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S U M M A R Y

In this paper, we investigate options for incorporating structural orientation information into

under-determined inversions in a deterministic framework (i.e. minimization of an objective

function). The first approach involves a rotation of an orthogonal system of smoothness

operators, for which there are some important practical details in the implementation that avoid

asymmetric inversion results. The second approach relies on addition of linear constraints into

the optimization problem, which is solved using a logarithmic barrier method. A 2-D synthetic

example is provided involving a synclinal magnetic structure and we invert two sets of real

survey data in 3-D (one gravity data, the other magnetic data). Using those examples, we

demonstrate how different types of orientation information can be incorporated into inversions.

Incorporating orientation information can yield bodies that have expected aspect ratios and

axis orientations. Physical property increase or decrease in particular directions can also be

obtained.

Key words: Inverse theory; Gravity anomalies and Earth structure; Magnetic anomalies:

modelling and interpretation.

1 I N T RO D U C T I O N

To be reliable, earth models used for mineral exploration should

be consistent with all available geophysical and geological infor-

mation. Due to data uncertainty and other aspects inherent to the

under-determined geophysical inverse problem, there are an infinite

number of models that can fit the geophysical data to the desired

degree (i.e. the problem is non-unique). Further information is es-

sential for a unique solution. Incorporating prior geological knowl-

edge can reduce ambiguity and enhance inversion results, leading

to more reliable earth models.

An important form of available geological information is struc-

tural orientation. This can involve the orientation of a body (i.e. the

strike, dip, and tilt of its major axes), aspect ratios (i.e. the relative

lengths of a body’s major axes) and physical property trends (i.e. in-

crease, decrease, or constant in a particular direction). The ability to

specify such information becomes especially important for survey

methods with limited depth resolution. The lack of resolution can

lead to recovery of an object with an incorrect or distorted dip and

by including orientation information the results can be dramatically

improved at depth.

Many researchers have provided functionality for incorporating

different types of geological information into their particular inver-

sion frameworks. In this paper, we investigate how orientation in-

formation can be placed into our deterministic inversion framework

in which a computationally well-behaved function is minimized

subject to optional constraints. Before introducing our methods we

provide an overview of some techniques used by other authors for

comparison.

Bosch et al. (2001) and Guillen et al. (2008) work in a stochastic

inversion framework that directly recovers rock type (i.e. a lithologic

inversion) from a list of those assumed present. Prior information is

placed into the problem through probability density functions and

topology rules (relationships between rock units). The model space

(i.e. all possible models) is investigated (sampled) through a random

walk process, an approach proposed by Mosegaard & Tarantola

(2002). This strategy provides not only model estimates but also

statistical information regarding the model space. In contrast to the

functions in our deterministic framework, their probability density

functions and structural topology measures are not required to be

differentiable, and hence, there is more flexibility in the types of

geological information that can be incorporated. However, their

approach relies on random sampling methods that lead to much

heavier computational costs than deterministic approaches.

Chasseriau & Chouteau (2003) introduce regularization through

a parameter covariance matrix, the elements of which are estimated

statistically using variograms. The covariance matrix can be esti-

mated from physical property data (e.g. measurements taken at sur-

face or down drill-holes) or using some initial model(s) representing

the best guess at the subsurface distribution. The variogram calcula-

tions involve three specified ellipsoid axes in any spatial directions

and as such, their method allows construction of structures with

different shapes and orientations. Estimation of the covariance pa-

rameter matrix requires significant memory and computation time.
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Last & Kubik (1983) developed a compact (minimum volume)

gravity inversion. Guillen & Menichetti (1984) extended the method

to allow specification of a dip line along which the moment of

inertia is minimized. Barbosa et al. (1994) extended the method

further to allow specification of mass concentration information

along several arbitrary axes. The compactness measures used lead

to non-linear functions to be minimized (in a deterministic frame-

work) or sampled, (in a probabilistic framework) which increases

the computational burden above that of our methods.

Barbosa & Silva (2006) apply the method of Barbosa et al. (1994)

within an interactive environment in which the interpreter can adjust

the arbitrary axes as desired to aid geological hypothesis testing. As

such, their approach is similar to interactive forward modelling,

where the interpreter investigates the model space, but differs in

that the algorithm automatically fits the data.

Another novel approach is that of Wijns & Kowalczyk (2007)

who, similarly to the approach of Barbosa & Silva (2006), allow for

input from the interpreter to help ensure a geologically reasonable

solution. Several inversions are performed with random values for

several control parameters. The resulting suite of recovered models

are then visually inspected by the interpreter and ranked by how

geologically reasonable they are (based on the interpreter’s prior

knowledge). A genetic algorithm then takes that ranking into ac-

count and modifies the control parameter set to generate a new suite

of models. This procedure progressively converges towards a rea-

sonable set of solutions but requires a significant increase in the

amount of inversions performed.

Orientation information can be incorporated in a natural way into

all of the methods mentioned above. There is significant computa-

tional cost associated with most of those and we choose to work in

a relatively computationally efficient deterministic framework.

Orientation information may come in different forms. Surface

mapping can provide direct local measurements of structural ori-

entation. Additional drilling may indicate approximate orientation

information across larger volumes. If a geological (rock) model

can be created in the later stages of exploration then this can pro-

vide orientation information everywhere within the volume. Such

information can be placed into an inversion as so-called ‘soft’ or

‘hard’ constraints, the former being a request and the latter being a

guarantee. We begin by presenting soft and hard approaches for in-

corporating orientation information into our inversion framework.

Then we demonstrate the use of our methods on scenarios involving

different types of orientation information.

2 I N C O R P O R AT I N G O R I E N TAT I O N

I N F O R M AT I O N A S S O F T C O N S T R A I N T S

2.1 Our deterministic inversion framework

In our numerical inverse solutions, the earth region of interest is

divided into many cells within an orthogonal mesh with the phys-

ical property of interest being constant across each cell. There are

generally more cells than there are data and the resulting under-

determined inverse problem is formulated as an optimization that

involves minimization of a (total) objective function, 8, that com-

bines a data misfit measure, 8d , with a regularization term, 8m ,

also called the model objective function:

min
m

8(m) = 8d (m) + β8m(m), (1)

where m is the model vector that holds the physical property values

in each mesh cell of our discretized earth; β is a trade-off parameter

that controls the relative size of the 8d and 8m measures for the

resulting model and allows us to tune the level of data fit as desired.

The data misfit term controls how well we fit the data and the

regularization term allows us to control the amount and type of

structure in the recovered model.

The data misfit term measures the difference between the noisy

observed data, dobs, and the data produced (predicted) by a candidate

model, dpred = F[m]. We define the data misfit as a sum-of-squares

8d =

N
∑

i=1

(

d
pred
i − dobs

i

σi

)2

, (2)

where N is the number of data. Each data difference is normalized

by an uncertainty, σ i . These uncertainties are estimated errors in

the observed data. The larger the uncertainty in an observed datum,

the smaller its contribution to the misfit measure.

