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Abstract 
 
 
The ultimate goal of this research was to invert geophysical magnetic data to recover three 
dimensional distributions of subsurface magnetic susceptibility of any possible magnitude and 
geometric complexity. Magnetic data collected over bodies of high susceptibility contain 
significant self-demagnetization effects. Self-demagnetization causes magnetizations to rotate 
away from the external inducing field and causes the amplitude of the magnetic response to 
scale nonlinearly with susceptibility. These effects are highly dependent on the shape of the 
object and they complicate interpretation. Examples where self-demagnetization is important 
include surveys for detection and discrimination of unexploded military ordnance (UXO) and 
mineral exploration surveys over highly mineralized banded iron formations and nickel 
deposits. 
 
Current modelling methods that account for self-demagnetization effects are limited to simple 
bodies, such as ellipsoids, where the geometry of the body is represented by a few parameters. 
Standard forward modelling methods for general susceptibility distributions (i.e. methods that 
can deal with complicated bodies) neglect the effects of self-demagnetization and can produce 
inaccurate results and subsequent deterioration in performance of the inverse solution. 
 
Here, a full solution to Maxwell’s equations for source-free magnetostatics was developed using 
a finite volume discretization. The Earth region of interest is discretized into many prismatic 
cells, each with constant susceptibility, which allows for models of arbitrary geometric 
complexity. The finite volume forward modelling method is valid for any linear medium and is 
appropriate for modelling the response of highly magnetic objects. The forward modelling 
method was refined and the code was tested against analytical solutions for simple bodies and 
against a slower, more memory intensive full solution for general distributions formulated in the 
integral equation domain. All tests showed the forward modelling method to be sound within 
expected error tolerances. 
 
The finite volume modelling method formed the foundation for a subsequent inversion 
algorithm. In the discretization, many more model cells are used than there are data. As such, 
the inverse problem is underdetermined. The inverse problem was formulated as an 
unconstrained optimization problem in which an objective function is minimized. The objective 
function was designed so that the data are fit to an acceptable degree and the recovered model 
has desired spatial characteristics. The resulting optimization problem was nonlinear and 
required an iterative solution, for which a Gauss-Newton approach was used. Testing for the 
inversion code included inversion of synthetic data for simple bodies and inversion of survey 
data collected over a planted UXO target. All tests showed positive results. 
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1  

Chapter 1 

The state of the art and the problem at hand 
 
 
1.1 Introduction 
 
1.1.1 Magnetic induction and important magnetic quantities 
 
In the absence of an external magnetic field, individual magnetic domains within ferromagnetic 
material, with which this thesis is concerned, will be oriented in random directions and the net 
magnetic field will be zero. When placed in an external magnetic field, H0, such as the Earth’s 
geomagnetic field, the magnetic domains will rotate toward the direction of the external field. 
Their orientation is no longer random and the material is said to be magnetized. The result is an 
induced net secondary field, Hs. This secondary field is distinct from, but caused by, the 
(primary) inducing field. The situation is pictured in Figure 1.1 below. 
 
 

 
Figure 1.1 
A schematic representation of magnetic induction of a 
magnetic body showing the primary inducing field, H0, the 
induced magnetization, M, and the associated secondary 
field, Hs. 



 

2  

Magnetization is a vector quantity defined as magnetic dipole moment per unit volume. The 
magnetization, M, at any location within a magnetic body is related to the magnetic field 
intensity (or “field”), H, at that location through a quantity called the magnetic susceptibility, χ: 
 
 M = χH          (1-1) 
 
The more susceptible a material, the more highly magnetized it becomes when placed in an 
inducing field. Below, Figure 1.2 shows typical susceptibility values for some common minerals 
and rock types. 
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Figure 1.2 
Typical magnetic susceptibilities for some common minerals and rock types. 

 
 
Another important magnetic quantity is the magnetic flux density (or “flux”), B, which is related 
to the field, H, through the magnetic permeability, µ: 
 
 B = µH          (1-2) 
 
Permeability is related to susceptibility as 
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µ = µ0(1 + χ)          (1-3) 
 
where µ0 is the permeability of free space, which has the value 
 
 µ0 = 4π×10-7          (1-4) 
 
in the SI system (in which this thesis will be working). H and M have units of amperes per 
meter (A/m) and χ is dimensionless. B has units of tesla (T), or webers per square meter (1T = 
1Wb/m2), where a weber is defined as one volt-second. µ has units of henries per meter (H/m), 
where a henry is defined as one weber per ampere. 
 
1.1.2 Magnetic survey methods 
 
Geophysical magnetic survey measurements include the geomagnetic field superimposed on any 
anomalous secondary fields arising from subsurface susceptible material (refer to Figure 1.1). A 
single component or several components of the vector field quantities can be measured. Most 
commonly, the measurements are strength (magnitude) measurements of the total flux, Btotal: 
 

||Btotal||  =  ||B0 + Bs||         (1-5) 
 
Here, B0 is the geomagnetic flux, corresponding to the Earth’s main field, and Bs is the 
anomalous flux produced by susceptible material in the subsurface. 
 
The objective of a geophysical magnetic survey is to render a feasible subsurface distribution of 
susceptibility that may have given rise to the anomalous fields in the survey data. This is an 
inverse problem. Inversion of magnetic survey data can provide constraints upon the subsurface 
susceptibility distribution. This information can then be interpreted to aid understanding of the 
subsurface geology. 
 
Geologically, magnetic susceptibility is related to the proportion of magnetic minerals in the 
rocks. These include iron oxides such as magnetite and hematite, iron sulphides such as 
pyrrhotite, and metallic iron, nickel and cobalt. These minerals often accompany economic 
mineral deposits and as such, geophysical magnetic survey data can be used in mineral 
exploration to provide information about potential drilling targets. The percentage of magnetic 
minerals in rocks can also be used to determine rock type (refer to Figure 1.2) and, as such, 
magnetic surveys aid geological mapping. 
 
Magnetic surveys are also used to aid in the detection and discrimination of buried unexploded 
military ordnance (UXO). In such an application, the subsurface magnetic susceptibility 
involves highly susceptible steel bodies (i.e. the UXO and metallic scrap such as exploded 
shrapnel) along with much lower susceptibilities within the surrounding soil. 
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1.1.3 The effect of high susceptibility on induced magnetization 
 
Recall that the magnetization of a body is related to the field at its location as 
 
 M = χH = χ(H0 + Hs)         (1-6) 
 
The total field at its location is a superposition of the geomagnetic field, H0, plus the anomalous 
field, Hs, from any magnetized material in the surrounding area. If this secondary field is 
negligible then the body’s magnetization is parallel to the inducing field with magnitude linearly 
dependent on the susceptibility of the body and the strength of the inducing field. However, if 
the secondary field is significant then the magnetization is affected in both magnitude and 
direction. In other words, separate parcels of magnetic material affect each other through their 
induced secondary fields and, hence, the magnetization at any location is dependent on any 
magnetized material outside that location. This effect increases with increasing susceptibility. 
The simple example shown in Figure 1.3 below will be used to demonstrate this concept. 
 
 

 
Figure 1.3 
Individual magnetic fields for two magnetic dipoles with 
equal moments. 

 
 
Consider two small magnetic bodies lying on a horizontal plane (across and into this page), such 
as those in Figure 1.3. The bodies have identical susceptibilities and are placed in an external 
inducing field that is oriented vertically upward (toward the top of the page). The bodies will 
obtain identical magnetizations parallel to the inducing field. Assume the magnetized bodies are 
small enough that they can be thought of as dipoles. The associated induced secondary fields are 
then as depicted in Figure 1.3. 
 
The secondary field of body 1 at the location of body 2 will be vertically downward and vice 
versa. Hence, the secondary fields oppose the primary inducing field at the dipole locations and 
the effect of the bodies on one another is to reduce their magnetizations by a certain amount. 
The amount of reduction will depend on the relative magnitudes of the primary and secondary 
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fields at the dipole locations, the latter depending on the susceptibility and the distance of 
separation. 
 
Such effects will be referred to as “high susceptibility effects” or “demagnetization effects”. In 
Figure 1.3, the dipoles are represented as small susceptible spheres but could also be thought of 
as small horizontal loops of current. In this case, the concept of demagnetization is identical to 
the electrical concept of mutual inductance. The term “self-demagnetization” will sometimes be 
used when dealing with a single, macroscopic, isolated magnetic body. In this case, the 
individual microscopic magnetic elements in the body affect each other as discussed above. 
 
In Figure 1.3, the effect of demagnetization is one of reduction in the magnetization of the 
bodies involved. However, this is not always the case. For example, consider a situation where 
the two bodies in Figure 1.3 are magnetized in a horizontal direction (across the page). The 
effect would then be additive. With a greater number of susceptible bodies in more complicated 
geometries, the demagnetization effects become more difficult to predict. In the final analyses, 
the magnetic response of highly susceptible bodies is strongly dependent on their shape and 
orientation with respect to the inducing field. 
 
1.1.4 Motivation for research 
 
Magnetic data collected over bodies of high susceptibility contain significant demagnetization 
effects, which can greatly complicate interpretation. Examples where demagnetization is 
important include surveys for detection and discrimination of UXO and mineral exploration 
surveys over highly mineralized banded iron formations and nickel deposits. Current modelling 
methods that account for self-demagnetization effects are limited to simple bodies, such as 
ellipsoids, where the geometry of the body is represented by a few parameters. Standard forward 
modelling methods for general susceptibility distributions (i.e. methods that can deal with 
complicated bodies) neglect the effects of demagnetization and can produce inaccurate results 
and subsequent deterioration in performance of the inverse solution. This is discussed within the 
remainder of this chapter. The purpose of this research is to improve upon current magnetic 
modelling techniques to develop forward modelling and inversion methods that can include the 
effects of demagnetization for distributions of arbitrary geometric complexity. 
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1.2 A standard approximate solution  
 
Before introducing more elaborate mathematical relationships, the reader is referred to 
Appendix A, which contains a discussion of some nomenclature conventions used in the 
mathematics of this thesis. All units used in this thesis are SI and the coordinate system used is 
Cartesian. 
 
1.2.1 Discretization 
 
Written in integral equation form, the field at a point P due to a distribution of magnetic material 
within a region R is given by 
 

∫ ∇∇⋅+=

+=

R
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dv
QPr
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π
     (1-7) 

 
where H0 is the primary inducing field (e.g. the Earth’s geomagnetic field); 
 Hs is the anomalous secondary field; 
 M is the induced magnetization of the magnetic material in R; 
 P is the position of the observer; 
 Q represents the positions of the volume elements dv within R; and 
 r(P,Q) is the distance from P to Q. 
 
To evaluate (1-7) numerically for a complicated susceptibility distribution, the three-
dimensional Earth region of interest, R, is divided into a large number, nc, of discrete 
rectangular prismatic cells Ru within an orthogonal grid system. Each cell Ru has constant 
susceptibility χu and magnetization Mu. This discretization into many cells, as pictured in Figure 
1.4, allows complicated bodies to be constructed. 
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Figure 1.4 
An orthogonal grid of nc discrete cells, each with 
constant susceptibility, χi. 

 
 
1.2.2 The standard linear approximation 
 
In specifying Mu, it is standard to make use of the Born linear approximation that assumes 
secondary fields, Hs, are small compared to the primary field, H0. The assumptions of magnetic 
isotropy, magnetic linearity and absence of remanent magnetization are made and the induced 
magnetization of each cell can be written 
 
 ( ) u

u
u
s

u
u

u
u

u
00 HHHHM χχχ ≅+==         (1-8) 

 
Under this approximation, the magnetization at any location within the Earth model is parallel to 
H0 and is linearly proportional to the susceptibility at that location. With (1-8), the secondary 
field from (1-7) becomes 
 

∫ ∇∇⋅=
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QPr
QQP
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1)()(

4
1)( 0HH χ
π

      (1-9) 

 
Generally, one only works with the secondary flux in a single arbitrary direction l, which is 
given by 
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 Bl = l⋅Bs = l⋅(µHs)         (1-10) 
 
It is assumed that the primary field is constant over the volume of interest. In addition, the data 
are usually acquired in free space (i.e. air) so that 
 
 Bl = µ0l⋅Hs          (1-11) 
 
With the discretization, the linear forward problem can then be written in matrix-vector form as 
 

d = Gm          (1-12) 
 
d is a data vector of N unknown secondary flux values measured at specific locations ri: e.g. 
d = [Bx(r1), By(r1), Bz(r1), Bx(r2), …]T. m is a model vector of the specified susceptibilities in all 
nc model cells. G is the linear forward modeling operator, which contains tensor components 
determined from the physics and geometry of the problem: the constant element Gij describes 
the contribution to the ith datum of a unit susceptibility in the jth cell. The forward problem 
simply involves multiplication of the N by nc full matrix G with the model vector m. (1-12) 
leads to a simple, linear inverse problem valid only when the approximation (1-8) holds (i.e. 
when  Hs << H0). 
 
1.2.3 The linear inverse problem 
 
In the magnetic inverse problem, one attempts to determine an appropriate distribution of 
subsurface susceptibility that could have given rise to magnetic survey data. The principal 
difficulty in finding a solution to the magnetic inverse problem is its inherent non-uniqueness. 
There are infinitely many models that could adequately reproduce the data. This stems from 
non-uniqueness inherent in the magnetic problem and the fact that the data are finite in number 
and inaccurate. 
 
The model region of interest is discretized as discussed in Subsection 1.2.1. The number of 
model cells, nc, is set much larger than the number of data, N. The number of unknowns χi is 
then larger than the number of equations in (1-12) and the inverse problem is underdetermined. 
Therefore, the system (1-12) has infinitely many solutions for the model, m. 
 
Although there are infinitely many models that can adequately reproduce the data, many of 
these will be unreasonable for a specific application. To reduce the number of acceptable 
models, the requirements for a feasible model are considered. The first is that the data predicted 
by the recovered model should fit the observed survey data to within a degree justified by their 
estimated uncertainties. The second requirement is that the recovered model should be 
compatible with any a priori knowledge of the subsurface geology or physical property 
distribution. This often requires that the model be smooth in all spatial directions. 
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As discussed in Li and Oldenburg (1996), the inverse problem can be formulated as an 
unconstrained optimization in which an objective function is minimized to obtain a feasible 
susceptibility distribution model. The objective function is designed so that the data are fit to an 
acceptable degree and the recovered model has desired spatial characteristics. It has the form 
 
 Φ (m) = Φd(m) + βΦm(m)        (1-13) 
 
where Φ is the total objective function to be minimized; 
 m is the model of subsurface susceptibility; 

Φd is the data misfit, which measures how well the model fits our data; 
Φm is the model objective function, which measures how closely the model conforms to 
the desired spatial characteristics; and 

 β is a tradeoff parameter that controls the relative size of the data misfit and model 
objective function. 

 
The inverse problem is solved by finding the model that minimizes (1-13). Because the survey 
data contains some level of uncertainty, a decision must be made on how well the data predicted 
by the recovered model should fit the observed survey data. Solving the inverse problem 
requires optimization of (1-13) for several values of β until a model is found that yields the 
desired level of misfit. 
 
In addition, a third requirement can be incorporated into the inversion. This thesis deals with 
ferromagnetic material and this requires the susceptibility to be positive. A third term can be 
added to (1-13) to enforce positivity of the model parameters. This introduces nonlinearity into 
the problem and is further discussed in Li and Oldenburg (in press). 
 
 
1.3 Insufficiency of the linear approach for high susceptibility 
 
The linear approach works well for many circumstances. However, a major insufficiency of the 
linear approach is its inability to account for demagnetization effects. This can have serious 
consequences when dealing with media of high susceptibility. Recall from Section 1.2 that in 
specifying the magnetization of each cell, the linear forward problem made use of the Born 
approximation. This led to a simple, linear problem valid only for low susceptibilities where the 
resulting secondary fields are small compared to the primary inducing field, H0. Under this 
assumption, susceptible material in one model cell does not significantly affect, nor is 
significantly affected by, the material in any other cell. Hence, demagnetization effects must be 
negligible for the linear method to be valid. 
 
