variance is determined by the accuracy of each measure-
ment. If we assume that the observations of Im [Hs(ω1)] have a
variance of σh1 , that Im [Hs(ω2)] has a variance of σh2 and that
errors are uncorrelated then the variance in the resulting ISIP data
is

σISIP =
√

σ 2
h2

+
(

ω2

ω1
σh1

)2

. (11)

In the case where σh1 = σh2 = σh this simplifies to

σISIP =
√

1 +
(

ω2

ω1

)2

σh . (12)

Thus, the variance in the ISIP data will always be larger than the
variance in the measurements of the magnetic fields used to cal-
culate the ISIP response. It is important to note that though the
magnitude of the variance will only slightly increase for closely
spaced frequencies, the magnitude of the ISIP data will be signifi-
cantly less than the magnitude of the original magnetic fields as a
result of eq. (9). This results in an increase in the relative variance
of the ISIP data compared to the relative variance in the original
magnetic fields.

Using modern SQUID magnetometres, resolutions of 20fT (1.6 ×
10−8 A m−1) have been achieved at 1 Hz (Kawai et al. 1999). If we
choose instrumentation noise to be 20fT/

√
Hz and frequencies of

1 and 2 Hz, then σ ISIP = 4.3 × 10−8 A m−1.
The magnitude of the ISIP signal is controlled by many factors

and is something that will analysed in more detail in future papers.
Principally however, it depends upon the size and geometry of the
target and its location relative to the transmitter, the geometry of
the transmitter and the magnitude of the current, the Cole–Cole
(or other complex conductivity description of the target material)
and the choice of frequencies. The relationship between most of
these parameters and the ISIP data is complicated. The exception is
transmitter current; the ISIP data depend linearly on the magnitude
of the current.

To illustrate the fact that ISIP data can be large enough to be
recorded with current instruments, we continue with the example
used in the paper. For a 1A current the maximum ISIP signal in Fig. 4
occurs in the z-component and is 0.35 × 10−8 A m−1. The estimated
standard deviation for this datum is σ ISIP = 4.3 × 10−8 A m−1. In
Fig. 5 we show the noisy ISIP that would be measured when the
transmitter current is respectively 1, 10 and 50 A. EM transmitters
capable of producing currents up to 50 A are commonly available
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Inductive source induced polarization 605

Figure 2. The x, y and z components of the imaginary part of the magnetic fields (A m−1) simulated at 1 and 2 Hz and the calculated ISIP data. The centre of
the chargeable block is located at (250 m, 500 m) and the centre of the conductive block is located at (500 m, 250 m).

on the market today. With a 50 A transmitter, and resolving power
of 4.3 × 10−8 A m−1 the ISIP response is easily visible in the data
(Fig. 5).

This is just an example and it does not represent the best case
scenario. Different transmitter and receiver geometries, a shallower
target, or a different Cole–Cole model could achieve a higher mag-
nitude response.

3.2 Low frequency assumption

The second area in which ‘noise’ can contaminate our analysis oc-
curs if our low frequency assumptions are violated. Low frequencies
are required in this derivation for two reasons. First, though deriving
the expressions for the ISIP data, it was assumed that observations
of the magnetic fields are made at sufficiently low frequencies that
the higher order terms of the expansion of eq. (4) can be dropped.
The imaginary portion of the recorded magnetic field then depends
linearly upon frequency. The value of the induction number is the

determining factor in the validity of this assumption. As long as the
induction number is much less than unity, the ISIP data will be equal
to zero unless chargeable material is present. As the value of the
induction number increases however, additional sources of signal
become apparent in the data. Also, as induction number increases so
that the linear dependence on frequency begins to be violated, it may
be necessary to restrict the difference between the two frequencies
that are used to compute the ISIP data. However, reducing the dif-
ference between the two frequencies will also reduce the magnitude
of the ISIP signal. The details about this deserve further attention
but for now we illustrate that the non-linearity due to inductive ef-
fects is not so large that it prevents quality ISIP data to recorded at
relatively high frequencies. We return to the ISIP data for the simple
two block model used in the first example, except we compute data
using frequencies from 5 to 55 Hz. The resultant data are shown
in Fig. 6. ISIP data require measurements of magnetic field at two
frequencies. The lower of the two frequencies used are shown in
the figure. The higher frequency is 5 per cent larger. In each case,
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606 D. Marchant, E. Haber and D.W. Oldenburg