We use a model objective function that helps to recover smooth

physical property models. Li & Oldenburg (1996) developed a

model objective function that measured smoothness in three axial

directions, with tunable parameters allowing specification of differ-

ent elongations along those axes. Li & Oldenburg (2000) extended

this formulation to allow the three axes to be arbitrarily rotated in

3-D, thereby, allowing inclusion of important orientation informa-

tion (strike, dip, and tilt) into the inversion in a soft manner. Below

we provide a brief synopsis of the method of Li & Oldenburg (2000)

and we demonstrate some drawbacks of, and our improvements to,

their implementation.

2.2 Specifying preferred elongation directions

and aspect ratios

Li & Oldenburg (1996) designed a model objective function of the

following form:

φm(m) =

∫

V

ws

(

m − mref

)2
dv

+

∫

V

wx

{

∂

∂x

(

m − mref

)

}2

dv

+

∫

V

wy

{

∂

∂y

(

m − mref

)

}2

dv

+

∫

V

wz

{

∂

∂z

(

m − mref

)

}2

dv.
(3)

(we use φ and m for continuous space and 8 and m for the discrete

case). By altering the relative values of the smoothness weights

wx , wy , and wz in eq. (3) we can cause the recovered models to

become smoother (i.e. elongated) in some mesh-orthogonal direc-

tion(s) compared to the other(s), allowing specification of relative

aspect ratios.

Specifying a preferred elongation in any (generally non-axial)

direction is not possible using eq. (3) because the derivatives are

squared and directional information is, thereby, lost (Li & Olden-

burg 2000). In general, the geological features will not be aligned

with the mesh axes because the mesh is designed such that its hori-

zontal axes are compatible with the survey grid over which the data

were collected (with the remaining axis vertical).

2.3 A two-dimensional dipping model objective function

A further generalization of the model objective function by Li &

Oldenburg (2000) allows the coordinate axes to be rotated such
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Figure 1. The mesh-orthogonal and rotated coordinate systems for a 2-D

problem.

that preferred elongations can be specified in any directions. Below,

we summarize their formulation for the 2-D problem. The mesh-

orthogonal axes are denoted x and z with the x-axis horizontal

and z positive down. The rotated coordinates are x ′ and z′. The dip

angle between the two coordinate systems is θ , measured downward

from horizontal (i.e. from the x-axis towards the z-axis). This is

represented graphically in Fig. 1. The angle θ is used to align

the rotated coordinates with the principal axes of the subsurface

structures.

The new model objective function in 2-D, with smoothness di-

rections specified by the rotated axes, is

φm(m) =

∫

V

ws

(

m − mref

)2
dv

+

∫

V

wx ′

(

∂m

∂x ′

)2

dv

+

∫

V

wz′

(

∂m

∂z′

)2

dv, (4)

where we have simplified by removing the reference models in the

smoothness terms. The rotation matrix between the two coordinate

systems is

R =

(

cos θ sin θ

− sin θ cos θ

)

, (5)

which can be applied to the horizontal and vertical derivatives of

the model so that orthogonal derivatives in an arbitrary coordinate

system can be obtained

∂m

∂x ′
= cos θ

∂m

∂x
+ sin θ

∂m

∂z
(6a)

∂m

∂z′
= − sin θ

∂m

∂x
+ cos θ

∂m

∂z
. (6b)

Substitution of eq. (6) into eq. (4) provides the dipping model ob-

jective function

φm(m) =

∫

V

ws

(

m − mref

)2
dv

+

∫

V

wx ′

(

cos θ
∂m

∂x
+ sin θ

∂m

∂z

)2

dv

+

∫

V

wz′

(

− sin θ
∂m

∂x
+ cos θ

∂m

∂z

)2

dv,
(7)

which rearranges to

φm(m) =

∫

V

ws

(

m − mref

)2
dv

+

∫

V

(

wx ′ cos2 θ + wz′ sin2 θ
)

(

∂m

∂x

)2

dv

+

∫

V

(

wx ′ sin2 θ + wz′ cos2 θ
)

(

∂m

∂z

)2

dv

+

∫

V

2 (wx ′ − wz′ ) cos θ sin θ
∂m

∂x

∂m

∂z
dv,

(8)

and the discrete representation is

8m = (m − mref )
TWT

s Ws(m − mref )

+ mT
(

DT
x Bx Dx + DT

z BzDz

+ DT
x BxzDz + DT

z BxzDx

)

m, (9)

where Dx and Dz are finite difference operators; Bx , Bz , and Bxz are

diagonal matrices containing the trigonometric terms in eq. (8); and

the last term in eq. (8) is represented by two cross-terms in eq. (9)

to promote symmetry.

Here, we use ℓ2-norms (sum-of-squares) but note that general

measures, such as those of Farquharson (1998), could be employed

instead to encourage sharp interfaces. In that case, the objective

function must remain in the form of eq. (7) before discretization

because the form in eq. (8) is only valid for ℓ2-norms.

2.4 Extension to 3-D: specification of strike, dip, and tilt

In the 3-D coordinate system let +x be in the northing direction,

+y easting, and +z down. Three angles are required to define the

orientation of a 3-D planar object (i.e. a plate): ϕ is the strike angle

(the intersection of the plane with a horizontal surface) defined

positive east of north; θ is the dip defined positive downward from

horizontal; and ψ is the tilt. Li & Oldenburg (2000) used a tilt

instead of a plunge because the strike direction as defined previously

is constant under arbitrary tilt angle. The graphic representation of

the 3-D scenario as depicted in Li & Oldenburg (2000) is shown in

Fig. 2. The tilt is the rotation of the object within its dipping plane

around the y′ axis in Fig. 2.

The 3-D rotation matrix is created via three sequential rotations.

First, a rotation of ϕ is performed around the z axis. With ϕ > 0 this

moves x towards y creating new axes x ′ and y′ (refer to Fig. 2). The

first rotation matrix is

Rz =





cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0

0 0 1



 . (10)

This is followed by a rotation of θ − 90◦ around the newly formed

x ′ axis. With 0 < θ < 90◦ this moves z towards y′ creating new axis

z′. The second rotation matrix is

Rx =







1 0 0

0 cos(θ − 90) sin(θ − 90)

0 − sin(θ − 90) cos(θ − 90)







=







1 0 0

0 sin(θ) − cos(θ )

0 cos(θ ) sin(θ )






.