The linear method assumes that the magnetization is parallel to the inducing field throughout the 
entire model region. In contrast, when high susceptibilities are involved, the magnetization 
direction can rotate away from the inducing field and become highly dependent on the shape of 
the body. 
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The inability of the linear method to recover acceptable models from data containing 
demagnetization effects can be demonstrated using synthetic data. The linear code used is the 
UBC-GIF code MAG3D, for which the major theoretical framework is provided in Li and 
Oldenburg (1996). Here, synthetic data were computed 20m above a horizontal, prolate, 
spheroidal magnetic body with a minor semi-axis of 3m and eccentricity 5. The spheroid long 
axis was declined 45°E. The situation is pictured below in Figure 1.5. The data were computed 
analytically as discussed in Kaufman (1992). The susceptibility values considered were 10-5 and 
102 and the inducing field was chosen to maximize the high susceptibility effects. The inducing 
field had a strength of 5×104nT, a declination of 45°E and was inclined 70° to the horizontal. 
 
 

 
Figure 1.5 
A vertical cross-section through a horizontal 
magnetic spheroid in an inclined inducing field. 

 
 
Self-demagnetization effects are negligible for the low susceptibility and the spheroid 
magnetizes in the direction of the inclined inducing field, regardless of the orientation of the 
spheroid with respect to the inducing field. This creates data similar to that of a dipole with a 
moment inclined 70°. Below, compare the data for the spheroid in Figure 1.6 with that for a 
dipole in Figure 1.7 with moment inclined 70°. 
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Figure 1.6 
Total flux magnitude data map and profile for a horizontal, prolate, 
magnetic spheroid of susceptibility χ =10-5 in an inducing field inclined 70° 
to the horizontal. 
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Figure 1.7 
Total flux magnitude data map and profile for a magnetic dipole in an 
inducing field inclined 70° to the horizontal. 

 
 
Below, Figures 1.8 and 1.9 show vertical and horizontal cross-sections through a typical 
recovered model from MAG3D inversion of the low susceptibility data set in Figure 1.6. The 
grid used had cells 3.125m square in the central region with 5m dimensions in the outer padding 
cells. MAG3D was able to adequately fit the data and successfully recover an appropriate model 
regardless of the orientation of the spheroid with respect to the inducing field. 
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Figure 1.8 
A vertical cross-section through a typical recovered model from MAG3D inversion of 
the data set in Figure 1.6. The cross-section runs SW to NE (i.e. along the spheroid long 
axis) and looks toward the NW. 

 
 

 
Figure 1.9 
A horizontal cross-section through a typical recovered 
model from MAG3D inversion of the data set in Figure 1.6. 

 
 
I now move on to the high susceptibility example in which self-demagnetization effects are 
expected. A discussion of self-demagnetization effects in spheroidal bodies is given in Clark and 
Emerson (1999). The two basic characteristics of these effects are that magnetizations rotate 
away from the external inducing field directions and the amplitude of the magnetic response 
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scales nonlinearly with susceptibility. These effects can be observed through comparison of 
Figure 1.6 and Figure 1.10 below. 
 
 

 
Figure 1.10 
Total flux magnitude data map and profile for a horizontal, prolate, 
magnetic spheroid of susceptibility χ =102 in an inducing field inclined 70° 
to the horizontal. 

  
 
Self-demagnetization effects cause the amplitude of the magnetic response from the spheroid to 
change nonlinearly with susceptibility. If the linear formulation was valid then the differences in 
amplitude between the χ =10-5 and χ =102 data should have been exactly 107. Figures 1.6 and 
1.10 show that the difference is less than 106. This decrease of the response amplitude below the 
linear expectation is due to a reduction in the magnetization strength. It is for this reason that 
such high susceptibility effects are referred to as self-demagnetization effects. 
 
Self-demagnetization also causes the magnetization direction to rotate toward the spheroid long 
axis. This manifests itself in Figure 1.10 as a shift of the data peak away from a central location, 
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toward the southwest. The rotation of the magnetization direction results in data similar to that 
of a dipole with a moment inclined 20° (this inclination value was arrived at though theoretical 
calculations). Compare the data for such a dipole, in Figure 1.11 below, with the data for the 
spheroid in Figure 1.10. Figure 1.10 shows a similar signature to that shown in Figure 1.10 
where the true inclination of the applied field is 70°. 
 
 

 
Figure 1.11 
Total flux magnitude data map and profile for a magnetic dipole in an 
inducing field inclined 20° to the horizontal. 

 
 
Below, Figures 1.12 and 1.13 show vertical and horizontal cross-sections through a typical 
recovered model from MAG3D inversion of the high susceptibility data set in Figure 1.10. 
MAG3D was not able to successfully recover an appropriate model when the long axis of the 
spheroid was oriented away from the inducing field. In order to fit the data adequately, MAG3D 
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was forced to place the central body in an incorrect position and place most of the magnetic 
material in the outer padding cells. 
 
 

 
Figure 1.12 
A vertical cross-section through a typical recovered model from MAG3D inversion of 
the data set in Figure 1.10. The cross-section runs SW to NE (i.e. along the spheroid long 
axis) and looks toward the NW. 

 
 

 
Figure 1.13 
A horizontal cross-section through a typical recovered 
model from MAG3D inversion of the data set in Figure 
1.10. 

 



 

17  

1.4 A mineral exploration example 
 
The need for a full solution to the magnetic inverse problem can be further demonstrated using a 
real-world example from mineral exploration. The Osborne mine, owned by Placer Dome, is a 
gold-copper mine located in Queensland, Australia. The mineralized zones are well known and 
contain highly magnetic ironstone formations with complicated structure. In Figure 1.14 below, 
ground-based magnetic survey data are plotted on the local grid coordinates, relative to which 
the geomagnetic field was oriented with inclination -53.3° and declination 47.5°E and had 
strength 52000nT. For comparison, total flux magnitude data for a dipole with moment oriented 
in such a direction is shown in Figure 1.15. 
 
 

 
Figure 1.14 
A plan view of ground-based, total flux magnitude survey data for the Osborne 
mine region. (Figure supplied by Placer Dome.) 
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Figure 1.15 
Total flux magnitude data for a dipole with 
inclination -53.3° and declination 47.5°E. 

 
 
Comparison of the anomalies in Figure 1.14 with the dipole field in Figure 1.15 suggests 
complicated structure and rotation of the induced magnetization away from the direction of the 
Earth’s field. Furthermore, the amplitude of the anomalous response is roughly 16000nT, or 
about 30 percent of the inducing flux value. With such high secondary fields relative to the 
primary, self-demagnetization is expected to be important. Below, Figures 1.16 and 1.17 show 
interpolated geological cross-sections for the region. These further indicate complicated 
subsurface distributions of highly magnetic material. 
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Figure 1.16 
Interpolated geological cross-section 11670E (local grid coordinate) through the Osborne 
mine region. (Figure supplied by Placer Dome.) 
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Figure 1.17 
Interpolated geological cross-section 21700N (local grid coordinate) through the Osborne 
mine region. (Figure supplied by Placer Dome.) 

 
 
Aeromagnetic survey data gathered over the mine were inverted using the linear code MAG3D. 
These inversions were only able to adequately fit the data if large negative susceptibilities were 
allowed. Furthermore, the recovered models containing these non-physical negative 
susceptibilities did not contain features consistent with the knowledge of the subsurface. These 
problems stem from the fact that the subsurface rocks are highly magnetic and the mineralized 
zones have complicated structure. Thus, the survey data contain significant demagnetization 
effects and use of MAG3D to invert this data is inappropriate. A method of inversion that 
successfully accounts for demagnetization effects is required. 
 
 
1.5 Research goals and thesis outline 
 
Both synthetic and real-world examples have indicated the need for full forward modelling and 
inversion (accounting for demagnetization effects) of magnetic data from regions of high 
magnetic susceptibility. The ability to forward model such data would provide a tool to help 
better understand how magnetic fields behave in highly magnetic media. The ultimate goal of 
this research was to invert geophysical magnetic data to recover three-dimensional distributions 
of subsurface magnetic susceptibility of any magnitude and geometric complexity. 
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The thesis is structured in the following manner. The full Maxwell’s equations for the 
magnetostatic problem of interest are discussed in Chapter 2 and are solved using a finite 
volume discretization in Chapter 3. Chapter 4 discusses incorporation of boundary conditions 
and a secondary formulation is given in Chapter 5. Solution of the resulting matrix-vector 
systems and associated accuracy concerns are discussed in Chapter 6. Chapter 7 presents an 
alternate solution in the integral equation domain, which is used alongside less versatile solution 
techniques in Chapter 8 to thoroughly test the refined forward modelling code. 
 
The forward modelling code forms the foundation for a subsequent inversion algorithm, 
discussed in Chapters 9 and 10. Chapter 11 presents testing of the inversion algorithm. The 
merits of, drawbacks of, and possible amendments to the modelling and inversion methods are 
discussed in Chapter 12. 
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Chapter 2 

The magnetostatic governing equations and boundary conditions 
 
 
2.1 Introduction 
 
The need for full forward modelling of magnetic data was addressed in Chapter 1. In order to 
accomplish this, Maxwell’s equations for magnetostatics were solved using finite volume and 
integral equation techniques. To begin, this chapter discusses the physical equations and 
boundary conditions that govern the magnetic problem of interest. The exact method of 
discretization is then discussed in Chapter 3. 
 
 
2.2 Maxwell’s Equations for source-free magnetostatics 
 
Maxwell’s equations for stationary media can be written 
 

∇⋅B = 0          (2-1a) 

ft
JDH =

∂
∂

−×∇          (2-1b) 

∇⋅D = ρf          (2-1c) 

0=
∂
∂

+×∇
t
BE          (2-1d) 

 
where B is magnetic flux density (or “flux”), with units of tesla (T = V-s/m2); 

H is magnetic field intensity (or “field”), with units of amperes per meter (A/m); 
D is electric flux density, or electric displacement, with units of coulombs per 
square meter (C/m2); 
E is electric field intensity, with units of volts per meter (V/m); 
ρf is free charge density, with units of coulombs per cubic meter (C/m3); 
Jf is free charge current density, with units of amperes per square meter (A/m2); 
and t is time, with units of seconds (s). 

 
The situation of interest is one in which there exist no free charges or free charge currents (i.e. 
no source), no electric field or electric displacement and no time variance. Maxwell’s equations 
then reduce to the two source-free magnetostatic governing equations 
 

∇⋅B = 0          (2-2a) 
∇×H = 0          (2-2b) 
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(2-2a) and (2-2b) are valid in any magnetic medium, even if the medium is anisotropic and 
nonlinear (Lorrain, Corson and Lorrain, 1988). Here, any material is assumed to be linear, 
isotropic and contain no remanent magnetization. The constitutive relation 
 

B = µH          (2-3) 
 
is then introduced. Recall from Section 1.1 that the magnetic permeability, µ, has units of 
henries per meter (H/m), where a henry is defined as one volt-second per ampere (1H = 1V-
s/A). Permeability can be expressed in terms of the relative permeability, µr, or the magnetic 
susceptibility, χ: 
 
 µ = µ0µr = µ0(1+χ)         (2-4) 
 
(2-2b) allows H to be expressed as the gradient of a scalar potential φ : 
 

H = ∇φ          (2-5) 
 
(2-2a), (2-3) and (2-5) combine to give the common elliptic div-grad PDE 
 

∇⋅µ∇φ = 0          (2-6) 
 
The formulation above is similar to the DC resistivity problem, discussed in Chen (2002) and 
McGillivray (1992), in which 
 

J = σE           (2-7a) 
E = −∇V          (2-7b) 
∇⋅σ∇V = ∇⋅Js          (2-7c) 

 
Here, J is current density, σ is conductivity, V is voltage (a scalar potential) and Js is a source. 
The only major difference between the two problems is the source term on the right of (2-7c). 
 
An analogy can also be made to the hydrological problem of fluid flow through porous media in 
which 
 

q = −K∇h          (2-8a) 
∇⋅K∇h = ∇⋅qs          (2-8b) 

 
Here, q is specific discharge, K is hydraulic conductivity, h is hydraulic head and qs is a source. 
Again, the only major difference between this problem and the source-free magnetostatic 
problem is the source term on the right of (2-8b). 
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2.3 Physical continuity principles 
 
Maxwell’s equations for the problem of interest are to be solved numerically on some discrete 
grid in which the physical properties are constant within each grid cell but vary between cells. 
There are well-defined continuity principles for magnetic fields and fluxes incident on interfaces 
at which magnetic physical properties change. These continuity principles will lead to 
conditions on H and B at the interfaces between the discrete grid cells (referred to as “interface 
conditions”) and on the grid boundary (referred to as “boundary conditions”). 
 
2.3.1 The interface conditions 
 
In the following discussion, refer to Figure 2.1 below. 
 
 

 
Figure 2.1 
H and B at an interface where µ is 
discontinuous. 

 
 
The first interface condition is continuity of the tangential component of the field: 
 

nHnH ˆˆ 21 ×=×          (2-9) 
 
where n̂  is a unit normal to the boundary. Because of the constitutive relation (2-3), the 
tangential component of the flux is then discontinuous for µ1≠µ2: 
 

nBnB ˆˆ 2
1

21
1

1 ×=× −− µµ         (2-10) 
 
The second interface condition is continuity of the normal component of the flux: 
 

nBnB ˆˆ 21 ⋅=⋅           (2-11) 
 
Using (2-3), the normal component of the field is then discontinuous for µ1≠µ2: 
 

nHnH ˆˆ 2211 ⋅=⋅ µµ          (2-12) 
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2.3.2 The boundary conditions 
 
The continuity conditions above must hold not only between grid cells but also on the grid 
boundary. As will be discussed in Chapter 3, the geomagnetic inducing field, H0, is incorporated 
into the problem through these boundary conditions. One is faced with prescribing the fields on 
the grid boundary. The model grid can be designed so that any susceptible material is far from 
the grid boundary such that the associated secondary field is negligible on the boundary. The 
approximation can then be made that H=H0 on the boundary. However, if the secondary 
response is too large to neglect at the boundary then some approximate modelling routine is 
required. The approximate secondary response can then be added to the primary field and 
prescribed on the boundary, thereby increasing the accuracy of the modelling. Approximation 
methods for the secondary response are discussed further in Chapter 4. 
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Chapter 3 

Discretization of the magnetostatic governing equations 
 
 
3.1 Introduction 
 
Having discussed the governing equations and boundary conditions for the source-free 
magnetostatic problem in Chapter 2, a numerical solution to these equations is now required. 
The solution is achieved through a finite volume discretization and the resulting forward 
modeling method forms the foundation for a subsequent inversion algorithm. 
 
 
3.2 The system 
 
The problem of interest is governed by two of Maxwell’s equations and one continuity equation: 
 

∇⋅B = 0          (3-1a) 
B = µ∇φ          (3-1b) 

nBnB ˆˆ 21 ⋅=⋅           (3-1c) 
 
The advantage of keeping B in the system instead of discretizing (2-6) directly is that methods 
can be designed to allow for higher order interpolation functions for B, the quantity of interest. 
 
The model region of interest will contain discrete cells, each with a constant permeability, 
contained within some regular grid system. The continuity equation, (3-1c), must hold between 
discrete cells. This has consequence on the positioning of the discrete variables (discussed 
shortly in Section 3.3). (3-1c) must also hold on the boundary of the model grid. Here, assume 
that the normal flux is known just outside the grid boundary, and is equal to a constant, B0. The 
flux just inside the boundary is then prescribed as B0. Extension of the methods to deal with any 
prescribed boundary flux, constant or not, will be obvious. 
 
 
3.3 The discrete grid and discrete variables 
 
3.3.1 Nomenclature for the discrete variables 
 
The cell permeabilities and discrete potentials will be denoted by µn and φn respectively, where 
the subscript n indicates the cell number. The flux quantities within the discrete grid will be 
expressed in one of two ways: 
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1)   Bv
i,j,k Here, the subscripts i, j and k are used to indicate the position (xi, yj, zk) of the 

quantity. The optional superscript v is used as a reminder of the component of 
flux for that (scalar) quantity (i.e. v∈{x, y, z}). 

 
2)  Bv

l  Here, the mandatory superscript v specifies the component of flux as above. The 
subscript l numbers that component of flux within the grid using the numbering 
scheme to be discussed shortly. 

 
3.3.2 The discrete grid 
 
The orthogonal grid system pictured in Figure 3.1 was used for the discretization. 
 
  

 
Figure 3.1 
A single discrete grid cell for 
the flux formulation. 