Figure 3. The real part of the complex 3-D resistivity model. The back-
ground is not chargeable and the resistivity of the units varies from 10 to
1000 �m. The overburden is 50 m thick and has a resistivity of 10 000 �m.
The two blocks have the same properties as they did in the previous exam-
ple. (a) Depth slice 150 m below the surface. (b) Slice through the model at
500 m north.

the Cole–Cole model is slightly modified to ensure that the differ-
ence in resistivity between the two frequencies remains constant. At
low frequencies, the ISIP data are a dipolar response centred over
the chargeable block. As the frequencies increase, non-zero signals
begin to appear in the ISIP data away from the chargeable block.
At these frequencies, starting around 25 Hz, the magnetic fields no
longer vary linearly with frequency.

4 D I S C R E T I Z AT I O N O F T H E I S I P
F O RWA R D M O D E L L I N G

In this section, we discuss how to obtain a discrete systems of
equations for the ISIP data. Since the ISIP data are derived from the
magnetic field we briefly discuss the discretization of Maxwell’s
equations. We then linearise the problem to obtain a discrete linear
inverse problem for the distribution of chargeable material given
the ISIP data.

4.1 Discretization of Maxwell’s equations

We consider the system for Hs given ρ (eq. 4). The system has
a non-trivial null space (the gradient of scalar functions) when ω

→ 0 and therefore must be stabilized. To stabilize the system at
very low frequency we use the source condition ∇ · μHs = 0 and,

assuming μ is constant, we add ∇ρ∇ · Hs to Maxwell’s equations
(4) to obtain

∇ × ρ∇ × Hs − ∇ρ∇ · Hs − iωμHs = iωμH0. (13)

This guaranties a solution of the system even for ω = 0 (Haber
& Ascher 2001). For boundary conditions we use n × Hs = 0. For
numerical evaluation, we discretize the system on an orthogonal,
staggered grid and use a finite volume approach (Yee 1966) with
material averaging of resistivities (Haber & Ascher 2001).

Hs is placed on cell edges and ρ is defined at the cell centres.
The discrete equation is[
curl�diag

(
Ae

cρ
)

curl − grad diag
(
An

c ρ
)

grad� − iωμI
]

Hs

= iωμH0, (14)

where curl and grad are discrete forms of the curl and gradient
operators, obtained by short differences on staggered grids and Ae

c

and An
c are averaging matrices from cell to edges and nodes respec-

tively. The system is solved for Hs using a direct solver (Amestoy
et al. 2006).

4.2 Linearization of inductive source IP equations

To invert for chargeable material we need to connect the ISIP data to
changes in the resistivity with frequency. Since this change is small
we use simple linearization. This is similar to the DCIP case where
the IP effect is obtained by linearizing the DC equations (Oldenburg
& Li 1994).

Chargeability causes small perturbations in resistivity as a func-
tion of frequency. Let ρ1 and ρ2 be the resistivities that would be
observed at frequencies ω1 and ω2. Since the frequencies ω1 and
ω2 are closely spaced, the resistivity that would be observed at ω2

is approximately equal to the resistivity at ω1 plus a small pertur-
bation, or ρ2 ≈ ρ1 + δρ. Expanding the magnetic field using the
first-order Taylor’s expansion around ρ = ρ1 we obtain

Hs (ω2, ρ2) ≈ Hs(ω2, ρ1) + ∂Hs

∂ρ
(ω2, ρ1)δρ. (15)

Define the complex sensitivity matrix J to be

J = Q
∂Hs

∂ρ
(ω2, ρ1), (16)

where Q is a projection matrix that projects the magnetic field Hs

to the receiver locations. The (i, j) element of J contains how the
ith observation of Hs will be affected by a small perturbation in
resistivity in the jth cell. Using the result from eq. (7) we can say
that