(11)

Figure 2. The mesh-orthogonal and rotated coordinate systems for a 3-D

problem (this figure was reproduced from Li & Oldenburg 2000).
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Finally, a rotation of ψ occurs around the y′ axis. With ψ > 0 this

moves x ′ towards z′. Note that there is an inconsistency in sign

between this last rotation and that shown in Fig. 2 provided by Li &

Oldenburg (2000). The third rotation matrix is

Ry =







cos(−ψ) 0 − sin(−ψ)

0 1 0

sin(−ψ) 0 cos(−ψ)







=







cos(ψ) 0 sin(ψ)

0 1 0

− sin(ψ) 0 cos(ψ)






.

(12)

The final 3-D rotation matrix is created by combining those above

R = RyRx Rz

=







rxx rxy rxz

ryx ryy ryz

rzx rzy rzz






,

with

rxx = cos ϕ cos ψ − sin ϕ cos θ sin ψ

rxy = sin ϕ cos ψ + cos ϕ cos θ sin ψ

rxz = sin θ sin ψ

ryx = − sin ϕ sin θ

ryy = cos ϕ sin θ

ryz = − cos θ

rzx = − cos ϕ sin ψ − sin ϕ cos θ cos ψ

rzy = − sin ϕ sin ψ + cos ϕ cos θ cos ψ

rzz = sin θ cos ψ.

(13)

Note that a typographical error in Li & Oldenburg (2000) provides

an inconsistency in sign between the rzy quantity in eq. (13) and

that given in Li & Oldenburg (2000).

2.5 The choice of difference operators

The matrix multiplications and additions in eq. (9) indicate that

the matrices Dx and Dz must be square and of the same size.

In the non-rotated (mesh-aligned) formulation, the traditional dis-

crete differential operators calculate differences across cell-faces,

with the x-direction gradients defined on vertical cell faces and the

z-direction gradients defined on horizontal cell faces. Consequently,

Dx and Dz are never square and are only the same size if the mesh

contains the same number of cells in all directions. Li & Oldenburg

(2000) defined the discrete x and z gradients at the centres of each

cell so that the difference operators are the same size.

For a 1-D problem with four model cells of unit dimensions (see

Fig. 3) the traditional Dx operator would be

Dx =







−1 1 0 0

0 −1 1 0

0 0 −1 1






, (14)

which has three rows that define three differences operating across

the three faces between the four cells. With differences defined at

cell centres we need four differences (one for each cell) instead of

three.

Figure 3. A 1-D mesh with four cells.

Figure 4. A 3×3 2-D mesh. The shaded cells indicate those involved in the

finite differences defined at the centre of cell 5 when forward differences are

employed.

2.5.1 Cell-centred forward and backward differences

One option is to use forward differences for all cells and backward

differences where necessary:

Dx =











−1 1 0 0

0 −1 1 0

0 0 −1 1

0 0 −1 1











. (15)

Forward differences are used for cells 1–3 in Fig. 3. A backward

difference must be used for cell 4, which results in a difference

operator with the lower two rows identical. This was the approach

taken by Li & Oldenburg (2000). One may expect, as is shown

below, that the use of backward differences instead may lead to

different results.

Now consider a 3×3 package of cells in a 2-D model, as shown

in Fig. 4. The x- and z-direction forward differences for the central

cell 5 involve cells 6 and 8, respectively. Writing eq. (7) for only

cell 5 yields

φm(m) = ws

(

m5 − mref ,5

)2
dv

+wx ′

(

cos θ (m6 − m5) + sin θ (m8 − m5)
)2

dv

+wz′

(

− sin θ (m6 − m5) + cos θ (m8 − m5)
)2

dv. (16)

With θ = +45◦ this reduces to

φm(m) = ws

(

m5 − mref ,5

)2
dv

+wx ′

(

−2m5 + m6 + m8

)2
dv

+wz′

(

m8 − m6

)2
dv. (17)

(a constant in the smoothness terms equal to cos 45◦ = sin 45◦ has

been ignored here for simplification purposes). To recover a model

elongated in the new x ′ direction (which dips at +45◦) we would

set wx ′ ≫ wz′ and effectively have

φm(m) = ws

(

m5 − mref ,5

)2
dv

+wx ′

(

−2m5 + m6 + m8

)2
dv. (18)

With θ = −45◦, we would instead obtain

φm(m) = ws

(

m5 − mref ,5

)2
dv

+wx ′

(

m6 − m8

)2
dv

+wz′

(

−2m5 + m6 + m8

)2
dv. (19)

and setting wx ′ ≫ wz′ effectively gives

φm(m) = ws

(

m5 − mref ,5

)2
dv

+wx ′

(

m6 − m8

)2
dv. (20)

Note that there is an asymmetry indicated here: in eq. (18) (for θ

= +45◦) the x ′ term considers values in three cells, whereas in

eq. (20) (for θ = −45◦) the x ′ term contains only two cell values.
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Figure 5. The true 2-D density model is in (a). The recovered 2-D density

model with no preferred elongation direction specified (wx ′ = wz′ = 1.0)

is in (b).

This asymmetry of the forward (or backward) differences leads to

asymmetric results.

To demonstrate the asymmetric effects we present a small 2-D

gravity example. The true model is shown in Fig. 5(a), for which

gravity data are modelled and a small amount of noise added be-

fore inverting. The smallness and smoothness weights are constant

across the model; ws is set to 0.001 to balance the smallness and

smoothness terms and the smoothness weights are either 1.0 or 0.001

(depending on the inversion). We set the reference model equal to

the true model and apply this reference model in the smallness term

only; we do so to make the asymmetric effects more apparent in

the figures presented. Fig. 5(b) shows the result of an inversion

specifying no preferred elongation direction. The asymmetry of

the forward differences is evident when comparing the result in

Figure 6. The recovered 2-D density models using a dipping-objective

function with forward differences used in the model objective function. The

specified dips are (a) +45◦ and (b) −45◦. The weights used were wx ′ = 1.0

and wz′ = 0.001 across the entire mesh.

Fig. 6(a), in which we specify θ = +45◦, to that in Fig. 6(b), in

which we specify θ = −45◦. Ideally those two results should be

symmetric across a vertical line bisecting the mesh (ignoring any

asymmetry introduced by the random noise added to the data).

2.5.2 Cell-centred long differences

There are three options for promoting symmetry. The first is to use

long differences across a cell. Consider again the 3×3 2-D package

of cells in Fig. 4. Using long differences across cell 5 would provide

the following contribution to the objective function in eq. (7)

φm(m) = ws

(

m5 − mref ,5

)2
dv

+wx ′

(

cos θ (m6 − m4) + sin θ (m8 − m2)
)2

dv

+wz′

(

− sin θ (m6 − m4) + cos θ (m8 − m2)
)2

dv. (21)

The result is that the even-numbered cells are all linked together

through the finite-difference interactions in the model objective

function, and similarly the odd-numbered cells are all linked to-

gether. However, no differences occur between even- and odd-

numbered cells. In other words, each cell is linked through the

difference operators to the cells diagonally adjacent to it, but there

is no link to the cells across its faces. The mesh is, thereby, sepa-

rated into two parts like a chessboard with a set of ‘black’ cells and

a set of ‘white’ cells as in Fig. 7(a): all the black cells are linked to

each other, and the same is true for the white cells, but none of the

black cells are linked to any of the white cells. Hence, smoothness

can be maintained in the diagonal directions but not in the axial

directions.