 
 
The coordinate system used has +x in a northerly direction, +y easterly, and +z vertically 
downward. The permeability, µ, is constant within each cell (i.e. piecewise constant) and the 
potentials, φn, are placed at cell centres. The flux values, vBl , are placed at the centres of the cell 
face interfaces: there is one x

iB  or y
jB  or z

kB  component per face depending on the face 
location. This grid system leads to a cell-centred discretization scheme. 
 
The location of the fluxes results from (3-1c) requiring continuity of normal B across cell 
interfaces. The positioning of the potential results from (3-1b): use of central differences to 
calculate ∇φ  results in both ∇φ  and B being defined at the same points in space, as required by 
(3-1b). 
 
3.3.3 Grid coordinates and lengths 
 
The three-dimensional volume to be modelled is divided into  nc = nx⋅ny⋅nz  rectangular cells, 
which are denoted as being in nx rows, ny columns and nz layers. In the following discussion it 
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is useful to consider a one-dimensional problem and refer to the discretized line in Figure 3.2 
below. 
 
 

 
Figure 3.2 
Position and numbering of discrete variables in the flux 
formulation for a one-dimensional discretization. 

 
 
The node coordinates in each direction are 
 
 xi : x1, x2, … , xnx+1         (3-2a) 
 yj : y1, y2, … , yny+1         (3-2b) 
 zk : z1, z2, … , znz+1         (3-2c) 
 
The cell lengths in each direction are denoted 
 
 hxi : hx1, hx2, … , hxnx  ; hxi = xi+1 − xi     (3-3a) 
 hyj : hy1, hy2, … , hyny  ; hyj = yj+1 − yj     (3-3b) 
 hzk : hz1, hz2, … , hznz  ; hzk = zk+1 − zk     (3-3c) 
 
The cell centre coordinates are denoted 
 
 xi+1/2 : x1+1/2, x2+1/2, … , xnx+1/2        (3-4a) 
 yj+1/2 : y1+1/2, y2+1/2, … , yny+1/2        (3-4b) 
 zk+1/2 : z1+1/2, z2+1/2, … , znz+1/2        (3-4c) 
 
The distances from one cell centre to the next are denoted 
 

∆xi : ∆x1, ∆x2, … , ∆xnx-1 ; ∆xi = xi+3/2 − xi+1/2 = (hxi + hxi+1)/2   (3-5a) 
∆yj : ∆y1, ∆y2, … , ∆yny-1 ; ∆yj = yj+3/2 − yj+1/2 = (hyj + hyj+1)/2   (3-5b) 
∆zk : ∆z1, ∆z2, … , ∆znz-1 ; ∆zk = zk+3/2 − zk+1/2 = (hzk + hzk+1)/2   (3-5c) 
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3.3.4 Variable numbering 
 
The cells are numbered so that the row number changes fastest, then the column number and the 
layer number changes the slowest (refer to the Figure 3.3 below). 
 
 

 
Figure 3.3 
Grid cell numbering for 
nx=3, ny=4, nz=2. 

 
 
The potential φn is defined at the centre of the nth cell. Similarly, µn is the constant value of 
magnetic permeability within the nth cell. There are nc unknown φn quantities, one at each cell 
centre. 
 
The flux values, vBl , are assigned to the cell faces. There are  (nx+1)⋅ny⋅nz  x

iB  values on the x-
faces (i.e. faces with normal vectors in the +x or –x direction),  nx⋅(ny+1)⋅nz  y

jB  values on the 

y-faces and nx⋅ny⋅(nz+1)  z
kB  values on the z-faces. This gives 

 
(nx+1)⋅ny⋅nz + nx⋅(ny+1)⋅nz + nx⋅ny⋅(nz+1) 

 
flux values in total. However, the flux on the boundary is prescribed as the geomagnetic flux 
density B0, or as some other suitable value (to be discussed in Chapter 4), and the total number 
of unknown vBl  values is equal to the number of internal face interfaces, 
 

nf = (nx−1)⋅ny⋅nz + nx⋅(ny−1)⋅nz + nx⋅ny⋅(nz−1) 
 =     nfx      +    nfy      +   nfz 
 
The nf unknown flux values are divided into three sets: 
 

x
nznynx

xxx
i BBBB ⋅⋅− )1(21 ,,,: K         (3-6a) 

y
nznynx

yyy
j BBBB ⋅−⋅ )1(21 ,,,: K         (3-6b) 

z
nznynx

zzz
k BBBB )1(21 ,,,: −⋅⋅K         (3-6c) 

 



 

 30

xB1  is on the +x face of the 1st cell (i.e. the face with outward normal in the +x-direction). xB2  is 
on the +x face of the 2nd cell and x

nxB 1−  is on the +x face of the (nx-1)th cell (refer to Figure 3.2). 
Because Bx on the +x face of the nxth cell is prescribed, x

nxB  is on the +x face of the (nx+1)th cell 
(i.e. the first cell in the second column of the first layer) and so on. The last x

iB  is x
nznynxB ⋅⋅− )1( , 

which is on the +x face of the (nc-1)th cell. y
jB  and z

kB  are numbered similarly: yB1  is on the +y 

face of the 1st cell, yB2  is on the +y face of the 2nd cell, and so on. 
 
 
3.4 Finite volume discretization 
 
A finite volume discretization (FVD) of a partial differential equation (PDE) is a discretization 
of the integral weak form of the PDE (i.e. the integral of the PDE over volume). This weak form 
implies weaker continuity conditions on the variables involved. The numerical solution of the 
div-grad PDE (2-6) requires that the potential is twice differentiable. Use of the weak form 
relaxes the level of differentiability required of the discrete variables. 
 
The equations to discretize are 
 

∫V ∇⋅B dv = 0          (3-7a) 
∫V B dv = ∫V µ∇φ dv or ∫V µ-1B dv = ∫V ∇φ dv     (3-7b) 

 
The volume of integration depends on the discretization and the quantity being integrated. Note 
that (3-7b) indicates two options for integrating the gradient equation (3-1a). Section 3.6 
discusses which option is used and why. 
 
 
3.5 Discretizing the divergence equation 
 
To approximate (3-7a) it is integrated over each cell and Gauss’s Theorem is applied to obtain 
 

∫V ∇⋅B dv = ∫S B⋅n ds = 0        (3-8) 
 
B is assumed constant over each cell face. An equivalent assumption is that the flux defined at 
any face centre equals the average flux over that face. With flux defined as positive-out, the 
integration over a cell with centre (xi+1/2, yj+1/2, zk+1/2) is 
 

∫S B⋅n ds ≅  (Bx
i+1,j+1/2,k+1/2 − Bx

i,j+1/2,k+1/2)hyjhzk  
 + (By

i+1/2,j+1,k+1/2 − By
i+1/2,j,k+1/2)hzkhxi      (3-9) 

 + (Bz
i+1/2,j+1/2,k+1 − Bz

i+1/2,j+1/2,k)hxihyj    = 0 
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where the subscripted indices on the fluxes indicate their x, y and z locations. Dividing by the 
volume of the cell yields 
 

 (Bx
i+1,j+1/2,k+1/2 − Bx

i,j+1/2,k+1/2)/hxi  
+ (By

i+1/2,j+1,k+1/2 − By
i+1/2,j,k+1/2)/hyj        (3-10) 

+ (Bz
i+1/2,j+1/2,k+1 − Bz

i+1/2,j+1/2,k)/hzk  = 0 
 
There are nc such equations, one for each grid cell, with  i =1…nx,  j =1…ny, and 
k =1…nz. 
 
The boundary conditions are used to close the discretization. That is, the fluxes on the cell faces 
that constitute the grid boundary are prescribed quantities. In order to simplify the following 
discussion, consider the case where the prescribed boundary fluxes are equal to a constant 
inducing flux  B0 = (B0x, B0y, B0z). A cell on a grid boundary face would produce an equation of 
the form 
 

 (Bx
i+1,j+1/2,k+1/2 − B0x)/hxi  

+ (By
i+1/2,j+1,k+1/2 − By

i+1/2,j,k+1/2)/hyj                 (3-11a) 
+ (Bz

i+1/2,j+1/2,k+1 − Bz
i+1/2,j+1/2,k)/hzk  =  0 

 
or 

  Bx
i+1,j+1/2,k+1/2/hxi  

+ (By
i+1/2,j+1,k+1/2 − By

i+1/2,j,k+1/2)/hyj                 (3-11b) 
+ (Bz

i+1/2,j+1/2,k+1 − Bz
i+1/2,j+1/2,k)/hzk  =  B0x/hxi  

 
Similarly, a cell on a grid boundary edge would produce an equation of the form 
 

  Bx
i+1,j+1/2,k+1/2/hxi  

+  By
i+1/2,j+1,k+1/2/hyj          (3-12) 

+ (Bz
i+1/2,j+1/2,k+1 − Bz

i+1/2,j+1/2,k)/hzk  =  B0x/hxi + B0y/hyj 
 
and a cell on a grid boundary corner would produce an equation of the form 
 

  Bx
i+1,j+1/2,k+1/2/hxi  

+  By
i+1/2,j+1,k+1/2/hyj          (3-13) 

+  Bz
i+1/2,j+1/2,k+1/hzk  =  B0x/hxi + B0y/hyj + B0z/hzk  

 
When all such equations (i.e. one for each grid cell) are combined, the matrix-vector equation 
obtained is 
 

DB = q          (3-14) 
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Here, the divergence matrix D is nc by nf; the vector B is length nf and holds the unknown flux 
values; and the vector q is length nc and contains  nc−(nx−2)⋅(ny−2)⋅(nz−2)  non-zero elements 
arising from the prescribed boundary fluxes. This number corresponds to the number of cells 
adjacent to the grid boundary. Note I also use ‘q’ to denote specific discharge in the analogous 
hydrological problem of fluid flow through porous media. I will ensure that the usage of this 
variable is clear in any future occurrences. 
 
The matrix-vector equation (3-14) can be split into parts: 
 

qBD =                   (3-15a) 

[ ] q
B
B
B

DDD

z

y

x

zyx =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
                  (3-15b) 

qBDBDBD zzyyxx =++                  (3-15c) 
 
The matrices Dx, Dy and Dz are as follows. 
 

⎥
⎥
⎥
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⎦
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2
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~

nx

nxnx

hx
hxhx

hxhx
hx

OOxD                (3-16b) 

 
The 0th and -1st diagonals of xD~  are filled. xD~  is nx by (nx−1) and is diagonally tiled ny⋅nz 
times to create Dx. Hence, Dx is nc by nfx. 
 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

y

y

y

y

D

D
D

D

~

~
~

O
                 (3-17a) 
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⎥
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⎥
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nyny
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hy
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hyhy
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hy

O

O
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OM

yD              (3-17b) 

 
The 0th and -nxth diagonals of yD~  are filled. yD~  is nx⋅ny by nx⋅(ny−1) and is diagonally tiled nz 
times to create Dy. Hence, Dy is nc by nfy. 
 

⎥
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⎥
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⎦
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0

nz

nz

nznz

hz

hz
hzhz

hzhz

hz
hz

O

OO

OM

zD      (3-18) 

 
The 0th and -nx⋅nyth diagonals of Dz are filled. Dz is nc by nfz. 
 
 
3.6 Discretizing the gradient equation 
 
3.6.1 Arithmetic and harmonic averaging 
 
As suggested in (3-7b), the gradient equation can be integrated as either 
 

B = µ∇φ                   (3-19a) 
or 

µ-1B = ∇φ                   (3-19b) 
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Integration of (3-19a) will yield arithmetic averaging for µ on the cell faces whereas integration 
of (3-19b) will yield harmonic averaging. To demonstrate this, consider the one-dimensional 
problem in Figure 3.2. The lengths of integration lie between cell centres. The weak form of the 
equations in (3-19) for the integration centred at xi become 
 

 ∫∫∫
+

−

+

−
∂
∂

+
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µ
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The integral in (3-20a) has been split up to handle the discontinuity at xi. B is assumed constant 
over each integration volume and the gradient of the potential is approximated as 
∂φ /∂x ≅ ∆φ /∆x. (3-20a) and (3-20b) then become 
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In (3-21a), the assumption is made that 
 

1

11

2
)(

−

−−

∆
+

=
i

iiii
i x

hxhxx φφφ         (3-22) 

 
(i.e. a linear interpolation between the two discrete potentials). Dividing by the integration 
length then yields 
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These equations can be expressed as 
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where µeff is the effective (i.e. arithmetically or harmonically averaged) permeability across the 
interface: 
 

 ( )
1

11

2 −

−−

∆
+

=
i

iiiiarith
eff x

hxhx µµµ                  (3-25a) 
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hxhxx
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A choice must be made on which form of the gradient equation, (3-19a) or (3-19b), is to be 
used. Consider the one-dimensional problem of calculating an appropriate midpoint average 
permeability µm at an interface between two cells with permeability values µ1 and µ2 (refer to 
Figure 3.4 below). 
 
 

 
Figure 3.4 
Homogenization of µ across an 
interface for a one-dimensional 
problem. −

mB  and +
mB  are the fluxes 

immediately to the left and right of 
the interface respectively. 

 
 
The relative values of the averages for this situation, with µ1=1 and µ2=1…5, are shown below 
in Figure 3.5. 
 
 



 

 36

 
Figure 3.5 
A comparison of arithmetic and harmonic averaging. 

 
 
When the permeability does not change significantly across a cell interface, the two effective 
permeability values in (3-25) are not significantly different. However, the values are 
significantly different at larger permeability discontinuities. 
 
3.6.2 Arguments for harmonic averaging 
 
There are numerous arguments that suggest that an effective permeability is the harmonic 
average rather than the arithmetic. These arguments come from several different areas. I first 
consider some physical arguments. As discussed in Section 2.2, the situation in Figure 3.4 is 
identical to electrical current flow or fluid flow through a 1D medium. Here, consider the 
electrical analogy of current flow across two resistors in series with a voltage difference ∆V 
across them. The situation is depicted in Figure 3.6 below. 
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Figure 3.6 
Two analogous electrical circuits. 
V = voltage 
σ = conductance 
R = resistance 
A = surface area 
I = current 
J = current density 

 
 
The upper circuit in Figure 3.6 is the schematic equivalent of the lower circuit. First, consider 
the upper circuit. When two resistors are combined in series the effective resistance is given by 
a sum of the two resistance values (Cheng, 1992): 
 
 Reff = R1 + R2          (3-26) 
 
For the lower circuit, the substitution  R = L/(Aσ)  is made in (3-26) to give 
 

 ⎟⎟
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        (3-27) 

 
Rearranging yields 
 

 
1

2

2
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Compare (3-28) to (3-25b). The effective conductivity is a harmonic average of the two 
conductivity values. 
 
Ohm’s law for the upper circuit gives 
 
 ∆V = |I| Reff          (3-29) 
 
For the lower circuit, the substitutions  I = JA  and  Reff = L/(Aσeff)  are made in (3-29) and 
rearranging yields an expression for the current density: 
 

 
L
V

eff
∆

= σJ           (3-30) 

 
Compare (3-30) to (3-24). 
 
Now, consider one-dimensional fluid flow through two porous media with hydraulic 
conductivities K1 and K2. This is pictured below in Figure 3.7. 
 
 

 
Figure 3.7 
Fluid flow through two 
connected porous media. 

 
 
The two media are connected in series and there is a head difference ∆h within the distance ∆z 
across the combination. The flow rate per unit area given by Darcy’s law is 
 

x
hKq

∆
∆

== q          (3-31) 

 



 

 39

(Todd, 1959). Compare (3-31) to (3-24). Intuitively, for K1<<K2 (i.e. medium 1 very resistive to 
fluid flow compared to medium 2) the flow through the two media should be controlled mainly 
by the conductivity of the more resistive medium. One therefore expects an averaged 
conductivity to be more sensitive to (i.e. closer to) the lower value K1. A harmonic average of 
K1 and K2 provides this result (refer to Figure 3.5). 
 
Another argument for harmonic averaging is purely mathematical. One is faced with the task of 
defining the integral of some quantity across an interface over which the quantity may not be 
smoothly varying (e.g. may contain a jump discontinuity). The interface conditions discussed in 
Section 2.3 state that the normal component of the flux, B, is always continuous across an 
interface, but not the normal component of the field, 
H = µ-1B = ∇φ . Therefore, because integration is a smoothing operation, some level of accuracy 
may be gained by integrating the less smooth functions µ-1B and ∇φ  of (3-19b). 
 