Im [QHs(ω2, ρ1)] ≈ ω2

ω1
Im [QHs(ω1, ρ1)] . (17)

Combining this expression with eq. (15) yields

Im [QHs (ω2, ρ2)] ≈ ω2

ω1
Im [QHs(ω1, ρ1)] + Im (Jδρ) . (18)

Then, using the definition of the ISIP data (eq. 9), projecting to the
receiver locations, we obtain

d ISIP = Im (Jδρ) = JReδρIm + JImδρRe, (19)

where we use the notation (·)Re and (·)Im to denote the real and
imaginary components of ( · ).

This is a coupled system for [δρRe, δρIm] given the ISIP data.
Fortunately, the system can be decoupled when working at low
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Inductive source induced polarization 607

Figure 4. The x, y and z components of the imaginary part of the magnetic fields (A m−1) simulated at 1 and 2 Hz and the calculated ISIP data above the
synthetic model shown in Fig. 3. Despite the complicated 3-D conductivity distribution, the ISIP data still reflects the location of the chargeable body.

frequencies. To see that we analyse the sensitivity matrix obtained
around a real resistivity value ρ and low frequency ω.

Differentiating (14) with respect to ρ we obtain

[
curl�diag

(
Ae

cρ
)

curl − grad diag
(
An

c ρ
)

grad� − iωμI
] ∂Hs

∂ρ

+ [
curl�diag (curl Hs) Ae

c − grad diag
(
grad�Hs

)
An

c

] = 0

(20)

and therefore, the sensitivity matrix is

J =
− [

curl�diag
(
Ae

cρ
)

curl − grad diag
(
An

c ρ
)

grad� − iωμI
]−1

× [
curl�diag (curl Hs) Ae

c − grad diag
(
grad�Hs

)
An

c

]
. (21)

Let us examine the sensitivity matrix for low frequencies. The
EM forward modelling matrix is

A(ρ) = curl�diag
(
Ae

cρ
)

curl − grad diag
(
An

c ρ
)

grad� − iωμI.

(22)

The discretization of the differential terms are of order h−2ρ whereas
the last term is of order ωμ where h is the length of one edge of the
smallest cells in the mesh. If ω � h−2ρμ−1 then the term involved
with ω can be neglected, and therefore, for low frequencies we have
A(ρ) ≈ A(ρ)Re.

The second part in the sensitivity involves the differential opera-
tors and Hs . As we have seen previously, in eq. (6), Hs is dominated
by its imaginary part at low frequencies. These two observations
imply that ‖JRe‖ � ‖JIm‖.

Using the asymptotic properties of J it is possible to simplify the
system (19). As JRe is very small, the term JReδρIm can be dropped
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608 D. Marchant, E. Haber and D.W. Oldenburg

Figure 5. The vertical component of the ISIP data (A m−1) calculated from magnetic fields that had been contaminated with random gaussian noise with
a standard deviation of 1.6 × 10−8 A m−1 and a variable transmitter current. (a) 10-A transmitter current (b) 30-A transmitter current (c) 50-A transmitter
current

Figure 6. Vertical component of ISIP data for the simple two block model calculated for pairs of frequencies of increasing magnitude. The lower frequency is
shown in the figure. The second frequency is 5 per cent higher.

from eq. (19) and we obtain a linear relationship between the ISIP
data and δρRe

d ISIP 
 JImδρRe. (23)

5 S O LV I N G T H E L I N E A R I N V E R S E
P RO B L E M

Recovering δρRe using the approximation in eq. (23) is a simple
linear inverse problem that can be solved using various techniques.
Before inverting the ISIP data for δρRe, JRe must be approximated,
requiring estimates of ρ (the zero-frequency resistivity structure)
and Hs (the secondary magnetic fields arising from ρ). The esti-

mated resistivity could be obtained by performing a 3-D inversion
of data at one of the two frequencies, or it could be generated in
some other way.