Mathematically, the chessboard pattern in Fig. 7(a) is an annihila-

tor for the discrete gradient operators formed using long differences.

That is, given some model, we can arbitrarily add some value to all

the ‘black’ model cells, and arbitrarily add some other value to all

the ‘white’ model cells, and the value of the smoothness terms in

the model objective function will not change (similarly, a constant

value is also an annihilator for the smoothness terms). One might

say that the chessboard pattern is invisible to the smoothness terms

in the model objective function when long differences are used.

Figure 7. A chessboard pattern is in (a). The recovered 2-D density model

using node-centred finite-difference operators in the model objective func-

tion with θ = 45◦ and wx ′ = wz′ is in (b).
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628 P. G. Lelièvre and D. W. Oldenburg

2.5.3 Node-centred integration

The second option for promoting symmetry is to move to a node-

centred integration scheme. We would then use 2×2 packages of

cells in 2-D. Consider the top left 2×2 package of cells in Fig. 4. A

nodal scheme would integrate the model objective function around

each node (rather than over each cell) such that the contribution to

the model objective function for the node within the top left 2×2

package of cells would be

φm(m) = (smallness terms)

+ wx ′

(

cos θ (m2 − m1 + m5 − m4)

+ sin θ (m4 − m1 + m5 − m2)
)2

dv

+wz′

(

− sin θ (m2 − m1 + m5 − m4)

+ cos θ (m4 − m1 + m5 − m2)
)2

dv.
(22)

With θ = 45◦ this reduces to

φm(m) = (smallness terms)

+wx ′

(

m5 − m1

)2
dv

+wz′

(

m4 − m2

)2
dv.

(23)

At first glance this may seem appropriate, with diagonal differences

as requested by setting θ = 45◦. However, note that the chessboard

annihilator again becomes an issue. In Fig. 7(b), we show the result

of inverting the example gravity data with a node-centred scheme,

specifying θ = 45◦ and with wx ′ = wz′ . The chessboard annihilator

pattern is clearly visible.

2.5.4 Four quadrant face-centred integration

Our solution for discretization avoids asymmetric results and the

chessboard annihilator. We follow the traditional approach of cal-

culating derivatives through finite differences across cell faces. In

2-D, the elemental areas in which the x- and z-directional differ-

ences are defined are on different overlapping grids, as indicated

in Fig. 8. Hence, we must split each cell into four quadrants as

indicated in Fig. 8 and integrate over each quadrant separately. In

quadrant 5d the x-direction difference is between the values in cells

6 and 5, and the z-direction difference is between the values in cells

8 and 5: this is much like using forward differences in quadrant 5d.

In quadrant 5a, we would essentially use backward differences for

both the x- and z-directions; in quadrants 5b and 5c, we would use a

mixture of forward and backward differences. Hence, this approach

is equivalent to using four sets of Dx and Dz operators, each set

using a different option for the differences (forward or backward)

as indicated in Table 1.

Let the ith operators be denoted Dx,i and Dz,i . The dis-

crete representation of our 2-D model objective function is

Figure 8. A 3×3 2-D mesh. The central cell 5 is split into 4 quadrants. The

shaded regions across cell faces indicate the regions across which x- and

z-direction forward finite differences are calculated for cell 5 (those regions

overlap in quadrant 5d).

Table 1. Difference options for the four sets

of finite difference operators for the 2-D dip-

ping model objective function.

set Dx Dz

1 Backward Backward

2 Forward Backward

3 Backward Forward

4 Forward Forward

Figure 9. The recovered 2-D density models using a dipping-objective

function with four sets of differences used in the model objective function.

The specified dips are (a) +45◦ and (b) −45◦. The weights used were

wx ′ = 1.0 and wz′ = 0.001 across the entire mesh.

then

8m = (m − mref )
TWT

s Ws(m − mref )

+ mT 1

4

4
∑

i=1

(

DT
x,i Bx Dx,i + DT

z,i BzDz,i

+ DT
x,i BxzDz,i + DT

z,i BxzDx,i

)

m

= (m − mref )
TWT

s Ws(m − mref ) + mTWTWm,
(24)

which yields a WTW operator that provides symmetric results (i.e.

the results do not depend on the sign of θ ) as is evident from

comparing the results in Fig. 9. Returning to the 2-D example of

Fig. 4, the central cell 5 is now linked to all the cells across its faces,

as indicated by the shaded cells in Fig. 10. The chessboard issue is

also ameliorated using this four set approach. In 3-D, we use eight

sets of operators (all possible permutations).

Figure 10. A 3×3 2-D mesh. The shaded cells indicate those involved in

the finite differences defined at the centre of cell 5 when four sets of finite

difference operators are employed.
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2.6 Specifying orientations at point locations

The smoothness weights wx ′ and wz′ can be homogeneous across the

entire mesh or can be set to different values in different regions. It

is, thereby, possible to specify orientations globally or locally. Li &

Oldenburg (2000) elected to specify orientations on a regional basis.

Instead, we extend the functionality such that different orientations

can be specified at each mesh cell centre. Of course, orientations

involve spatial gradients across finite distances so to say that we

allow specification of an orientation at a point in space is somewhat

misleading; in our formulation, each cell is linked to the cells ad-

jacent to it so the cell-based orientations are, thereby, spread out to

influence surrounding cells and the overlap inherent here acts as a

smoothing mechanism.

2.7 A practical issue: depth and distance weighting

Depth weighting, or a more general distance weighting, must be

incorporated into gravity and magnetic inversions due to the fall-

off of the responses with distance. In Li & Oldenburg (1996, 1998),

a depth weighting function Z(z) is applied to the model such that

the model objective function is of the form

φm(m) =

∫

V

ws

(

Z (z)(m − mref )
)2

dv

+

∫

V

wx

(

∂ Z (z)m

∂x

)2

dv

+

∫

V

wy

(

∂ Z (z)m

∂y

)2

dv

+

∫

V

wz

(

∂ Z (z)m

∂z

)2

dv.
(25)

Here, the depth weighting is applied inside the derivatives of the

smoothness terms. The discrete representation would be

8m = ‖WsZ(m − mref )‖
2 + · · · + ‖DzZm‖2. (26)

This approach had proven to work satisfactorily on a number of

synthetic examples and became the default choice in the algorithm

of Li & Oldenburg (1996).