One can also argue for harmonic averaging through consideration of (3-1c), which requires 
continuity of normal B. For the problem of Figure 3.4, 
 

Bm
-⋅n = Bm

+⋅n          (3-32) 
 
or using (3-1b), 
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Following de Marsily (1986), Taylor expansion allows one to write 
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Assuming that length scales are small enough that the O(hx2) terms can be ignored, subtracting 
(3-34) from (3-35) gives 
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Substituting (3-33) into (3-36) yields 
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and rearranging yields 
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Bm can now be expressed as 
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is a harmonically averaged permeability value. Thus, in order to satisfy the continuity condition 
(3-1c) to first order, the effective permeability value at a cell interface must be a harmonically 
averaged value. Compare (3-40) to (3-28) noting that  2∆x = hx1 + hx2  and  L = L1 + L2 . 
 
3.6.3 Discretization of  µ-1B = ∇φ 
 
From the arguments for harmonic averaging above, (3-19b) should be integrated rather than (3-
19a). To do so, the equation is first split into three parts, each corresponding to a different 
Cartesian direction: 
  
 µ-1Bx = ∇xφ                   (3-41a) 
 µ-1By = ∇yφ                   (3-41b) 
 µ-1Bz = ∇zφ                   (3-41c) 
 
Consider (3-41a). The volume of integration for this equation runs across a cell face with 
normal in the x-direction so that an unknown flux x

iB  is at the centre of the integration volume. 
The integral is 
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Assuming that Bx is constant over the integration volume leads to 
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Assuming  ∂φ /∂x ≅ ∆φ /∆x  and dividing by the integration volume yields 
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or 
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is a harmonic average of µ across the face. Note that (3-45) is exactly the same result one would 
obtain from (3-41a) if one used µ =µm from (3-40) and used a central finite difference 
approximation for ∂φ /∂x. 
 
The matrix-vector equation obtained is 
 

Mx
-1Bx = Gxφ  or Bx = MxGxφ      (3-47) 

 
where the diagonal matrix Mx has non-zero diagonal elements ηi,j+1/2,k+1/2 given by (3-46). When 
(3-41b) and (3-41c) are discretized in a similar fashion, the following system is obtained: 
 
 Bx = MxGxφ                   (3-48a) 
 By = MyGyφ                   (3-48b) 
 Bz = MzGzφ                   (3-48c) 
 
which can be combined to give 
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   B    =   M        G    φ                (3-49b) 
 
Note I also use ‘M’ to denote magnetization and ‘G’ to denote the forward modelling operator 
for the approximate linear problem (refer to Section 1.2). I will ensure that the usage of these 
variables is clear in any future occurrences. 
 
In (3-49b), the gradient matrix G is nf by nc and the matrix M is nf by nf. The vector B is length 
nf and holds the unknown flux values. The vector φ is length nc and holds the unknown 
potentials. The matrices M, Gx, Gy and Gz are as follows: 
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where v

lη  is defined at the same position as vBl . 
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The 0th and 1st diagonals of xG~  are filled. xG~  is (nx−1) by nx and is diagonally tiled ny⋅nz times 
to create Gx. Hence, Gx is nfx by nc. 
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The 0th and nxth diagonals of yG~  are filled. yG~  is nx⋅(ny−1) by nx⋅ny and is diagonally tiled nz 
times to create Gy. Hence, Gy is nfy by nc. 
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The 0th and nx⋅nyth diagonals of Gz are filled. Gz is nfz by nc. 
 
 
3.7 An alternate formulation 
 
There are multiple possibilities for placement and use of the discrete magnetic quantities. It is 
not clear from the outset of the problem what the relative merits of the different options are. For 
example, instead of choosing to work with fluxes in a cell-centred scheme as above (the “flux 
formulation”) one could work with fields in a node-centred scheme (a “field formulation”). 
Here, such a field formulation is described. It will be compared against the flux formulation in 
order to assess the merits of each as solutions to the magnetic forward problem. 
 
The governing equations for the field formulation are 
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∇⋅(µH) = 0                   (3-54a) 
H = ∇φ                   (3-54b) 

nHnH ˆˆ 21 ×=×                   (3-54c) 
 
Now, the orthogonal grid system used is as pictured in Figure 3.8 below. The permeability, µ, is 
constant within each cell and the potentials, φn, are placed at cell corners (the “nodes”). The 
fields, vH l , are placed at the centres of the cell edge interfaces. 
 
 

 
Figure 3.8 
A single discrete grid cell 
for the field formulation. 

 
 
The location of the fields results from (3-54c) requiring continuity of tangential H and the 
positioning of the potential results from (3-54b). 
 
Let the number of nodes be 
 

nn = (nx+1)⋅(ny+1)⋅(nz+1) 
 
There are then nn φn quantities, nx⋅(ny+1)⋅(nz+1) x

iH  values on the x-edges (i.e. edges parallel 
to the x-direction), (nx+1)⋅ny⋅(nz+1) y

jH  values on the y-edges and (nx+1)⋅(ny+1)⋅nz z
kH  values 

on the z-edges. The number of unknown field values is equal to the number of edge interfaces, 
 

ne = nx⋅(ny+1)⋅(nz+1) + (nx+1)⋅ny⋅(nz+1) + (nx+1)⋅(ny+1)⋅nz 
 
The boundary fields again enter the discretization through the divergence equation. The 
volumes of integration for the divergence equation are now the dual grid cells defined so that 
the potentials are at their centres (refer to Figure 3.9 below). As such, the incorporation of the 
prescribed boundary fields (here, the geomagnetic field, H0) must occur outside of the defined 
grid of permeable cells (the “true grid”). This requires the addition of a half layer of padding 
cells to the true grid, all of which have permeability of free space, µ0. 
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Figure 3.9 
The true and dual grids at a boundary for the field 
formulation. 

 
 
A complete derivation for the field formulation is provided in Appendix B. The process follows 
exactly those steps in Sections 3.2 through 3.6 for the flux formulation. However, in the field 
formulation, one does not need to decide the form of the gradient equation to discretize as was 
necessary in Section 3.6 for the flux formulation. For the field formulation, finite volume 
discretization of (3-54a) and (3-54b) leads to the matrix-vector equations 
 

DMH = q                   (3-55a) 
H = Gφ                   (3-55b) 

 
The divergence and gradient matrices D and G in (3-55) are similar to those for the flux 
formulation but are of different size. M now contains non-zero diagonal values that are 
arithmetic averages of the four permeability values surrounding each discrete field quantity. The 
vector q has   nn−(nx−1)⋅(ny−1)⋅(nz−1)   non-zero elements arising from the prescribed 
boundary fields. 
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3.8 Summary 
 
To summarize, the governing equations for the flux formulation were 
 

∇⋅B = 0                  (3-56a) 
µ-1B = ∇φ                  (3-56b) 

 
which yielded the discrete matrix-vector equations 
 

DB = q                  (3-57a) 
B = MGφ                  (3-57b) 

 
The governing equations for the field formulation were 
 

∇⋅µH = 0                  (3-58a) 
H = ∇φ                  (3-58b) 

 
which yielded the discrete matrix-vector equations 
 

DMH = q                  (3-59a) 
H = Gφ                  (3-59b) 

 
The flux or field on the grid boundary must be prescribed in order to close the discretization of 
the divergence equations. These boundary flux or field values enter into the vector q in (3-57a) 
or (3-59a). 
 
The following definitions were made: 
 

nc = nx⋅ny⋅nz  = the number of cells 
nn = (nx+1)⋅(ny+1)⋅(nz+1)  = the number of nodes 
nf = (nx−1)⋅ny⋅nz + nx⋅(ny−1)⋅nz + nx⋅ny⋅(nz−1) = the number of internal cell faces 
ne = nx⋅(ny+1)⋅(nz+1) + (nx+1)⋅ny⋅(nz+1) … 
  + (nx+1)⋅(ny+1)⋅nz  = the number of cell edge elements 

 
The various matrix and vector quantities in (3-57) for the flux formulation have the following 
sizes: 
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B is nf by 1, 
 φ is nc by 1, 
 q is nc by 1, 
 D is nc by nf, 
 M is nf by nf, 
 G is nf by nc. 
 
The various matrix and vector quantities in (3-59) for the field formulation have the following 
sizes: 
 

H is ne by 1, 
 φ is nn by 1, 
 q is nn by 1, 
 D is nn by ne, 
 M is ne by ne, 
 G is ne by nn. 
 
For any given grid, it will be true that  nn > nc  and  ne > nf  and therefore, the field formulation 
creates computation problems of a slightly larger size than the flux formulation. 
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Chapter 4 

Specifying the boundary conditions 
 
 
4.1 Boundary flux approximation 
 
In Chapter 3, the source-free magnetostatic governing equations were discretized to obtain a 
system of equations to solve for the discrete potentials and fluxes. The flux on the grid boundary 
must be prescribed in order to close the discretization of the divergence equation. A reasonably 
accurate method of approximating these boundary fluxes is needed before the fluxes within the 
grid can be accurately determined. 
 
The model grid can be designed so that any susceptible material is far from the grid boundary 
such that the associated secondary flux is negligible on the boundary. The approximation can 
then be made that B=B0 on the boundary. However, if the secondary response is too large to 
neglect at the boundary then some approximate modelling routine is required. The approximate 
secondary response can then be added to the primary flux and prescribed on the boundary, 
thereby increasing the accuracy of the modelling. 
 
There are several possibilities for approximating the secondary response on the boundary. The 
first is to use the finite volume forward solution on a larger, more coarse, homogenized grid 
with B=B0 on the boundary. This method should be accurate but possibly slow if the resulting 
problem is large. An alternative is to approximate the secondary response as being due to an 
appropriate sphere, spheroid, or other simple body for which an analytic solution is available. 
This approach could be less accurate but much faster. 
 
Because I intend to use the forward modelling methods within an inversion algorithm, any 
method of approximation for the boundary conditions should ideally be fast and simple. 
Although the accuracy of the method is important, the grid can always be enlarged in order to 
move the boundary further from any susceptible material and thereby increase the boundary 
condition accuracy. A fast approximation method is chosen that approximates the susceptibility 
within the grid as a sphere. 
 
 
4.2 The congruous sphere method 
 
The susceptible material within the grid could be approximated as a single sphere with 
susceptibility equal to the volume-averaged susceptibility within the grid. I define the following 
quantities: 
 

∑
≠=

=
nc

i
i

i

vV
0,1 χ

          (4-1a) 
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where vi is the volume of the ith cell; 
 χi is the susceptibility of the ith cell; and 
 nc is the total number of cells. 
 
V is the total volume of susceptible material and ξ is a volume-averaged susceptibility value for 
the grid. In (4-1a), the summation for V is only over those cells with χ≠0. 
 
To calculate the boundary fluxes, the magnetization of the sphere must be adjusted to account 
for self-demagnetization effects. Clark and Emerson (1999) discusses self-demagnetization 
within spheres, spheroids and other simple bodies. For a sphere placed in a uniform inducing 
field H0, the resulting magnetization within the sphere is uniform and parallel to H0 and has 
components 
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Nx, Ny and Nz are called the “demagnetization factors” for each Cartesian direction. For a 
sphere, these factors are constant for all directions: 
 

Nx = Ny = Nz = 1/3         (4-3) 
 
For a spheroid, these factors are dependent on the elongation of the rotational symmetry axis. 
An appropriate magnetization for the sphere is then 
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The magnetic flux density outside of a uniformly magnetized sphere is equivalent to that of a 
dipole located at the sphere’s centre with dipole moment equal to the sphere’s volume times its 
magnetization (Blakely, 1996). Therefore, from (4-4), the susceptible material within the grid 
could be approximated as a single dipole with moment 
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Let m~  have length m~  and unit direction m̂ . The total flux, from both the magnetized dipole 
and the inducing field B0, at any point P is given by 
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where r is a vector with length r and unit direction r̂  pointing from the dipole to P (Blakely, 
1996). The sphere can be placed at the centre of the grid or at the “centre of susceptibility”, rc = 
[xc, yc, zc], calculated in a similar manner to a centre of mass: 
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One could extend the sphere method by computing higher spatial susceptibility moments to 
define the elongation and orientation of a congruous spheroid. However, the averaged 
susceptibility may not be significantly high and the higher moments may not lead to a 
significant elongation. The boundary fluxes calculated from such a spheroid would contain little 
in the way of self-demagnetization effects beyond reduction of the magnetization strength. The 
fields for a congruous sphere and a congruous spheroid will then not be appreciably different 
and the sphere becomes the simpler choice. 
 
 
4.3 The discretized divergence equation 
 
Recall from Section 3.5 that finite volume discretization of the divergence equation resulted in 
the matrix-vector equation 
 
 DB = q          (4-8) 
 
where q contains non-zero elements arising from the prescribed boundary fluxes. In Chapter 5 it 
becomes useful to deal with q as a sum of two quantities: 
 

q = f + g          (4-9) 
 
Here, f contains primary contributions to the prescribed boundary flux from the geomagnetic 
flux B0. g contains secondary flux contributions from the susceptible material within the grid. 
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For example, when the boundary fluxes are calculated with the congruent sphere approach of 
Section 4.2, the secondary flux contributions given by 
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π
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are incorporated into g. If B=B0 is used on the boundary with no additional secondary flux 
approximation, or if the grid contains no susceptible material, then g is a zero vector. 
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Chapter 5 

Secondary flux and field formulations 
 
 
5.1 The total flux formulation 
 
In Chapter 3, a finite volume discretization was performed on the governing equations 
 

∇⋅B = 0          (5-1a) 
B = µ∇φ          (5-1b) 

 
to yield a method of numerical solution. The discrete matrix-vector equations obtained were 
 

DB = q          (5-2a) 
B = MGφ          (5-2b) 

 
In (5-1), the flux, B, and potential, φ, are representative of the total flux. That is, they contain 
contributions from both the primary inducing flux and the secondary anomalous response: 
 

φ = φ0 + φs          (5-3a) 
B = B0 + Bs          (5-3b) 

 
In order to solve for the anomalous secondary flux using this formulation, (5-2a) and (5-2b) are 
combined and one first solves for the vector of total potentials, φ, in 
 

DMGφ = q          (5-4) 
 
The total potentials are then used to calculate the total flux through (5-2b) and the secondary 
flux is obtained after subtraction of the primary flux: 
 

Bs = MGφ − B0         (5-5) 
 
Because the secondary flux values may be considerably smaller than the primary flux values, 
some accuracy may be lost through machine precision and rounding problems. In the mineral 
exploration example introduced in Section 1.4, the amplitude of the secondary response was 
approximately 30 percent of the geomagnetic flux of 52000nT. In contrast, many magnetic 
surveys for mineral exploration have secondary response amplitudes on the order of hundreds of 
nT (i.e. only a few percent of the geomagnetic flux). To avoid this significant difficulty, the 
secondary potentials can be solved for directly and the secondary fluxes can be calculated 
directly from these. 
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5.2 A secondary flux formulation 
 
There are two possible approaches to developing a secondary formulation in which the 
secondary potential is solved for directly. These involve a fundamental decision to be made 
when setting up a numerical solution to an inverse problem in which a function is to be 
recovered. The basic question is whether to formulate the secondary flux problem in function 
space and then discretize, or whether to first discretize the problem and then formulate the 
calculation of the secondary quantities. Here, both procedures are outlined. 
 
5.2.1 Approach 1: formulate first, discretize second 
 
Here, the governing equations (5-1) are first reformulated to yield equations containing the 
primary and secondary quantities. Consider the primary response to be that with 
µ = µ0  and  B = B0 (a constant). (5-1) is then 
 

∇⋅B0 = 0          (5-6a) 
B0 = µ0∇φ0          (5-6b) 

 
For a combined primary and secondary response, (5-1) can be decomposed to yield 
 

∇⋅(B0 + Bs) = 0         (5-7a) 
B0 + Bs = µ∇(φ0 + φs)         (5-7b) 

 
Combining (5-6) and (5-7), and using (2-4) to relate µ to χ, yields 
 

∇⋅Bs = 0          (5-8a) 
Bs = µ0χ∇φ0 + µ∇φs  
 = χB0 + µ∇φs         (5-8b) 
 

Combining (5-8a) and (5-8b) leads to the div-grad system for the secondary potential: 
 

∇⋅µ∇φs = −∇⋅(χB0)         (5-9) 
 
Note that (5-3b) defines Bs as the difference of two continuous quantities, the total flux B and 
the primary flux B0. Therefore, Bs must be continuous everywhere. However, from (5-8b), if the 
susceptibility (or equivalently, the permeability) is discontinuous across a cell face then Bs on 
that face is equal to the sum of two discontinuous quantities. The sum must be continuous so it 
must be true that the two discontinuities cancel each other. 
 