It is important to note that the ISIP data are sensitive to the change
in resistivity between the two frequencies being used, and not to the
chargeability parameter used in common dispersion models. The
model that results from inverting ISIP data maps the distribution
of material that exhibits a change in resistivity between the two
frequencies used. In the simple case of materials exhibiting disper-
sion that can be represented by a Debye model (c = 1 in eq. 10),
this change will be proportional to the chargeability, η. In materials
with other frequency dependencies, the relationship is not so sim-
ple. The presence of a non-zero δρRe directly indicates a non-zero
chargeability, however a zero δρRe does not necessarily imply that
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Inductive source induced polarization 609

the material is not chargeable. It only tells us that the dispersion of
the material is such that there is no measurable δρRe between the
frequencies used.

5.1 Inversion methodology

Our inversion methodology is based upon that described in Li &
Oldenburg (2000). The solution to the inverse problem is the model
m that solves the optimisation problem

min φ = φd(m) + βφm(m)

s.t 0 ≤ m. (24)

In this equation, φd is a measure of the data misfit, φm is a user
defined model objective function and β is regularization or trade-
off parameter. We use the sum of the squares to measure data misfit

φd = ||Wd

(
Gm − dobs

) ||22 =
N∑

i=1

(
dpred

i − dobs
i

εi

)2

, (25)

where N is the number of observed data and Wd is a diagonal data
weighting matrix which contains the reciprocal of the estimated
uncertainty of each datum (εi) on the main diagonal.

The model objective function, φm, is a measure of amount of
structure in the model and, upon minimization, will generate a
smooth model this is close to a reference model mref. We define φm

as

φm = αs ||Ws (m − mref ) ||22 + αx ||Wx (m − mref ) ||22
+ αy ||Wy (m − mref ) ||22 + αz ||Wz (m − mref ) ||22, (26)

where Ws is a diagonal matrix, and Wx , Wy and Wz are discrete
approximations of the first derivative operator in the x, y and z direc-
tions, respectively. The α’s are weighting parameters that balance
the relative importance of producing small or smooth models.

The ISIP data equations are linear but the inverse problem is
non-linear because we impose bound constraints on m to ensure
reasonable valued results. The constrained optimisation problem
is solved using the Projected Newton method detailed in Kelley
(1999). At the (n + 1)th iteration, this method requires the solution
to

Rδm = −G�W�
d Wd

(
dobs − dn

) − βW�W
(
mn − mref

)
, (27)

where mn is model produced at the nth iteration, dn are the data
predicted by mn , W is the regularization matrix and R is the reduced
Hessian.

We solve eq. (27) using a pre-conditioned conjugate gradient
algorithm. This approach allows δm to be obtained with only the
multiplication of R onto a vector. Once the search direction δm
has been identified, the new model is given by mn+1 = Proj(mn +
γ δm), where γ (0 < γ ≤ 1) is chosen by a simple backtracking
line search such that mn+1 reduces the objective function. Proj is a
projection operator that projects the updated model back to feasible
model space.

The regularization parameter is chosen using a cooling schedule.
β is initially chosen to the very large so that βφm dominates the
objective function. When the m that minimizes eq. (24) is identified,
β is decreased by a constant factor. This continues until the desired
level of data misfit is achieved.

5.2 Inversion of synthetic ISIP data

The response of the model shown in Fig. 3 was calculated for a
survey consisting of 25 transmitters laid out in a 5 × 5 grid. Each

transmitter was a square loop, 200 m on a side. 169 receivers (13 ×
13 grid) recorded the three components of the magnetic fields at
1 and 2 Hz. The survey was simulated by solving eq. (14) at each
of the two frequencies. The resulting data were then contaminated
with random Gaussian noise with a standard deviation of 5.3 ×
10−10 A m−1 (the noise level you could expect from a receiver
with 1.6 × 10−8 A m−1 resolution while transmitting 30 A). Three
components of ISIP data were then calculated from the simulated
noisy magnetic fields using eq. (9). This resulted in 12 675 unique
data. Non-chargeable half-spaces were used for both the initial and
reference models in the subsequent inversions. In this example, the
real part of the true background resistivity model was used when
calculating the sensitivities.