There is an issue here, however. With the depth weighting applied

inside the derivatives, the z-smoothness term no longer provides an

exact z-direction gradient because the model is altered by the depth

weighting before the differential operator is applied. With depth

weighting, this is only an issue for the z-direction since in the other

smoothness terms the order of operations is irrelevant (i.e. Z is a

function of z only and can, therefore, be taken outside of the deriva-

tives with respect to x and y). With distance weighting, however,

all smoothness terms are affected. It would be more appropriate to

perform the depth or distance weighting outside the derivatives such

that the model objective function is of the form

φm(m) =

∫

V

ws Zs(z)2
(

m − mref

)2
dv

+

∫

V

wx Zx (z)2

(

∂m

∂x

)2

dv

+

∫

V

wy Z y(z)2

(

∂m

∂y

)2

dv

+

∫

V

wz Zz(z)2

(

∂m

∂z

)2

dv. (27)

where we have added subscripts to the depth weighting matrices to

indicate that they may be of different sizes. The discrete represen-

tation would be

8m = ‖ZsWs(m − mref )‖
2 + · · · + ‖ZzDzm‖2. (28)

The issue is especially important when using a rotated objective

function: if depth weighting is applied inside the z-derivative then

the derivative calculated is not the exact z-gradient quantity re-

quired.

3 I N C O R P O R AT I N G O R I E N TAT I O N

I N F O R M AT I O N A S H A R D

C O N S T R A I N T S

Specifying elongation information (i.e. axis directions and aspect

ratios) through the smoothness measures is considered a soft con-

straint: we request of the inversion that the specified elongations

be recovered but there is no guarantee. To obtain such a guarantee

we can include the orientation information as hard constraints by

bounding spatial model gradients and gradient ratios. We now con-

sider two scenarios. In the first, we investigate how to bound the

direction of the spatial gradient. In the second, we consider how to

specify a physical property increase or decrease along a particular

direction.

3.1 Bounding the spatial gradient direction

Let l and u specify lower and upper bounds on the dip angle θ : in

2-D we can then write the trigonometric inequalities

tan l ≤

(

tan θ =
∇zm

∇x m

)

≤ tan u. (29)

After discretization, eq. (29) gives

LDx m ≤ Dzm ≤ UDx m (30)

where L and U are diagonal matrices containing the bounding values

on their main diagonals. To simplify, we can split eq. (30) into two

inequalities

Dzm ≥ LDx m (31a)

UDx m ≥ Dzm (31b)

which rearrange to

(Dz − LDx )m ≥ 0 (32a)

(UDx − Dz)m ≥ 0 (32b)

and lead to linear constraints of the form

Am ≥ b. (33)

Eq. (33) is a system of equations, each of the form

a1m1 + a2m2 + · · · ≥ b. (34)

These constraints can be added to the inverse problem such that the

resulting optimization problem is

min
m

8d (m) + β8m(m) (35a)

s.t. Am ≥ b. (35b)

In 3-D we could write more trigonometric inequalities for the

three angles ϕ, θ , and ψ . However, the resulting inequalities no
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longer reduce to linear constraints. For example, with ψ = 0 and ϕ

6= 0 the 3-D equivalent to eq. (29) is

tan l ≤

(

tan θ =
∇zm

√

(∇x m)2 + (∇x m)2

)

≤ tan u, (36a)

and the squaring leads to non-linear inequalities. Such constraints

would increase the difficulty of the optimization problem and for

this reason we do not consider them further.

3.2 Specifying directions of increase or decrease

We now re-pose the problem by specifying that a directional spatial

derivative, in some specified location and direction Ev, lies between

some bounds. The directional derivative is the dot product of Ev with

the spatial model gradient. In 3-D, we obtain the inequality

l ≤
(

vx∇x + vy∇y + vz∇z

)

m ≤ u (37)

where the lower and upper bounds l and u can be used to specify

that the physical property increases, decreases or remains constant

along the direction Ev. The discrete form is

L ≤
(

Vx Dx + VyDy + VzDz

)

m ≤ U (38)

where matrices L, U, Vx , Vy , and Vz are diagonal. Again, eq. (38)

can be reduced to the simple form in eq. (33).

3.3 Practical application of linear constraints

In eqs (30) and (38), we again have a situation in which the difference

operators must be the same size. We can take the same approach

as in Section 2.5 and use four sets of operators, and therefore, four

sets of linear inequalities (or eight in 3-D). This issue is removed if

we simplify the problem to placing bounds on a particular gradient

component, for example

L ≤ Dzm ≤ U, (39)

or to specifying some other general relationship between model

parameters, for example

a1m1 + a2m2 + · · · ≥ b. (40)

Consider a situation in which we can say with some certainty

that one region of the subsurface is one rock type, another region

is a second rock type, but we are not sure which of the two rock

types falls between those two regions. Perhaps one rock type is an

intrusion into the second, or perhaps the two units are separated by

an offset fault at depth. Another possible scenario involves a cover

unit of unknown thickness above another unit. If relative physical

property values between rock types are known then model gradient

values can be bounded in the unknown region. With less confident

physical property information we may still be able to specify the

sign of the model gradients in the unknown region (i.e. specifying

a directional increase or decrease).

The linear constraints developed above allow specification of

relative spatial relationships between rock units. They also allow

incorporation of information regarding the direction and magnitude

of alteration gradients. Another use is to incorporate poorly cali-

brated physical property measurements taken on rock samples, in

which case the values could only be treated as relative (i.e. l ≤
m1/m2 ≤ u).

3.4 Linear inequality constrained inverse problems

Earlier we indicated how orientation information can be specified

in a hard manner through the addition of linear constraints to the

optimization problem. We now present a strategy for solving the

inverse problem with linear inequality constraints. To minimize the

problem in eq. (35), we follow the approach of Li & Oldenburg

(2003) and use a logarithmic barrier method. Although there are

modern alternatives to the logarithmic barrier method (refer to Gill

1995), it has proven to be a feasible solution method for large 3-D

geophysical inversion problems with simple bound constraints. The

extension to linear constraints is as follows. The logarithmic barrier

method adds a barrier term 8λ to the objective function and solves

a sequence of unconstrained inversions

min
m

8(m) − λ8λ(m) (41)

while carefully cooling the value of λ. The barrier term is

8λ =

M
∑

i=1

log
(

aT
i m − bi

)

(42)

= eT log (Am − b) (43)

where e is a vector of ones, aT
i is the ith row of A and the log

operation on a vector quantity is element-by-element.

We use a Newton-type descent method to solve the unconstrained

subproblem, and therefore, we require the first and second order

derivatives (the gradient and Hessian) of the logarithmic barrier

term. The gradient is

gλ =

(

d8λ

dm

)T

(44)

=

(

eT ∂ log (y)

∂y

dy

dm

)T
∣

∣

∣

∣

∣

y=Am−b

(45)

=
(

eTdiag
(

y−1
)

A
)T

(46)

= ATdiag
(

y−1
)

e (47)

= ATy−1, (48)

where the power operation on y = Am − b is element-by-element.