With Bs continuous everywhere, one can proceed with the finite volume discretization of (5-8) 
as in Chapter 3. The divergence equation (5-8a) would yield a similar matrix-vector equation as 
before: 
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 DBs = g          (5-10) 
 
(recall the discussion of q as a sum of f and g in Section 4.3). The gradient equation (5-8b) is 
rearranged into the more rough equation 
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which will yield harmonic averages in µ when discretized. (5-11) is split into three parts, one for 
each Cartesian component. The integration for the x-direction is 
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Note the subscript ‘s’ has been dropped and all quantities are secondary unless otherwise 
indicated (e.g. B0). Assuming that Bx and B0 are constant over the integration volume and 
dividing by the volume gives 
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Performing the integration yields 
 

i

kjikjix

kji

i

kji

i

i

x

kji

i

kji

i

i

x
kji

x
hxhx

x

hxhx
x

∆

−
++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∆
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∆

++−+++

++−

−

+++

++−

−

+++

++

2/1,2/1,2/12/1,2/1,2/1

0

0

2/1,2/1,2/1

1

2/1,2/1,2/1

0

2/1,2/1,2/1

1

2/1,2/1,2/1

2/1,2/1,

B
2
B

2
B

φφ
µµµ

µµ  (5-14) 

or 

 ( )
i

kjikji
xkji

x
kjikji x∆

−
+−= ++−+++−

++
−

++
−

++
2/1,2/1,2/12/1,2/1,2/1

0
1

2/1,2/1,
1

02/1,2/1,
1

2/1,2/1, BB
φφ

ηµη   (5-15) 

where  
1

2/1,2/1,2/1

1

2/1,2/1,2/1
2/1,2/1, 2

−

++−

−

+++
++ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∆=

kji

i

kji

i
ikji

hxhxx
µµ

η      (5-16) 

 



 

 55 
 

The matrix-vector equation obtained is 
 

Mx
-1Bx = (µ0

-1I − Mx
 -1)B0x + Gxφs       (5-17) 

 
where Mx has non-zero diagonal elements ηi,j+½,k+½ given by (5-16) and I is an identity matrix of 
appropriate size. 
 
The discrete equations for all three directions can be combined to give 
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or 
 M-1Bs = (µ0

-1I − M-1)B0 + Gφs                (5-18b) 
 
5.2.2 Approach 2: discretize first, formulate second 
 
Here, a secondary formulation is developed though the opposite procedure: discretize first and 
then split the matrix quantities into primary and secondary quantities. (5-3) and (4-9) are used to 
decompose (5-2) into 
 

D(B0 + Bs) = f + g                  (5-19a) 
M-1(B0 + Bs) = G(φ0 + φs)                 (5-19b) 

 
The equations for the primary response are 
 

DB0 = f                   (5-20a) 
M0

-1B0 = Gφ0                   (5-20b) 
 
M0 has non-zero diagonal elements  η0 = µ0  so that  M0 = µ0I  (I is an nf by nf identity matrix). 
Substitution and elimination using (5-19) and (5-20) yields 
 

DBs = g                   (5-21a) 
M-1Bs = (µ0

-1I − M-1)B0 + Gφs                (5-21b) 
 
and hence, the two approaches yield identical results. 
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5.3 Summary of the flux formulations 
 
A cell-centred finite volume discretization of the governing equations for magnetostatics 
resulted in the discrete matrix-vector equations below. For the total flux formulation, 
 
 DB = f + g                   (5-22a) 
 B = MGφ                   (5-22b) 
 
and the secondary flux is calculated as  
 

Bs = B − B0          (5-23) 
 
The total flux formulation could also be written 
 
 DBs = g                   (5-24a) 
 Bs = MGφ − B0                  (5-24b) 
 
For the secondary flux formulation, the secondary quantities can be computed directly using 
 
 DBs = g                   (5-25a) 
 Bs = (µ0

-1M − I)B0 + MGφs                 (5-25b) 
 
 
5.4 A secondary field formulation 
 
Recall from Section 3.7 that a node-centred discretization approach dealing with fields instead 
of fluxes resulted in the following discrete matrix-vector equations: 
 

DMH = q                   (5-26a) 
H = Gφ                   (5-26b) 

 
Following the same procedures of Section 5.2, one can show that either approach at a secondary 
field formulation results in the following: 
 
 
 DMHs = −D(M − µ0I)H0 + g  
  = −D(µ0

-1M − I)B0 + g                (5-27a) 
 Hs = Gφs                   (5-27b) 
 
The full details of this derivation are provided in Appendix B. 
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5.5 Generalized notation for forward modelling 
 
Several systems of matrix-vector equations have been set up to solve for total and secondary 
potentials, fluxes and fields. To avoid confusion of symbols, to aid notation, and as a prelude to 
the inverse problem, all forward modelling systems will be written as 
 
 A(m)u = q(m)          (5-28) 
 
Here, m is a length nc model vector containing the discrete permeability values within the 
model grid. For example, in the secondary flux formulation, (5-25a) and (5-25b) combine to 
give 
 
 DM(m)Gφs = g(m) − D(µ0

-1M(m) − I)B0      (5-29) 
 
This can be expressed in the form (5-28) with 
 
 A(m) = DM(m)G                  (5-30a) 
 u = φs                    (5-30b) 
 q(m) = g(m) − D(µ0

-1M(m) − I)B0                (5-30c) 
 
Take care not to confuse q in (5-28) with the quantity  q = f + g  introduced in Section 4.3. I will 
no longer use q in the latter context. 
 
A method of solving a system of equations of the form (5-28) will now be addressed in Chapter 
6. 
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Chapter 6 

Solving the discrete forward modelling equations 
 
 
6.1 Introduction 
 
In Chapter 3, the source-free magnetostatic governing equations were discretized to obtain 
systems of equations to solve for the discrete potentials and fluxes (or fields). In Chapter 5, 
secondary formulations were developed in which the secondary quantities can be solved for 
directly to avoid losses in accuracy. A method of solving any of these systems of equations for 
the unknowns will now be addressed. 
 
Recall from Section 5.5 that the forward modelling systems can be written as the linear system 
 
 A(m)u = q(m)          (6-1) 
 
where u is a vector of discrete potentials. Once u is determined, the data of interest (i.e. certain 
flux components at specified locations) are calculated through some nonlinear operation. For 
example, in the secondary flux formulation, the discrete fluxes within the grid are calculated as 
 
 Bs = (µ0

-1M(m) − I)B0 + M(m)Gφs       (6-2) 
 
where  φs = u. The specific flux data are then interpolated from the discrete fluxes using an 
eight-point interpolation. Solution of u in (6-1) will now be addressed. 
 
 
6.2 Solving the discrete system for the potentials 
 
6.2.1 The solver chosen 
 
Here, the goal is to solve the system of equations in (6-1) for u. This requires a solver from 
linear algebra. For any formulation used (i.e. total or secondary; field or flux), the matrix A is 
 

A(m) = DM(m)G         (6-3) 
 
where D is the divergence matrix, G is the gradient matrix, and M is a matrix of averaged 
permeability values. D, M and G are large, sparse and contain simple structure. The resulting 
matrix A is also large and sparse and has a banded structure with seven diagonals of non-zero 
elements positioned fairly close to the main diagonal (one is on the main diagonal). The 
discussion of these matrices in Chapter 3 indicates that A is square and non-symmetric. 
Furthermore, it has been determined empirically that A is not positive definite in general. 
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The solver chosen was the Bi-Conjugate Gradient Stabilized method (BiCGStab). This method 
has been used successfully in both the dc-resistivity and magnetometric resistivity problems 
(Chen, 2002), which requires the solution of systems similar to (6-1). The Krylov Space method 
BiCGStab is established in Van der Vorst (1992) and an excellent explanation of the related 
Conjugate Gradient (CG) method is given in Shewchuk (1994). The BiCGStab method and 
many other related non-stationary iterative methods, including those mentioned below, are 
discussed in Barrett et al. (1994) and Saad (1996). 
 
The well known CG method is not suitable for non-symmetric systems (Barrett et al., 1994). 
The Bi-Conjugate Gradient (BCG) method was developed to solve non-symmetric linear 
systems. For symmetric positive definite systems it gives the same result as CG but at twice the 
cost per iteration (Barrett et al., 1994). For non-symmetric matrices, it is observed that the 
convergence behavior can be quite irregular and the method may break down (Barrett et al., 
1994). The Conjugate Gradient Squared (CGS) method was developed as an alternative to BCG 
and provides faster convergence for roughly the same cost (Saad, 1996). However, the CGS 
method often shows highly irregular convergence behavior that may lead to substantial build-up 
of rounding errors (Saad, 1996), and it tends to diverge if the starting guess is close to the 
solution (Barrett et al., 1994). The BiCGStab method is a variation of CGS that avoids the 
convergence problems of CGS while maintaining about the same speed of convergence as CGS 
(Barrett et al., 1994). Indeed, testing of these two solvers on typical problems showed that CGS 
was sometimes faster (although not significantly) but always required more iterations than 
BiCGStab. 
 
The pseudo-code for the BiCGStab solver, adapted from Barrett et al. (1994), is provided in 
Figure 6.1 below. 
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Figure 6.1 
The Preconditioned Bi-Conjugate Gradient Stabilized 
Method. 
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Here, P is a preconditioner, discussed shortly. The major computational requirements involve 
two solutions of the form  Px = b, two matrix-vector products and four vector dot products per 
iteration. A typical BiCGStab convergence curve for the forward solution is shown below in 
Figure 6.2. 
 
 

 
Figure 6.2 
A typical BiCGStab convergence curve. 

 
 
Generally, the convergence is smooth until very low relative residual values are reached, at 
which point machine precision and rounding come into play. 
 
The BiCGStab routine is started from some initial guess (i.e. u(0) in Figure 6.1). The initial 
guesses considered were the zero vector initial guess and the secondary potentials for the 
congruous sphere of Section 4.2. Experimentation with typical problems showed no obvious 
difference in solution efficiency for these two initial guesses. Therefore, the zero vector was 
chosen as a default since the alternative requires non-trivial construction. However, in cases 
where a solution is known for a similar problem (i.e. a similar discrete model), the known 
solution can easily be used to speed up the solution time. 
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As a final note, the solution for the potentials is non-unique because 
 
 ∇⋅µ∇φ = ∇⋅µ∇(φ + c)         (6-4) 
 
where c is some constant scalar quantity. The solution to (6-1) is only unique to an additive 
constant. The BiCGStab solver is able to deal with this non-uniqueness. 
 
6.2.2 Preconditioning 
 
Convergence of CG and related methods, such as BiCGStab, are enhanced if the condition 
number of A is low and the eigenvalues of A are clustered. This can be achieved by the addition 
of a preconditioner to the system in (6-1). As indicated in Figure 6.1, a preconditioner P can be 
incorporated and the BiCGStab algorithm then effectively solves the system 
 

P-1Au = P-1q          (6-5a) 
or 
 quA ~~ =           (6-5b) 
 
By choosing an appropriate preconditioner, one may find a matrix APA 1~ −=  with desired 
properties such that the BiCGStab solution of (6-5) is more efficient (i.e. faster and more stable) 
than that of (6-1). An effective preconditioner is one that approximates A so that P-1 is an 
approximate inverse of A. A~  is then an approximate identity matrix. The preconditioners 
considered were Symmetric Successive Over-Relaxation (SSOR) and Incomplete LU 
Factorization (ILU). 
 
6.2.3 SSOR preconditioning 
 
Let D be a diagonal matrix containing the main diagonal of A; 
 L be the lower triangular part of A excluding the main diagonal; and 

U be the upper triangular part of A excluding the main diagonal 
 
so that 
 

A = D + L + U         (6-6) 
 
Take care not to confuse D used here with the divergence operator. The SSOR preconditioner is 
 

20,)()(
)2(

1 1 <<++
−

= − ωωω
ωω

UDDLDP     (6-7) 

 
Alternatively, (6-7) can be written  P = P1P2  with 
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where the elements of D-1/2 are the inverted square roots of the elements of D. P1 and P2 are 
lower and upper triangular respectively. When split in this manner, the equations in Figure 6.1 
involving P can be solved quickly and easily through Gaussian elimination. 
 
One can verify that the matrix A defined by (6-3) has solely negative values on the main 
diagonal. This introduces purely imaginary values into D-1/2, which convert back to purely real 
values when squared (as P1 multiplies P2).  In practice, the SSOR preconditioning can be used 
to approximate -A so that all elements in D-1/2 remain real. 
 
The number of iterations required in the BiCGStab solution for a given tolerance (i.e. tol in 
Figure 6.1) can be reduced by using an optimal value of ω. For a few structured problems, the 
optimum value of ω is known. However, in more complicated problems it may be necessary to 
perform a fairly sophisticated and prohibitively expensive eigenvalue analysis in order to 
determine the optimum value (Golub and Van Loan, 1990). Here, optimal values are estimated 
through thorough trial and error analysis. 
 
6.2.4 ILU preconditioning 
 
Incomplete factorizations such as ILU are computed in a similar manner as their complete 
equivalents except that a non-negative scalar drop tolerance, droptol, is used to ignore smaller 
fill elements (i.e. non-zero entries). Incomplete factorization preconditioning requires a non-
trivial construction phase, whereas SSOR preconditioning requires relatively little effort in 
construction. ILU preconditioning is especially effective if the system is diagonally dominant 
(Haber, 2000), as is generally the case for practical applications of the forward modelling 
methods. 
 
An ILU factorization of A yields two incomplete lower and upper diagonal matrices Linc and 
Uinc such that 
 
 A ≅ LincUinc          (6-9) 
 
An appropriate preconditioner is therefore 
 
 P = LincUinc          (6-10) 
 
The parameter of interest is droptol and choosing its value presents a trade-off between 
construction time and BiCGStab solution time. Recall that the effectiveness of the 
preconditioner depends on how well P approximates A.  For a higher value of droptol, the 
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construction of Linc and Uinc will be faster. However, (6-9) will be less accurate and, therefore, P 
in (6-10) will be less effective at improving the BiCGStab convergence. As droptol approaches 
zero, an exact decomposition of A is obtained and the BiCGStab solution is obtained in one 
iteration. 
 
The ILU algorithm used was the MATLAB function LUINC. Details of this function can be 
found at MathWorks (2002). LUINC performs a sparse incomplete LU factorization and allows 
for various possible modifications of the procedure. 
 
6.2.5 The best preconditioner and the optimal parameter value 
 
Typical curves showing solution times for various parameter values are displayed below in 
Figures 6.3 through 6.10. For all figures, the model contained susceptibilities chosen randomly 
from a uniform distribution on [0,10]. In Figure 6.3, the grid had 153 cubic cells of dimension 
1m and the BiCGStab solution tolerance was 10-5. 
 
 

 
Figure 6.3 
Typical curves of CPU solution time for the SSOR (left) and ILU (right) 
preconditioners for many values of the parameters ω and droptol. The grid 
had 153 cubic cells of dimension 1m and the solution tolerance was 10-5. 

 
 
The SSOR curve dips fairly smoothly to a minimum value between the two limits. For the ILU 
preconditioner, for small values of the drop tolerance the ILU decomposition runs nearly to 
completion and requires a long time. The consequent BiCGStab solution then requires far less 
iterations and the BiCGStab solution time is lowered but not enough to counteract the large 
preconditioner construction time. For large values of the drop tolerance, the ILU decomposition 
does very little and takes little time. The consequent BiCGStab solution requires far more 
iterations and the BiCGStab solution time is increased significantly. These two effects are 
demonstrated in Figure 6.4 below. 
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Figure 6.4 
Typical curves of CPU time for the ILU decomposition (left) and 
subsequent BiCGStab solution time (right) for many values of the 
parameter droptol. The grid had 153 cubic cells of dimension 1m and the 
solution tolerance was 10-5. 