A plan view and cross-section of the true and recovered δρRe

models are shown in Fig. 7. The depth and horizontal extents of
the chargeable material are well located. As usual, with such inver-
sions, there is some extension of the chargeability away from the
boundaries of the true block and also the amplitude of the recovered
chargeability is lower than the true value. This is a result of the
smallness and smoothness terms used to regularize the inversion
(Oldenburg & Li 2005). Overall, the inversion has been successful
in locating the chargeable material.

5.2.1 Importance of background conductivity model

Calculation of the sensitivities, which form a central role in the
inversion of the ISIP data, require knowledge of the background
resistivity. In the previous example, the real part of the true resis-
tivity was used. In reality however, this quantity is not known, and
an estimate of the resistivity structure must be used. Depending on
the method used to generate the estimate, the model may not be a
good representation of the true resistivities in the area of interest.

To test the importance of the background resistivity model, two
additional inversions were performed. In the first, a 200 �m half-
space is used to generate the sensitivities. In the second, the 1 Hz
data were first inverted to recover a 3-D resistivity model.

The resulting chargeability model obtained by using sensitivities
from a 200 �m half-space are shown in Fig. 8. A chargeable body
is clearly recovered but the resolution is substantially reduced com-
pared to that in Fig. 7. The body has moved towards the surface and
it is also spread out in the horizontal direction. Nevertheless, the
result provides useful information as its maximum value coincides
horizontally with the centre of the true prism. This is a positive
result and shows that knowledge of the background is important but
not critical to getting some valuable information from the ISIP data.
Moreover, the example given here (where the true resistivity in the
model varies between 1 and 10 000 �m, and it has been replaced
by a uniform Earth of 200 �m) is indicative of a very poor estimate
of the resistivity.

In the second example, the contaminated 1Hz data were first
inverted using the FEM inversion code EH3D (Haber et al. 2004)
to recover a real 3-D resistivity model. Plan view and cross-sections
of the true and recovered resistivity model are shown in Fig. 9. As
the inversion is working with only a single frequency, the resulting
resistivity model differs substantially from the true model. Most
of the major features can be recognized in the result, but they are
highly distorted.

The inversion of the ISIP data using the recovered conductivities
are shown in Fig. 10. The chargeable block is now well recovered and
is nearly the same as that obtained from using the true conductivity.
There is however a small artefact at (x, z) = (400, 400) which appears
to stem from additional structure in the recovered conductivity.
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610 D. Marchant, E. Haber and D.W. Oldenburg

Figure 7. True and recovered δρRe models. The true zero-frequency resistivity model was used to generate sensitivities for the δρRe inversion.

Figure 8. True and recovered δρRe models. A 200 �m half-space resistivity model was used to generate sensitivities for the δρRe inversion.
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Figure 9. True and recovered resistivity models. Recovered models were produced by inverting the 1 Hz FEM data.

Figure 10. True and recovered δρRe models. The best fitting resistivity model to was used to generate sensitivities for the δρRe inversion.
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6 C O N C LU S I O N S

In this paper, we have introduced a new methodology to invert for
chargeability using inductive magnetic sources. Using the simple
asymptotic behaviour of the fields at low frequencies we introduce
new data, that we refer to as the ISIP data. At low frequencies these
data are identically zero if the conductivity is purely real. Thus
any non-zero value of this datum is a direct indicator of chargeable
material. Numerical simulations demonstrate that this is true even
in a complex geological environment.

We then develop a linearised approximation that relates ISIP data
to the chargeability. The link between these two quantities is the
sensitivity matrix, which is evaluated using the real, frequency in-
dependent, conductivity. In synthetic inversions we show that impor-
tant information about the existence and location of he chargeable
structure can be obtained even with a fairly poor knowledge about
the conductivity and that the resolution increases as the quality of
the conductivity model increases.

Our technique provides a new methodology for detecting and
mapping the presence of chargeable material without needing to
inject current into the ground or place electrodes to measure poten-
tials. By avoiding these requirements our technique may prove to
be a useful tool in geological settings where traditional IP difficult
is difficult to perform.
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