The Hessian is

Hλ =
dgλ

dm
(49)

= AT
∂

(

y−1
)

∂y

dy

dm
(50)

= −ATdiag
(

y−2
)

A. (51)

Once a step direction δm is chosen we will update the current

(kth) model with

m(k+1) = m(k) + αδm, (52)

where the step length α is determined by performing a line search.

We need to determine the maximum step length possible αmax with-

out violating the constraints. For each linear constraint, we have

aT
i m ≥ bi , (53)
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and we want to know the value αi , such that

aT
i (m + αiδm) = bi

aT
i m + αi a

T
i δm = bi

αi =
(

bi − aT
i m

)

/
(

aT
i δm

)

. (54)

If the result for αi is negative then the search direction will not

violate the ith constraint regardless of the positive step length. Hence,

we must calculate the αi value for every linear constraint and take

the smallest positive value of those as the limiting value αmax. We

then set

α = min (αmax, 1.0) . (55)

Practical aspects of our algorithm follow Li & Oldenburg (2003).

The step length is reduced slightly to ensure that we stay off the

barrier

m(k+1) = m(k) + γαδm, γ = 0.925. (56)

The barrier parameter is updated as

λ(k+1) = [1 − min (α, γ )] λ(k) (57)

and the barrier iterations are continued until the barrier term has a

negligible contribution to the total objective function.

The logarithmic barrier method is an interior-point method,

meaning that the iterates remain feasible (the model always sat-

isfies the constraints). This is required to avoid taking the logarithm

of a negative number. The major practical difficulty is then that the

initial model must be feasible and for complicated linear inequali-

ties the creation of a feasible initial model may be a difficult task. We

emphasize that these types of constrained optimization problems are

at the leading edge of optimization research and future advances in

that field may lead to more advantageous solution methods.

3.5 Applying hard orientation constraints to a

two-dimensional example

We now return to the small 2-D gravity example in Section 2.5

and add linear inequality constraints into the problem such that we

specify a dip of θ = 45◦ around the cell containing the anomalous

density in the true model. The most thorough way to proceed would

be to write eq. (32) for that cell. This would be done for each four

sets of permutations in Table 1 and would result in eight linear in-

equality constraints involving the cell of interest and its neighbours.

Although that is possible, we continue with a more simple demon-

stration and create two pairs of linear constraints, each pair linking

the cell of interest to one of its diagonally adjacent cells. If the cell

of interest corresponds to cell 5 in Fig. 4, then the linear constraints

we use here specify

−0.001 ≤ m5 − m1 ≤ 0.001 (58a)

−0.001 ≤ m5 − m9 ≤ 0.001 (58b)

(i.e. cells 1 and 9 should contain values close to that in cell 5). We

perform the same inversion that lead to the result in Fig. 9(a) but

apply the constraints in eq. (58). The recovered model, shown in

Fig. 11, honours the linear inequality constraints in eq. (58) and the

+45◦ dip is clearly evident.

Alternatively, without some knowledge of the expected value in

the cells being constrained, we may wish to specify that the relative

change between two cells be less than some value, say 5 per cent.

Figure 11. The recovered 2-D density model from a similar inversion to

that for Fig. 9(a) but with additional linear inequality constraints in eq. (58)

added into the inversion.

This would lead to constraints of the form

−0.05 ≤
m5 − m1

m1

≤ 0.05

−0.05m1 ≤ m5 − m1 ≤ 0.05m1, (59)

which for this example would yield similar results.

4 I N C O R P O R AT I N G D I F F E R E N T

F O R M S O F O R I E N TAT I O N

I N F O R M AT I O N

As mentioned in the introduction, orientation information may come

in different forms. We now demonstrate our methods for includ-

ing different forms of orientation information on a more compli-

cated 2-D magnetics example. The true model, shown in Fig. 12(a),

represents a scenario in which a layered sequence of rock units

has been folded into a syncline. The uniform discrete mesh is 47

cells × 23 cells. Magnetic data are calculated for the true model

and a small amount of noise is added before inverting. We set

the noise level below the amplitude of the signal from the low-

est portion of the lower susceptible layer. The inversions are thus

provided a chance to recover the lower susceptible layer but, as

will become evident, the non-uniqueness of the problem makes it

difficult to recover the layered scenario unless further geological

information (e.g. orientation information) is incorporated into the

problem.

Figure 12. The true 2-D susceptibility model is in (a). The recovered 2-D

susceptibility model with no preferred elongation direction specified (wx =
wz = 1.0) is in (b). The location of the layers in the true model are indicated

with a thick black line in (b).
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Figure 13. The recovered 2-D susceptibility models with the following

information incorporated into the inversions: (a) surface bounds; (b) surface

bounds and surface orientations.

For all inversions mentioned below, the reference model is set

to zero; smallness weights ws are set to zero to emphasize the

effects of incorporating orientation information. Fig. 12(b) shows

the inversion result with no preferred elongation direction specified

(wx = wz = 1.0). This inversion fails to adequately resolve the two

magnetic layers and places significant susceptible material where

there is none in the true model.

4.1 Incorporating surface orientation information

Surface mapping can provide direct local measurements of struc-

tural orientation. We now assume that surface mapping has provided

physical property measurements and orientations at the surface,

which we can incorporate into the inversion. We set the susceptibil-

ity bounds across the surface equal to the true values ±5.0 × 10−4,

which corresponds to 5 per cent of the true value of the susceptible

layers. The result with surface bounds included is in Fig. 13(a).

In a real scenario we would need to make a decision on how deep

to extend the orientation information. Here we take the approach

of pushing the orientations to depth but weighting those orienta-

tions higher near the surface: this is done by setting wx ′/wz′ = 100

(where x ′ is in the along-dip direction) at the surface and decreasing

that ratio to unity (i.e. no preferred elongation direction) at depths

greater than five cells (50 m). The result is shown in Fig. 13(b).

Incorporating the surface orientation information improves the re-

sult slightly. The upper susceptible layer is better recovered but the

model still does not clearly indicate the presence of two magnetic

layers at depth.

4.2 Incorporating interpreted volumetric orientation

information

After surface mapping, subsequent drilling may allow interpretation

of approximate orientations across larger volumes. Assuming that

a drill-hole has been placed vertically through the centre of the

model to a depth of 190 m, we may then make an interpretation

of a synclinal structure and develop a preliminary model of the

subsurface dip as shown in Fig. 14(a).