 
 
In Figures 6.5 and 6.6, the grids were altered from that in Figure 6.3 to contain 103 and 203 
cubic cells respectively. Comparison of Figures 6.3, 6.5 and 6.6 indicate that the ranges of 
optimal parameter values do not change significantly with grid size. 
 
 

 
Figure 6.5 
Typical curves of CPU solution time for the SSOR (left) and ILU (right) 
preconditioners for many values of the parameters ω and droptol. The grid 
had 103 cubic cells of dimension 1m and the solution tolerance was 10-5. 
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Figure 6.6 
Typical curves of CPU solution time for the SSOR (left) and ILU (right) 
preconditioners for many values of the parameters ω and droptol. The 
grid had 203 cubic cells of dimension 1m and the solution tolerance was 
10-5. 

 
 
In Figures 6.7 and 6.8, the grids were altered from that in Figure 6.3 to contain cubic cells of 
dimension 0.1m and 10m respectively. Comparison of Figures 6.3, 6.7 and 6.8 indicate that the 
ranges of optimal parameter values do not change significantly with cell dimension. 
 
 

 
Figure 6.7 
Typical curves of CPU solution time for the SSOR (left) and ILU (right) 
preconditioners for many values of the parameters ω and droptol. The grid 
had 153 cubic cells of dimension 0.1m and the solution tolerance was 10-5. 
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Figure 6.8 
Typical curves of CPU solution time for the SSOR (left) and ILU (right) 
preconditioners for many values of the parameters ω and droptol. The grid 
had 153 cubic cells of dimension 10m and the solution tolerance was 10-5. 

 
 
In Figures 6.9 and 6.10, the same grid in Figure 6.3 was used but the BiCGStab solution 
tolerance was altered to 10-2 and 10-8 respectively. Comparison of Figures 6.3, 6.9 and 6.10 
indicate that the ranges of optimal parameter values do not change significantly with the 
solution tolerance. 
 
 

 
Figure 6.9 
Typical curves of CPU solution time for the SSOR (left) and ILU (right) 
preconditioners for many values of the parameters ω and droptol. The grid 
had 153 cubic cells of dimension 1m and the solution tolerance was 10-2. 
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Figure 6.10 
Typical curves of CPU solution time for the SSOR (left) and ILU (right) 
preconditioners for many values of the parameters ω and droptol. The grid 
had 153 cubic cells of dimension 1m and the solution tolerance was 10-8. 

 
 
The difference in optimal solution times between the two preconditioners is relatively minor. 
However, the total solution time vs. droptol curves contain a fairly flat portion around the 
minimum, whereas the total solution time vs. ω curves contain slightly irregular portions around 
a relatively sharp minimum. Hence, an optimal value for droptol is easier to predict than an 
optimal value for ω. For this reason, I chose to use the ILU preconditioner with a default value 
of 10-2 for droptol. 
 
 
6.3 Accuracy of the flux and field formulations 
 
There are inaccuracies introduced in any approach to a numerical solution of a PDE. Here, the 
source and magnitude of these errors are discussed with respect to both the flux and field 
formulations. 
 
6.3.1 The flux formulation 
 
To simplify the discussion, consider the case when all model cells are identical cubes with 
dimension h. First, consider the flux formulation. The following x-directional Taylor expansions 
across a cell face can be written: 
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Here, the subscript conventions of Section 3.3 are used. The derivatives of φ with respect to x 
are denoted using prime notation so that  ∇xφ = φ′ x̂  with x̂  a unit vector in the x-direction. 
Subtracting (6-11b) from (6-11a) and dividing by h gives 
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This is the central difference used in the finite volume discretization of Chapter 3. The 
governing equations for the flux formulation can be written 
 

∇⋅B = 0                   (6-13a) 
Bx = µ∇xφ                   (6-13b) 
By = µ∇yφ                   (6-13c) 
Bz = µ∇zφ                   (6-13d) 
 

which combine to give 
 

∇⋅(µ∇φ) = 0          (6-14) 
 
When discretized using the finite volume discretization of Chapter 3, (6-13b) will yield 
expressions of the form 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= ++−+++

++++ h
B kjikji

kji
x

kji

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1,2

1,

,,,,
,,

φφ
η      (6-15) 

 
Here, η is a harmonic average of the two neighbouring permeability values on either side of the 
particular cell face and is given by 
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The “local truncation error” of a discrete method is the local difference between the exact 
quantity being discretized and the discrete numerical approximation of that quantity. 
Comparison of (6-15) and (6-12) shows that use of (6-15) introduces a term into the local 
truncation error that is not only dependent on the squared cell length, h2, but also on the value of 
η. Hence, the accuracy of the flux formulation is O(ηharmh2). 
 
6.3.2 The field formulation 
 
Now consider the field formulation. The following x-directional Taylor expansions along a cell 
edge can be written: 
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Subtracting (6-17b) from (6-17a) and dividing by h gives 
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The governing equations for the field formulation can be written 
 

∇⋅(µH) = 0                   (6-19a) 
Hx = ∇xφ                   (6-19b) 
Hy = ∇yφ                   (6-19c) 
Hz = ∇zφ                   (6-19d) 

 
which again combine to give (6-14). When discretized using the finite volume discretization, 
introduced in Chapter 3, (6-19b) will yield expressions of the form 
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Comparison of (6-20) and (6-18) shows that this step introduces a term into the local truncation 
error that is only dependent on the squared cell length, h2. However, when (6-19a) is discretized, 
this term is multiplied by arithmetic averages, ηarith, of the four permeability values surrounding 
a particular cell edge. Hence, the accuracy of the field formulation is O(ηarithh2). 
 
6.3.3 Comparison of the flux and field formulations 
 
Both the flux and field formulations have similar local truncation error terms that are not only 
dependent on the squared cell length but also on averaged permeability values. Consider the 
harmonic and arithmetic averages of two permeability values µ1 and µ2: 
 

( ) 11
2

1
12 −−− += µµηharm                   (6-21a) 

( )212
1 µµη +=arith                   (6-21b) 

 
It can be shown that  ηharm ≤ ηarith  for any  µ1 ≥ µ0  and  µ2 ≥ µ0  (refer to Figure 3.5 in Section 
3.6). Therefore, one expects that for a given model, the flux formulation may provide more 
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accurate solutions to the forward problem than the field formulation when large permeability 
contrasts are present across cell interfaces. However, this may be too simplistic and needs to be 
investigated numerically. 
 
 
6.4 Grid design 
 
The amount of error in the forward modelled fluxes will depend on various factors: 
 
• the level of discretization; 
• the tolerance for convergence of the BiCGStab solver; 
• machine precision and rounding; 
• the location of the observation points relative to the boundary; and 
• the distance of the observation points from high values of magnetic permeability. 

  
The majority of the modelling error is expected to come from inaccuracy inherent in the finite 
volume discretization. The discretization used has second order accuracy, O(h2), in B (or H), 
which results from the use of central differences. Because of this “discretization error”, grids 
with a finer discretization (i.e. more cells within the same model region) will lead to more 
accurate solutions. 
 
There is an obvious tradeoff between solution accuracy and solution time. A very finely 
discretized grid (i.e. one with a very large number of cells) will give accurate results but the 
solution may be too slow for practical purposes. This becomes especially significant when the 
forward modelling algorithm is used within an inversion algorithm and the forward solution 
must be computed many times. 
 
The accuracy in B is also dependent on the averaged permeability values. Therefore, when 
observation points are close to high values of magnetic permeability, the local truncation errors 
may lead to less accuracy at these positions in the grid. This may be too simplistic, however, 
because the local truncation errors propagate through the grid. 
 
A second source of modelling error results from inaccuracy in the prescribed boundary 
conditions. Recall from Chapter 4 that the boundary fluxes can be prescribed as the Earth’s flux 
or can be calculated by approximating the susceptible material within the grid as a simple body. 
The accuracy of any such approximation will depend upon the location of the susceptible 
material with respect to the grid boundary (when far from any susceptible material, the 
secondary fields become less significant). 
 
To interpolate at specific observation locations one needs to ensure that the grid is extended 
beyond those locations. Having to increase the grid size (e.g. above the Earth’s surface to 
extend into the air) will increase the size of the system, and therefore increases the required 
memory and solution time. However, this will also help deal with boundary condition accuracy. 
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Inaccuracy in the boundary fluxes will propagate through the grid leading to increased 
inaccuracy throughout. The errors from this source are expected to decrease away from the grid 
boundary (i.e. closer to the grid centre). Therefore, the location of the flux quantities of interest 
(i.e. at the survey locations) becomes an issue. Small changes in the external boundary 
conditions will affect flux values in the outer grid region more than those in the inner grid 
region and one should design any grid with this in mind. 
 
Another important accuracy concern is the accuracy to which the system is solved using the 
BiCGStab solver. This source of inaccuracy is controllable and therefore is not such a concern. 
Neither is the unavoidable and perhaps insignificant error due to machine precision and 
rounding. However, I note that inaccuracy from this latter source may be reduced through use of 
the secondary formulations discussed in Chapter 5. 
 
From the discussion above it is obvious that accuracy concerns should factor highly in the 
appropriate design of a grid when performing an inversion that utilizes the forward modelling 
algorithm. In that case, the only flux quantities that one is concerned with are those at the survey 
locations. Furthermore, the accuracy at these locations need not be much better than the 
estimated errors in the survey measurements. Although this is difficult to quantify, the 
discussion of this section has pointed out some important guidelines to consider for a 
responsible grid design. 
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Chapter 7 

An alternate solution in the integral equation domain 
 
 
7.1 Introduction 
 
Now that a numerical solution to the forward problem has been formulated, it needs to be tested. 
The finite volume discretization (FVD) solutions can be tested against exact analytic solutions 
for simple bodies such as ellipsoids. A drawback of this approach is that the number of shapes 
available is limited. Furthermore, because the FVD solutions deal exclusively with prismatic 
cells, it is impossible to exactly model bodies with curved surfaces. 
 
To provide more general tests, a full solution for arbitrary distributions of permeability has been 
developed in the integral equation domain. This solution uses a grid of prismatic cells and, as 
such, provides a method of comparison against the FVD solutions for complicated distributions. 
 
 
7.2 A full discrete solution to the magnetic problem in the integral equation  
      domain 
 
Written in integral form, the field at a point P due to a distribution of magnetic material within a 
region R is given by 
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where H0 is the primary inducing field (e.g. the Earth’s geomagnetic field); 
 Hs is the anomalous secondary field; 
 M is the induced magnetization of the magnetic material in R; 

P = (xp, yp, zp) is the position of the observer; 
 Q = (xq, yq, zq) represents the positions of the volume elements dv within R; and 
 r(P,Q) is the distance from P to Q: 
 

222 )()()(),( qpqpqppq zzyyxxrQPr −+−+−==     (7-2) 
 
Although the inducing field will be dealt with as a constant value, H0, it may vary with location 
and extension to this case is simple. The Cartesian directions x, y and z are now expressed as x1, 
x2 and x3 respectively. Consider R to be a single rectangular prism with constant magnetic 
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susceptibility χ and constant magnetization M = (M1, M2, M3). The ith component of the field at 
P due to this prism can be written 
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where the superscript p indicates the observation point P, H0i is the ith component of the 
inducing field and the tensor component p

ikT  is 
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There are only five independent elements in the tensor pT  due to symmetry and because the 
trace of pT  is equal to a known constant: 
  

p
ki

p
ik TT =           (7-5a) 

ppp
332211 TTT ++  = 0   for P outside R      (7-5b) 

 = −1   for P inside R 
 
Equations for the various p

ikT  components when R is a rectangular prism are given in Sharma 
(1966). 
 
To evaluate (7-1) numerically for a more complicated susceptibility distribution, the three-
dimensional Earth region of interest, R, is divided into a large number, nc, of discrete, 
rectangular prismatic cells Ru within an orthogonal grid system. Each cell Ru has constant 
susceptibility χu and magnetization Mu. This discretization into many cells allows complicated 
bodies to be constructed. The validity of the assumption of piecewise magnetization improves 
with refined discretization. 
 
With the model containing many rectangular prisms of constant magnetization, the field at a 
point P now requires a second sum over all nc cells: 
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Here, the subscripts i and k are used to indicate the three Cartesian directions, the superscript u 
represents the prismatic cells and p represents the observation point P. 
 
As suggested in Sharma (1966), a full solution in the integral equation domain can be 
formulated by continuing from (7-6) without making the linear approximation. Assuming that 
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the material is isotropic, linear and contains no remanent magnetization, the induced 
magnetization at any location within the model can be written 
 

M = χH          (7-7) 
 
In Section 1.2 I discussed the simplified case for  Hs<<H0, where (7-7) becomes  M=χH0. Here, 
I do not make this assumption but continue with (7-7) directly. 
 
The magnetization is assumed to be constant within each cell. (7-6) and (7-7) allow us to write 
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where 
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Here, the observation points represented by p are at the grid cell centres. (7-8) represents 3nc 
equations in 3nc unknown magnetization values Mi

p (i.e. the 3 Cartesian components of 
magnetization for each discrete grid cell). 
 
Let k be the known vector of nc model susceptibility values. Let m be the unknown vector of 
3nc model magnetization values. Let the nc by nc matrix Tik hold the tensor components in (7-
9). The element in the pth row and uth column, pu

ikT , describes the contribution to the ith field 
component at the centre of the pth cell due to a unit magnetization in the jth direction in the uth 
cell. For example, the element 34

12T  describes the contribution to the x-component (the 1st 
component) of the field at the centre of the 3rd cell due to a magnetization ŷ (one unit strength in 
the 2nd direction) in the 4th cell. 
 
I now define the following quantities: 
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K is a 3nc by 3nc matrix with the susceptibility vector k repeated three times along the main 
diagonal. H0 is a length 3nc vector formed by repeating each component of the inducing field nc 
times and stacking. T is a 3nc by 3nc full matrix. (7-8) can now be written in matrix-vector 
notation as 
 

m = K (H0 + Tm)         (7-13) 
 
which can be rearranged into an equation of the form 
 
 Am = b                   (7-14a) 
where 

A = I − KT                   (7-14b) 
b = KH0                   (7-14c) 

 
and I is a 3nc by 3nc identity matrix. 
 
Direct or iterative methods can be used to solve for the magnetizations m in (7-14a). These can 
then be used to compute the secondary response using (7-6). The ith component of the secondary 
flux, Bi , at point P due to these magnetizations can be calculated using (7-6) to give 
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This assumes P is in free space. In matrix-vector notation, the flux component values at several 
observation points are calculated as 
 
 Bi = µ0[Ti1 Ti2 Ti3]m         (7-16) 
 
where the matrices Ti1, Ti2 and Ti3 are N by nc: the element in the pth row and uth column,  pu

i1T , 
describes the contribution to the ith field component at the pth datum due to a unit magnetization 
in the jth direction in the uth cell. 
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7.3 Practical aspects of the full integral equation domain solution 
 
Recall from Section 7.2 that the magnetization is assumed to be constant within each cell. The 
full integral equation domain solution (or “integral solution”) is expected to increase in accuracy 
with refined discretization because the assumption of piecewise continuous magnetization will 
improve. 
 
The advantage of the FVD methods is that only sparse matrix-vector products and vector dot 
products are required. This makes the FVD methods comparatively less time and memory 
intensive for large-scale problems (i.e. when many susceptible cells are involved). In contrast, 
the integral solution makes use of a large, full matrix T, which requires considerable 
construction time and memory, and solution of the system in (7-14) for the magnetizations 
requires many operations. Investigation has shown that for typical problems of practical size, 
the integral solution generally requires one or more orders of magnitude more time than do the 
FVD solutions (this will be better quantified in the concluding chapter). The integral solution is, 
therefore, much less suitable for use within an inversion algorithm, in which the forward 
solution must be computed many times on a grid of many susceptible cells. Hence, the integral 
solution is only introduced to provide a method of testing the FVD solutions for complicated 
distributions. This testing is discussed shortly in Chapter 8. 
 