Without further investigation we would want to limit the weight-

ing on those interpreted orientations as there is less confidence in

them than for the measured orientations. We include the interpreted

Figure 14. Interpreted dips (angles in degrees) for the 2-D synclinal model

are in (a). The wx ′/wz′ ratios used across the volume for the result in

Fig. 15(b) are in (b).

dip information in Fig. 14(a) and set wx ′/wz′ = 100 near the sur-

face and drill-hole location but decrease the ratio to 10.0 away from

those locations to provide a lower weighting on the interpreted dips

where we have less confidence. The wx ′/wz′ ratios used across the

volume are shown in Fig. 14(b).

We also assume that the drill-core is logged with physical prop-

erty measurements allowing us to include bounds in the cells along

the drill-hole (we again set the bounds equal to the true suscepti-

bility values ±5.0 × 10−4). Furthermore, we note that in previous

inversions there has been a tendency to put higher susceptibility

close to the surface. Hence, we limit the maximum susceptibility to

be 0.0105 (the same as the largest upper bound for the surface and

drill-hole cells).

The result with only the surface and drill-hole bounds (i.e. no ori-

entation information) is in Fig. 15(a). The result with the interpreted

volumetric orientation information incorporated is in Fig. 15(b).

Incorporating this orientation information clearly improves the re-

sult and now indicates the presence of two distinct magnetic layers.

Figure 15. The recovered 2-D susceptibility models with the following in-

formation incorporated into the inversions: (a) surface and drill-hole bounds;

(b) surface and drill-hole bounds, and interpreted orientations at depth.
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Figure 16. Calculated and interpolated dips (angles in degrees) for the 2-D

synclinal rock model are in (a). Cells where dip cannot be calculated or

interpolated (i.e. below the bottom-most susceptible layer) have been set to

zero. The wx ′/wz′ ratios used across the volume for the result in Fig. 17(a)

are in (b).

4.3 Incorporating orientation information from a rock

model

Even without explicit physical property values attached, a geologi-

cal (rock) model still contains valuable orientation information. In

this final iteration, we assume that a geological model has been

created in the later stages of exploration. Assuming that this model

confidently locates the interfaces between the true rock units, we

can calculate orientations associated with the interfaces and as-

sign those orientations to the cells adjacent to the interfaces. We

can then interpolate orientations in cells between the interfaces.

The resulting orientations for our syncline example are shown in

Fig. 16(a).

We set wx ′/wz′ to a high value (=100) in cells adjacent to the

interfaces, to a lower value (=10.0) where dips have been interpo-

lated between interfaces, and to unity elsewhere. The wx ′/wz′ ratios

used across the volume are shown in Fig. 16(b). If the geological

knowledge for a particular scenario leads us to believe that there

are gradational physical property changes (i.e. not sharp interfaces)

between rock units then this can be specified by decreasing the

wx ′/wz′ ratio closer to unity.

The inversion result with orientation information from the rock

model incorporated is shown in Fig. 17(a). The layers are well re-

covered, as expected since the rock model contains the true interface

locations.

An alternative or additional strategy is to add linear constraints to

the problem. We now add additional linear constraints of the form

in eq. (59)

−0.1m j ≤ mi − m j ≤ 0.1m j , (60)

which specifies a relative difference of 10 per cent between the

values in cells i and j. Between the easting coordinates −25 m and

+25 m we specify that cells horizontally adjacent to each other

should obey eq. (60) (i.e. the information along the drill-hole trace

is extended out horizontally). To the west of −95 m and to the east of

+95 m we expect features that dip at +45◦ and −45◦, respectively,

and we therefore specify that the diagonally adjacent cells along

those dip directions should obey eq. (60). The result with these

Figure 17. The recovered 2-D susceptibility models with surface and drill-

hole bounds, and interface location information incorporated into the inver-

sions. The inversion for (a) had bound constraints only. Additional linear

constraints were incorporated for (b).

Figure 18. A top view of the mesh used to invert the San Nicolás gravity

data, a map of which is overlayed. The mesh has 53×33×35 cells (easting–

northing-depth). The locations of the cross-sections shown in the figures

that follow are indicated with green lines.

linear constraints is shown in Fig. 17(b), which provides further

improvement.

5 A P P L I C AT I O N T O T H E S A N N I C O L Á S

D E P O S I T

Phillips (2001) performed considerable work on geophysical data

from the San Nicolás massive sulphide copper–zinc deposit

(Zacatecas, Mexico). Here, we apply our methods to the gravity

data therein. The inversion mesh is shown in Fig. 18 and the data

are plotted in Figs 18 and 19(a). There is a detailed geological model

available, interpreted from an extensive drilling program, that we

can use to constrain the inversions. Our first step is to create a

density model from the geological model and the physical property

information available. That model is shown in Fig. 20; the high

density sulfide body is evident (red in those images). The deposit

is bounded to the east by a southwest-dipping fault. Mineralization

continues along the fault to depth to create a smaller keel structure

that is evident on the left of Figs 20(a) and (b).
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634 P. G. Lelièvre and D. W. Oldenburg

Figure 19. A map of the San Nicolás gravity data (mGal) is in (a); a regional

component has been removed from the original data used in Phillips (2001).

The predicted data for the model in Fig. 22 is in (b). The predicted data for

the model in Fig. 23 is in (c). All three data maps are plotted on the same

scale for comparison. The locations of the 422 data are indicated by black

dots.

Figure 20. The anomalous density model (g cc−1) created from the geolog-

ical model and physical property information for the San Nicolás deposit:

(a) shows a W–E cross-section at northing = −400 m; (b) shows a S–N

cross-section at easting = −1700 m. Interfaces in the geological model are

outlined in white for the W–E section and in black for the S–N section.

Figure 21. The wx ′ smoothness weights used in the inversion of the San

Nicolás data with orientation information incorporated: (a) shows a W–

E cross-section at northing = −400 m; (b) shows a S–N cross-section at

easting = −1700 m. Interfaces in the geological model are outlined in white

for the W–E section and in black for the S–N section. Weights of 1.0 are

shown in dark grey and weights of 0.01 are shown in light grey.

We next calculate the spatial model gradient in each cell for the

model in Fig. 20. High values of the gradient amplitude will occur

where the interfaces in the geological model exist (i.e. between rock

units). Where the gradient amplitude is above some threshold we

incorporate orientation information. The threshold value is deter-

mined by looking at isosurfaces and finding a threshold value for

which the isosurface defines a fully connected set of interfaces for

the main sulphide body and the keel. We use the orientation of the

gradient vectors to specify rotation angles such that we can align

one axis normal to, and two axes tangential to, the planar interfaces

in the geological model. If the x ′ axis is normal to an interface then

we set wx ′ = 0.01 and wy′ = wz′ = 1.0 to encourage the inversion

to place sharp jumps in density across (normal to) the interface and

maintain smoothness along (tangential to) the interface. Fig. 21 in-

dicates where the orientation information is applied (i.e. where the

wx ′ smoothness weights are set low).