In situations where forward modelling is required for compact bodies (such as UXO) that 
require relatively few cells to be discretized, use of the integral solution may be advantageous. 
This is especially true if the tensor values in (7-9) can be derived for helpful cell geometries 
other than simple rectangular prisms. Furthermore, the speed of the integral solution can easily 
be increased by approximating each prismatic cell as either a sphere or spheroid. Calculation of 
the tensor components for these simple bodies is much faster than for rectangular prisms, but 
some level of inaccuracy is introduced. 
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Chapter 8 

Testing the forward modelling 
 
 
8.1 Introduction 
 
The numerical finite volume discretization (FVD) solutions to the magnetostatics problem, 
discussed in previous chapters, were coded in MATLAB. Various tests were performed to 
assess the competency of the forward modelling code. The secondary flux and field formulation 
solutions were compared to analytical solutions and to the slower, more memory intensive full 
integral equation domain solution (or “integral solution”) of Chapter 7. 
 
In Section 8.2, flux profiles are calculated above simple spherical and cubic magnetic bodies. 
For these bodies, the main effect of self-demagnetization is the nonlinear scaling of the 
secondary response amplitude with susceptibility. In Section 8.3, a more complicated spheroidal 
body is considered. For this spheroid, an additional effect of self-demagnetization is observed: 
rotation of the magnetization direction away from the inducing field direction. Section 8.4 deals 
with issues related to incorporation of the prescribed boundary conditions. Conclusions are 
drawn in Section 8.5. 
 
 
8.2 Spherical and cubic magnetic bodies 
 
8.2.1 Profiles above a sphere and a cube 
 
In the first test, the numerical solutions for a susceptible cube were tested against the analytical 
solution for a susceptible sphere. The magnetic response from both bodies should be 
comparable at large distances. The discrete model involved a single susceptible cube at the 
centre of a uniform grid of 333 cubic cells of volume ∆v =1m3 (each grid dimension equaled 
33m). The ideal sphere had identical susceptibility as the cube and unit volume ∆v so that the 
volume summed magnetization for each body was equal (i.e. there was the same amount of 
magnetic material in each). The inducing flux was  B0 = (B0x, B0y, B0z) = (0,0,10000)T  and the 
susceptibility values considered were χ = 0.01, 1 and 100. The situation is as depicted in Figure 
8.1 below. 
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Figure 8.1 
A schematic diagram of the first test 
scenario: flux profiles above and away 
from a susceptible sphere and cube that 
are concentric and have equal volume. 

 
 
The magnetic flux density outside of a sphere is equivalent to that of a dipole located at the 
sphere’s centre with dipole moment equal to the sphere’s volume times its magnetization 
(Blakely, 1996). This moment needs to be adjusted to account for self-demagnetization effects 
within the sphere. The adjusted moment used is as derived in Section 4.2: 
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Flux profiles 10m above the centres of the bodies (i.e. profile 1 in Figure 8.1) for each 
susceptibility are shown in Figure 8.2 below. Figure 8.3 shows the difference between the 
numerical and analytic solutions for the same profiles in Figure 8.2. In these and subsequent 
figures, the legends refer to the FVD flux and field formulation solutions as “B Form.” and “H 
Form.” respectively, and the integral solution is referred to as “Int. Sol’n”. Flux units are 
displayed in tesla and dimension units are displayed in meters. 
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Figure 8.2 
Bx (left) and Bz (right) along a profile running in the x-direction at a height 
10m above the sphere/cube centre (x = 0) for susceptibilities of χ = 0.01 (top), 
χ =1 (middle) and χ =100 (bottom). 
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Figure 8.3 
Bx (left) and Bz (right) differences (Bnumerical − Banalytic) along a profile running 
in the x-direction at a height 10m above the sphere/cube centre (x = 0) for 
susceptibilities of χ = 0.01 (top), χ =1 (middle) and χ =100 (bottom). 

 
 
Recall from Section 6.3 that the local truncation errors in the FVD methods are O(ηh2), where h 
is a grid cell dimension and η is an averaged permeability value. The inaccuracy in the FVD 
solutions in this test are severe. Although this is related to the susceptibilities used, the major 
source of error is the coarse discretization. The discretization is such that the susceptible cubic 
body is modelled as only a single cell and one can not realistically expect high accuracy. The 
inaccuracy can be reduced through refinement of the grid, as will be shown in Subsection 8.2.2. 
In contrast to the FVD solutions, the integral solution does not suffer from the same O(ηh2) 
discretization error and is very much closer to the analytic solution, regardless of the 
susceptibility used. 
 
Figures 8.2 and 8.3 show error trends expected from the O(ηh2) accuracy. The averaged 
permeability η is a harmonic average in the flux formulation and an arithmetic average in the 
field formulation. In Section 6.3 it was shown that for a given model, the flux formulation is 
expected to be more accurate (i.e. have smaller local truncation errors) than the field 
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formulation when large permeability contrasts are present. It is difficult to quantitatively 
compare the results with theoretical expectations because the local truncation errors propagate 
though the grid. However, the qualitative expectations from Section 6.3 are evident: for 
increasing susceptibility contrast, the flux formulation performed increasingly better in 
comparison to the field formulation. 
 
8.2.2 Profiles above a cube with refined grids 
 
Here, the models again involved a central susceptible cube but the level of discretization was 
altered and the FVD solutions were compared to the integral solution alone. Three uniform grids 
were used containing 113, 333 and 553 cells. These contained central, uniform, susceptible cubic 
bodies 13, 33 and 53 cells in volume respectively. All grids had equal outer dimensions of 33m 
but different cell dimensions and as such, all three central bodies were of identical physical size. 
 
The inducing flux was  B0 = (0,0,100)T  and the susceptibility of the central body was 
χ =100. Profiles of the flux 2m above the centres of the cubic bodies are shown in Figures 8.4 
and 8.5 below. The three numerical solutions converge with increasingly refined discretization. 
Similar results were obtained for higher and lower susceptibility values. 
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Figure 8.4 
Bx (left) and Bz (right) along a profile running in the x-direction at a height 
2m above the cube centre (x = 0) for three grids of size 113 (top), 333 (middle) 
and 553 (bottom). There is one datum per grid cell. 
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Figure 8.5 
Bx (left) and Bz (right) differences (BFVD − Bintegral) along a profile running in 
the x-direction at a height 2m above the cube centre (x = 0) for three grids of 
size 113 (top), 333 (middle) and 553 (bottom). There is one datum per grid 
cell. 

 
 
Figures 8.4 and 8.5 show error trends expected from the O(ηh2) accuracy of the FVD methods. 
Let n equal the number of cells in a grid dimension (i.e. n=11, 33 and 55). n is inversely related 
to h and, thus, the errors in either FVD solution are expected to decrease as roughly n-2. It is 
difficult to quantitatively compare the results with these theoretical expectations because the 
local truncation errors propagate though the grid. Furthermore, the exact solution for this test is 
not known. However, recall from Section 7.3 that the integral solution is expected to increase in 
accuracy with refined discretization because the assumption of piecewise continuous 
magnetization will improve. Thus, the three numerical solutions are expected to converge with 
increasingly refined discretization, and this qualitative result is observed. 
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8.2.3 Profiles away from a sphere and cube 
 
Here, the model involved a finely discretized, central cubic body. The grid was identical to that 
used in Subsection 8.2.1. In order to increase the accuracy of the solutions, the central, 
susceptible, cubic body was extended to contain 33 cells. The numerical solutions for this model 
were again compared to that of a concentric sphere of equal volume to the susceptible cubic 
body. The responses from the cube and sphere should agree more closely as the distance from 
these bodies increases. The relative differences between the numerical and analytic solutions in 
Figure 8.6 below show the expected result. After some expected effects close to the bodies, the 
relative differences reduce to zero as the distance from the bodies increases toward the grid 
boundary (i.e. profile 2 in Figure 8.1). Figure 8.6 also shows the expected 1/r3 dipole 
relationship between the secondary flux response and distance when far enough away from the 
cube. 
 
Figure 8.6 shows the results for a susceptibility of χ = 1. Similar results were obtained for higher 
and lower values of susceptibility. 
 
 

 
Figure 8.6 
Bz (top), Bz

-1/3 (middle) and relative differences (Bnumerical − Banalytic)/Banalytic 
(bottom) along a profile running in the z-direction away from the sphere/cube 
centre (z = 0) for a susceptibility of χ = 1. 
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8.2.4 Summary 
 
The tests performed in Section 8.2 have dealt with bodies for which the induced magnetization 
is always in or near the direction of the inducing field, regardless of the susceptibility of the 
body. In Section 8.3, a more complicated body is considered in which this is not the case. 
 
The tests performed in Section 8.2 have shown the need for fine discretization in order to 
provide accurate FVD solutions when high susceptibility values are present. In the following 
sections, this result guides the design of the discrete model. 
 
 
8.3 A prolate spheroid 
 
8.3.1 Introduction 
 
In the second set of tests, the magnetic response was calculated for a susceptible prolate 
spheroid with vertical semi-major axis c = 10m and semi-minor axes  a = b = 5m (an eccentricity 
of 2). The susceptibility values considered were χ = 0.01, 1 and 100. The inducing flux, B0 = 
(80.8, 0, 58.0)T, was chosen to maximize the rotation of the magnetization direction within the 
body for the high susceptibility. This inducing flux is oriented 53.9° from the spheroid long axis 
and should result in a magnetization oriented 36.2° from the long axis (17.7° from the inducing 
flux) for χ =100.  The situation is as depicted in Figure 8.7 below. 
 
 

 
Figure 8.7 
A schematic diagram of the second test 
scenario: flux profiles above and through a 
susceptible spheroid. 
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The spheroid was roughly represented as a collection of cubic cells of dimension 1m within a 
uniform grid containing 553 cells. The FVD solutions were compared to an analytic solution for 
the spheroid calculated using the theory in Kaufman (1992) and Stratton (1941). 
 
Below, Figures 8.8 through 8.11 show vector plots of the secondary flux response from the 
exact body for both high and low susceptibilities. The vectors are all drawn with equal length 
and the magnitude of the flux is indicated by their colour. The colour bar units are on a base 10 
logarithmic scale. The end of the vectors are indicated by a black dot. The outline of the exact 
body is indicated by a solid black line. 
 
 

 
Figure 8.8 
A vector plot for a spheroid in an inclined inducing field. The plot is 
a vertical cross-section and the spheroid susceptibility is χ = 0.01. 
The fluxes were calculated using the analytic solution. 
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Figure 8.9 
A vector plot for a spheroid in an inclined inducing field. The plot is 
a horizontal cross-section and the spheroid susceptibility is χ = 0.01. 
The fluxes were calculated using the analytic solution. 
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Figure 8.10 
A vector plot for a spheroid in an inclined inducing field. The plot is 
a vertical cross-section and the spheroid susceptibility is χ =100. The 
fluxes were calculated using the analytic solution. 
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Figure 8.11 
A vector plot for a spheroid in an inclined inducing field. The plot is 
a horizontal cross-section and the spheroid susceptibility is χ =100. 
The fluxes were calculated using the analytic solution. 

 
 
The magnetization of the body can be inferred from the fluxes inside the body. Recall that the 
inducing flux was directed in the +x-direction and oriented 53.9° from the spheroid long axis 
(i.e. 53.9° from the z-axis toward the x-axis). In Figures 8.8 and 8.9, for the low susceptibility 
value (χ = 0.01), the self-demagnetization effects are negligible and the magnetization of the 
spheroid is parallel to the inducing field. Recall that the inducing field chosen should result in a 
magnetization oriented 36.2° from the long axis for the high susceptibility (χ = 100). In Figures 
8.10 and 8.11, for the high susceptibility value, the self-demagnetization effects are large and 
the magnetization of the spheroid has rotated away from the inducing field toward the long axis. 
 
8.3.2 Profiles above a prolate spheroid 
 
Profiles of the flux above the spheroid (i.e. profile 1 in Figure 8.7) for each susceptibility are 
shown in Figures 8.12 and 8.13 below. For the FVD solutions, the boundary conditions 
prescribed were the fluxes from the exact spheroidal body. This helped reduce the error in the 
solutions. 
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Figure 8.12 
Bx (left) and Bz (right) along a profile running in the x-direction at a height 
of 12m above the spheroid centre (x = 0) for susceptibilities of χ = 0.01 
(top), χ =1 (middle) and χ =100 (bottom). 
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Figure 8.13 
Bx (left) and Bz (right) differences (Bnumerical − Banalytic) along a profile 
running in the x-direction at a height of 12m above the spheroid centre (x = 

0) for susceptibilities of χ = 0.01 (top), χ =1 (middle) and χ =100 (bottom). 
 
 
8.3.3 Profiles through a prolate spheroid 
 
Here, the response of interest is that within the spheroid. Stratton (1941) shows that the induced 
field inside the magnetic spheroid is uniform and parallel to the inducing field H0 and is given 
by 
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In (8-2), µ1 is the spheroid permeability and µ2 is the background permeability. With 
µ1 = µ0(1+χ)  and  µ2 = µ0, (8-2) becomes 
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where the factors multiplying χ are the self-demagnetization factors referred to in Clark and 
Emerson (1999): 
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The secondary flux is calculated as 
 
 Bs = B − B0 = µH − B0        (8-7) 
 
and therefore requires knowledge of the model permeability at each observation location. 
 
Below, Figures 8.14 and 8.15 show flux profiles through the spheroid for susceptibilities of 
χ = 0.01 and χ =100 respectively. These profiles would intersect the exact spheroid boundary at  
x = ±5 and  z = ±10. However, due to the finite cell sizes, the boundaries of the discrete body lie 
at  x = ±4.5  and  z = ±9.5. 
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Figure 8.14 
Flux profiles running in the x-direction (left) and z-direction (right) through the 
centre of a spheroid (x = z =1) with susceptibility χ = 0.01. There is one datum per 
grid cell for the numerical solutions. 

 
 

 
Figure 8.15 
Flux profiles running in the x-direction (left) and z-direction (right) through the 
centre of a spheroid (x = z =1) with susceptibility χ =100. There is one datum per 
grid cell for the numerical solutions. 
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As expected from the results of Section 8.2, errors in the FVD solutions increase with 
susceptibility. From (8-5) and (8-7), the theoretical value for the internal flux for the high 
susceptibility spheroid is  Bint = (112 0 178)T, which has a magnitude of 288T. The values given 
by the FVD solutions are reasonably close to these theoretical values. As expected, the 
consistency between theory and the FVD solutions was increased with refined discretization. 
 
The profiles in Figures 8.14 and 8.15 show concordance with the interface conditions 
introduced in Section 2.3. The normal component of the flux should be continuous across an 
interface at which the susceptibility is discontinuous. The tangential component of the flux 
should be discontinuous across such an interface. In Figures 8.14 and 8.15, the top-left and 
bottom-right profiles show components normal to the interface (i.e. the boundary of the 
spheroid). The top-right and bottom-left profiles show components tangential to the interface. 
 
Although the susceptible body in the discrete model is only an approximation of a spheroid, the 
FVD solutions contain an almost uniform internal flux with the exception of some edge effects. 
This is evident in Figures 8.16 through 8.19 below, which show identical vector plots as in 
Figures 8.8 through 8.11 but for the flux formulation solutions. The outline of the discrete body 
is indicated by a solid black line. 
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Figure 8.16 
A vector plot for a discretized spheroid in an inclined inducing field. 
The plot is a vertical cross-section and the spheroid susceptibility is 
χ = 0.01. The fluxes were calculated using the flux formulation. 

 



 

 97 
 

 
Figure 8.17 
A vector plot for a discretized spheroid in an inclined inducing field. 
The plot is a horizontal cross-section and the spheroid susceptibility 
is χ = 0.01. The fluxes were calculated using the flux formulation. 
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Figure 8.18 
A vector plot for a discretized spheroid in an inclined inducing field. 
The plot is a vertical cross-section and the spheroid susceptibility is 
χ =100. The fluxes were calculated using the flux formulation. 
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Figure 8.19 
A vector plot for a discretized spheroid in an inclined inducing field. 
The plot is a horizontal cross-section and the spheroid susceptibility 
is χ =100. The fluxes were calculated using the flux formulation. 

 
 
8.3.4 Summary 
 
The tests performed in Section 8.3, along with those in Section 8.2, have demonstrated the 
competency of the FVD and integral solutions to the forward problem, provided the grid is 
designed appropriately. However, there remains an issue relating to the incorporation of the 
prescribed boundary conditions. This will now be discussed. 
 