Figs 22 and 23 show cross-sections through recovered mod-

els obtained through inversions without and with orientation in-

formation incorporated, respectively. The predicted data for those

models are shown in Fig. 19. The recovered model with orienta-

tion information incorporated better emphasizes the distinct high

density sulphide body by placing sharp density jumps across the

interfaces.

Due to corrections applied and regional components removed

during data processing steps, it is difficult to compare the density

values from the geological model with those in the inversion results

in an absolute sense. We can, however, compare the range of density

values in the models (i.e. maximum value minus minimum value).

Another issue is that forward modelling for the density model in

Fig. 20 (from the geological model) creates a response with a range

of approximately twice that of the observed data (see Fig. 24).

The density range for the geological model is 1.70 (g cc−1), but

considering the forward modelling results, a value of 0.85 is a
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Figure 22. The recovered density model (g cc−1) for the default, uncon-

strained inversion of the San Nicolás data: (a) shows a W–E cross-section at

northing = −400 m; (b) shows a S–N cross-section at easting = −1700 m.

Interfaces in the geological model are outlined in white for the W–E section

and in black for the S–N section.

Figure 23. The recovered density model (g cc−1) for the inversion of the

San Nicolás data with orientation information incorporated: (a) shows a

W–E cross-section at northing = −400 m; (b) shows a S–N cross-section at

easting = −1700 m. Interfaces in the geological model are outlined in white

for the W–E section and in black for the S–N section.

better value to compare with our results. The unconstrained result

has a density range of 0.51 compared to 0.84 for the constrained

result. Hence, the constrained result provides significantly improved

density estimates.

In the unconstrained result, there is no indication of the keel. In

the constrained result, there is a density structure recovered where

Figure 24. A map of the gravity data (mGal) forward modelled for the

model in Fig. 20. The locations of the 422 data are indicated by black dots.

Figure 25. This figure shows the same information as in Fig. 23 but the

colour scale has been altered to better emphasize the keel structure at depth.

the keel is expected to lie; this is most evident in Fig. 25(b). The

keel is difficult to model due to two factors. First, forward modelling

experiments in Phillips (2001) showed that the gravity response of

the keel is expected to lie only slightly above the estimated noise

level for the data. Hence, there is only minimal data support for

the keel and we cannot expect the inversions to recover this deep

structure well. Second, the discretization used results in mesh cells

that are larger than some smaller spatial dimensions of the keel. If

an inversion on this mesh happens to recover a structure indicative

of the keel, we would expect upscaling of the keel structure onto the

larger mesh cells to cause lower densities than expected (i.e. a small,

high density structure becomes a larger, lower density structure once

averaged onto a larger volume). This explains the lowered recovered

density for the keel in the constrained result.

6 A P P L I C AT I O N T O T H E H I S L O P

D E P O S I T

Mitchinson (2009) applied geophysical inversion to the Hislop gold

deposit (eastern Timmins, Ontario, Canada) to help target Archean

orogenic gold mineralization. Here we apply our methods to the

magnetic data therein. The inversion mesh is shown in Fig. 26 and

the data is plotted in Figs 26 and 27(a). The Hislop deposit is hosted

within a structurally complicated area, characterized by numerous

faults and tight folds. Some larger faults define the edges of a
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Figure 26. A top view of the mesh used to invert the Hislop magnetic data,

a map of which is overlayed. The mesh has 73 × 55 × 40 cells (easting–

northing-depth). Three regions are numbered and their boundaries indicated

with red lines. The outline of the volumes shown in Fig. 28 is indicated with

a green rectangle.

Table 2. Strike and dip values (degrees) as-

signed to each region indicated in Fig. 26.

Region Strike Dip

1 115 80

2 71 90

3 115 90

high susceptibility region consisting of Fe-rich mafic and ultramafic

volcanic rocks (VUO). Gold tends to occur in proximity to faults,

making them important structural aspects of the subsurface.

Knowledge of the area has lead geologists to expect elongated

tabular features that are steeply dipping and strike in different direc-

tions in different regions of the subsurface. Three regions are indi-

cated in Fig. 26 and Table 2 gives the strike and dip values assigned

to each region. This information is used to rotate the smoothness

directions across the inversion mesh. The smoothness weights are

set to wx ′ = wz′ = 1 and wy′ = 0.01 over the entire inversion

volume to encourage tabular features that extend in the strike (x ′)

and dip (z′) directions. The recovered models without and with this

information incorporated into the inversions are shown in Figs 28(a)

and (b), respectively. The predicted data for those models are shown

in Fig. 27(b). The most obvious difference between the two recov-

ered models is the change in shape of the highest susceptibility

feature at centre, which becomes laterally more narrow once orien-

tation information is incorporated. Another significant difference is

the orientation of a lower susceptibility near-surface feature to the

south of that body, which dips towards the south in Fig. 28(a) but is

nearly vertical in Fig. 28(b).

Two large faults of interest are indicated in Fig. 28, the depth

traces of each having been interpreted from the recovered suscepti-

bility models. Most gold deposits in the area are focused along the

regional crustal-scale Porcupine-Destor Fault (shown in white in

Fig. 28); knowledge of its location and orientation is important for

understanding the regional geology and tectonics, and for focusing

exploration programs. The local fault (which has no offical name;

shown in black in Fig. 28) is where the majority of the gold is local-

ized at the Hislop site; understanding its orientation and extent has

implications on subsequent drill-hole spotting and mine planning.

Figure 27. A map view of the Hislop magnetic data is shown in (a). The

predicted data for the model in Fig. 28(a) are in (b). The predicted data map

for the model in Fig. 28(b) is visibly indistinguishable from that in (b) so we

do not show it. Both data maps are plotted on the same scale for comparison.

The locations of the 1725 data are indicated by black dots.

The two interpretations for the depth trace of the local fault show

different dip, especially closer to the surface. This indicates that

more geological information needs to be gathered (e.g. via drilling)

to validate one interpretation or the other. One could also carry

out more inversions with different local orientations and weights

to assess what orientations of the local fault are reasonable from

a data perspective. In contrast, the interpreted depth traces of the

Porcupine-Destor Fault are similar, suggesting that this consistent

depth trace is required by the data and providing confidence in

the interpretation. The magnetic inversions have been helpful in

mapping the Porcupine-Destor Fault location to depths below the

limits of drilling.

7 C O N C LU S I O N

Incorporating orientation information into geophysical inversions

can significantly improve the results, especially for gravity and

magnetic problems, which have poor resolution at depth, and we

have provided a comprehensive look at the available methods for

including this information. We have improved upon the work of Li &

Oldenburg (2000) for including structural orientation information in

geophysical inversions by developing a finite difference scheme for

the numerical derivatives which ameliorates problems of asymmetry

evident in the original implementation. We have also developed an

approach that relies on additional linear constraints placed in the

optimization problem.
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Fault is white and the local fault (no official name) black.
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