 
8.4 Consistency of the boundary conditions 
 
Recall from Chapter 3 that for the FVD methods the inducing flux enters the problem through 
the boundary conditions. The normal component of the inducing flux is prescribed on the grid 
boundary but no attention is given to the tangential components. It is desired that the fluxes 
calculated by the FVD methods be consistent with these tangential components. 
 
One may consider the approach of specifying the tangential fluxes just beyond the boundaries to 
force this “consistency of the boundary conditions”. However, one can show that doing so only 
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reduces the effective problem by one layer of cells. Refer to the two-dimensional problem in 
Figure 8.20 below. Given the normal and tangential boundary fluxes (solid arrows in Figure 
8.20) on and just below the original (larger) grid, the normal fluxes one cell deeper (i.e. dashed 
arrows in Figure 8.20) can be solved through direct use of the discrete divergence equation 
without any knowledge of the model susceptibilities. Hence, specifying the normal and 
tangential boundary fluxes on and just beyond the original grid boundary is practically 
equivalent to specifying the normal boundary fluxes on the smaller grid boundary (i.e. the 
shaded region in Figure 8.20). 
 
 

 
Figure 8.20 
Specification of normal and tangential fluxes 
on and just below the grid boundary for the 
flux formulation. 

 
 
A grid was designed that would help reduce solution errors associated with discretization and 
boundary condition accuracy. This symmetric grid contained 513 cells of varying dimensions, as 
illustrated in Figure 8.21 below. 
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Figure 8.21 
A symmetric grid containing 513 cells of varying dimensions with a central 
susceptible region containing 53 cells. 

 
 
A central, susceptible, cubic body was placed in the grid, as indicated in Figure 8.21. The 
boundary conditions used were those calculated through the congruous sphere method of 
Section 4.2. These boundary flux values were compared to those calculated using the integral 
domain solution of Chapter 7. This comparison indicated that the grid was large enough that any 
modelling inaccuracy due to boundary condition inaccuracy could be neglected. The normal 
flux was prescribed on the grid boundary and the goal was to investigate the flux tangential and 
close to the boundary. If the consistency of the boundary conditions is withheld, then the 
tangential flux should equal that from the congruous sphere (within a small percentage of 
expected error). 
 
The profiles for the numerical solutions were positioned along (i.e. parallel to) the grid 
boundaries one half cell away, as indicated in Figure 8.21. The central cubic susceptibility 
considered was χ = 0.01 and the inducing flux used was B0 = (0,0,100)T. A low susceptibility 
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value was used to reduce the inaccuracy associated with large susceptibility values. The location 
of the profiles are as depicted in Figure 8.22 below. 
 
 

 
Figure 8.22 
A schematic diagram of profile positioning for the test of 
the consistency of the boundary conditions. 

 
 
Profile 1 measures Bx along a profile in the x-direction along the top (-z) grid boundary. Profile 
2 measures Bz along a profile in the x-direction along the western (-y) grid boundary. Profile 3 
measures Bz along a profile in the z-direction along the western (-y) grid boundary. Below, 
Figure 8.23 shows these profiles of the flux component tangential to the closest grid boundary 
for the model in Figure 8.21. 
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Figure 8.23 
Single component flux (left) and flux difference (Bnumerical − Bdipole) (right) 
profiles for a central cubic body of susceptibility χ = 0.01. Profile 1 (refer to 
Figure 8.22) is at top, profile 2 is at middle and profile 3 is at bottom. 

 
 
As desired, the solution for the tangential flux near the grid boundaries is consistent with the 
known solution. When similar tests were performed with no central susceptible body (i.e. the 
entire model had permeability of free-space), the resulting difference profiles were zero profiles 
(plus a negligible level of error due to machine precision and rounding). These results indicate 
that the method is withholding the consistency of the boundary conditions. 
 
 
8.5 Conclusion 
 
Three methods have been developed for solving the full magnetostatic forward problem: a 
solution in the integral equation domain and two FVD solutions in the PDE domain (i.e. the flux 
and field formulations). All three solution methods suffer from inaccuracy due to finite 
discretization. This source of inaccuracy has less effect in the integral solution. Furthermore, the 
FVD solutions suffer from inaccuracy dependent on the model permeability values, whereas the 
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integral solution does not. These methods can now be considered for use within an inversion 
algorithm, to be discussed in Chapter 9. 
 
A tradeoff exists between solution accuracy and solution complexity. Complex forward 
modelling methods that are very accurate yet relatively slow are not optimal for use in an 
inversion algorithm, in which the forward solution must be calculated many times. What is 
required is a fast method that is accurate enough to provide reasonable inversion results. 
Therefore, the relatively fast FVD methods will be used and the advice in Section 6.4 will be 
followed to increase the accuracy of the forward solutions. 
 
Of the FVD methods, the flux formulation is more appropriate than the field formulation for 
numerical solution of the magnetostatic forward problem. The flux formulation is generally 
more accurate for the intended applications of modelling the magnetic response for high 
susceptibilities. This was theorized in Section 6.3 and is evident in the test results in the current 
chapter. Initially, however, both formulations were considered for use in the inversion 
algorithm. 
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Chapter 9 

Inversion 
 
9.1 Introduction 
 
Now that a refined and thoroughly tested solution to the forward problem is available, it can be 
used within an inversion algorithm. Before proceeding, I return to the summary of the FVD 
methods for solution of the forward problem from Section 5.3 and 5.4. For the secondary flux 
formulation, the discrete equations to solve for the potentials and fluxes within the discrete grid 
are 
 
 DMGφs = −(µ0

-1M − I)B0 + g        (9-1a) 
 Bs = MGφs + (µ0

-1M − I)B0        (9-1b) 
 
For the secondary field formulation, the equations are  
 
 DMGφs = −D(M − µ0I)H0 + g       (9-2a) 
 Hs = Gφs          (9-2b) 
 
Recall from Section 5.5 that the magnetostatic forward problem in (9-1a) or (9-2a) can be 
written as the system 
 
 A(m)u = q(m)          (9-3) 
 
where m is the model of the spatial distribution of magnetic susceptibility within the Earth and 
u is a vector of unknown scalar potentials within the discrete grid. Once u is determined, the 
data of interest (i.e. certain flux components at specified locations) are calculated through some 
nonlinear operation, which will be written as 
 
 [ ] [ ])()( mb  umCBd s +== QQpred        (9-4) 
 
Here, dpred is the data predicted from the Earth model. The matrix C and vector b convert the 
potentials in u into the secondary flux values Bs throughout the discrete grid. This step 
corresponds to (9-1b) and (9-2b). The function Q then interpolates for specific flux quantities at 
specified measurement positions. 
 
(9-3) and (9-4) can be combined to write 
 
 [ ])()()()(][ 1 mb  mqmAmCmd +== −QFpred      (9-5) 
 
F is the nonlinear forward modelling operator that maps from model space to data space. 
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As discussed in Section 1.1.2, the inverse problem is one of determining a feasible distribution 
of subsurface susceptibility, m, that could have given rise to magnetic survey data, dobs. A 
solution to this inverse problem will now be discussed. 
 
 
9.2 An unconstrained optimization approach to the inverse problem 
 
9.2.1 Non-uniqueness 
 
The principal difficulty in finding a solution to the magnetic inverse problem is its inherent non-
uniqueness. There are infinitely many models that could adequately reproduce the data and there 
are a number of different sources of this non-uniqueness. First, a consequence of Gauss's 
theorem is that if a field distribution is known on the boundary surface of a region, there are 
infinitely many equivalent source distributions in the region that can produce the known field 
(Li and Oldenburg, 1996). A second important source is the fact that the number of survey 
measurements is finite and the data contain some level of inaccuracy. Therefore, the data only 
needs to be fit to a certain degree, defined by their expected errors. 
 
9.2.2 The discrete Earth model 
 
The three-dimension Earth region of interest is divided into a large number of discrete cells, 
each with constant susceptibility χi, so that complicated bodies can be constructed. The cells 
need to be small enough that their size does not significantly affect the final outcome of the 
inversion. The number of model cells, nc, is set much larger than the number of data, N. The 
number of unknowns χi is then larger than the number of equations in (9-5) and the inverse 
problem is underdetermined. Therefore, the system (9-5) has infinitely many solutions for m 
and, as such, the inherent non-uniqueness is allowed for. 
 
9.2.3 Dealing with non-uniqueness 
 
Although there are infinitely many models that can adequately reproduce the data, many of 
these will be unreasonable for a specific application. To reduce the number of acceptable 
models, the requirements for a feasible model are considered. The first is that the data predicted 
by the recovered model should fit the observed survey data to within a degree justified by their 
estimated uncertainties. The second requirement is that the recovered model should be 
compatible with any a priori knowledge of the subsurface geology or physical property 
distribution. This often requires that the model be smooth in all spatial directions. 
 
As discussed in Li and Oldenburg (1996), the inverse problem can be formulated as an 
unconstrained optimization in which an objective function is minimized to obtain a feasible 
susceptibility distribution model. The objective function is designed so that the data are fit to an 
acceptable degree and the recovered model has desired spatial characteristics. It has the form 
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 Φ (m) = Φd(m) + βΦm(m)        (9-6) 
 
where Φ is the total objective function to be minimized; 
 m is the model of subsurface susceptibility; 

Φd is the data misfit which measures how well the model fits the observed data; 
Φm is the model objective function which measures how closely the model conforms to 
the desired spatial characteristics; and 

 β is a regularization parameter. 
 
β takes any positive real value and controls the relative size of the model objective function and 
the data misfit. It is therefore referred to as the “tradeoff parameter”. 
 
The inverse problem is solved by finding the model that minimizes (9-6). Because the survey 
data contains some level of uncertainty, a decision must be made on how well the data predicted 
by the recovered model should fit the observed survey data. Solving the inverse problem 
requires optimization of (9-6) for several values of β until a model is found that yields the 
desired level of misfit. 
 
9.2.4 The model objective function 
 
An appropriate generic model objective function that incorporates the requirements discussed 
above is 
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where R is the region occupied by the model; 

αs, αx, αy and αz are coefficients specifying the relative importance of the various terms; 
m(r) is the model function of subsurface susceptibility; 
mref is a reference function; 
Ws, Wx, Wy and Wz are spatially dependent weighting functions; and 
Wr is a depth weighting function. 

 
This scalar-valued model objective function can quantitatively distinguish between different 
models on the basis of various characteristics. The ability to ensure that the recovered model is 
compatible with known geological information is achieved through the spatial weighting 
functions and the reference model. 
 
The first term in (9-7) is a “smallness” or “closeness” term. It controls the closeness of the 
model m to the reference model mref, or for mref = 0 it controls the “size” of the model (i.e. the 
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total amount of susceptibility in the model). The remaining three terms are “smoothness” terms 
for the x-, y- and z-directions: they control how smooth the model is in the three spatial 
directions. Traditional l2 norms are used to force the susceptibility distribution to vary smoothly 
in accordance with general expectations of the subsurface geology: unnecessary complexity 
should be avoided unless there is a priori geological information suggesting otherwise. Other 
norms can be used if, for a specific application, one wishes to allow non-smooth variation. The 
use of non-l2 measures in a nonlinear inverse problem is discussed in Farquharson (1998). 
 
Depth weighting is crucial for magnetic inversion because without it, the resulting susceptibility 
distribution will be concentrated at the surface. This is a consequence of the non-uniqueness of 
the problem and of the kernel functions for the magnetic problem, which decay rapidly with 
distance from the magnetic medium. Any magnetic data collected above the Earth’s surface can 
be fit with either smaller susceptibility values near the surface or with larger susceptibility 
values at depth. The model objective function has been designed to yield a model with small 
susceptibility values and if left unaltered, any inversion would prefer the near-surface option. 
When depth weighting is introduced to counteract the decay of the magnetic kernels, the 
inversion becomes free to distribute magnetic susceptibility at depth. 
 
9.2.5 The discrete form of the model objective function 
 
To generate a numerical solution, the model objective function in (9-7) is discretized using the 
same grid as used for the forward problem. (9-7) becomes 
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or 
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2

refrefrefmΦ mmWWmmmmW m
T
mm −−=−=     (9-8b) 

 
where m is the model vector of susceptibility values; 

mref is a reference model; 
Ws, Wx, Wy and Wz are spatially dependent weighting matrices; 
Wr is a depth weighting matrix; and 
Wm is a function of the weighting matrices and the α coefficients. 

 
The discrete model objective function can be adjusted to incorporate a priori information by 
way of the reference model, the alpha parameters and the weighting matrices. This allows 
different aspects of model space to be investigated. 
 
Ws is a diagonal matrix with diagonal elements iivw . vi is the volume of the ith cell and the wi 
weights can be increased in regions where there is more confidence that the model should be 
close to the reference model. 
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Wx, Wy and Wz are finite difference operators. From (9-7), the smoothness term for the x-
direction is of the form 
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R xx dv
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2mα          (9-9) 

 
The discrete form of the derivative can be defined as a “slope” between the susceptibility values 
in adjacent cells, which will be called cells i and j. Discretization yields an equation of the form 
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Hence, Wx takes the form of a matrix with elements of the form 
 

x
zyw ix ∆

∆⋅∆
± ,          (9-11) 

 
Similar expressions can be obtained for the elements of Wy and Wz. The wx,i weights can be 
increased to specify regions where there is more confidence that the model should be smooth in 
the x-direction. Again, this allows a prior information to be incorporated into Φm. 
 
The square-root in the elements of Ws, Wx, Wy and Wz results from the fact that these operators 
are applied twice in the discrete objective function (9-8a) and their elements are effectively 
squared. (9-8) is then consistent with (9-7). 
 
9.2.6 The data misfit 
 
Because the survey data contains some level of uncertainty, a decision must be made on how 
well the data predicted by the recovered model, dpred = F[m], should fit the observed survey 
data, dobs. The predicted data should not match the observed data exactly because if either is 
inaccurate then doing so ensures that the recovered model will be incorrect. The goal of the 
inversion is to find a model that reproduces the true data, dtrue (i.e. the data that would be 
measured if measurements were exact). The relationship between the observed, predicted and 
true data is 
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 dobs = dtrue + εmeasurement  
  = dpred + εmodelling + εmeasurement 
  = F[m] + ε         (9-12) 
 
Here, εmeasurement are the measurement errors or noise associated with acquisition of the survey 
data, and εmodelling are the errors associated with the numerical solution to the forward problem.  
 
Let the error in the ith datum have standard deviation σi. The data misfit is defined as 
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dobs is a vector of N observed data values. Wd is an N by N diagonal weighting matrix with the 
ith diagonal element equal to 1/σi. If the uncertainty in the ith datum is large then it requires a 
small weight so that di

pred is not fit close to di
obs. Conversely, if the uncertainty in the ith datum is 

small then it requires a large weight so that di
pred is fit close to di

obs. The 1/σi term in (9-13) 
accomplishes these requirements. 
 
The forward modelling error is more difficult to define than the measurement error and one 
hopes that it may be neglected when defining the standard deviations σi. Use of the flux 
formulation, as opposed to the field formulation, may help with this (recall from Section 8.5 that 
the flux formulation is more accurate for high susceptibilities). 
 
The errors in the survey data are assumed to be Gaussian, uncorrelated and have zero mean. 
Under these assumptions, Φd in (9-13) is a chi-squared variable with expected value N and 
variance 2N. Therefore, a suitable approximate size for the data misfit is N. 
 
9.2.7 The positivity constraint 
 
For magnetics there is more a priori information that is available: because we are interested in 
ferromagnetic material, the model susceptibility values are required to be positive. The problem 
becomes 
 

minimize Φ = Φd + βΦm                 (9-14a) 
subject to χi ≥ 0  ,  i = 1 … nc                (9-14b) 

 
The positivity constraint further reduces the non-uniqueness of the problem and maintains 
physical reality. There are two options for imposing positivity. The first is to use a logarithmic 
barrier approach, discussed in Li and Oldenburg (in press). A second regularization parameter λ 
is introduced and the total objective function is modified by adding a logarithmic barrier term 
that gets large as the χi parameters approach zero: 
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Here, γ  is a constant scaling factor and the barrier parameter, λ, can take any positive constant 
real value. It now becomes undesirable for the optimization process to choose models with 
susceptibilities that approach negative values. Minimization begins with λ large. As iterations 
proceed, λ is reduced so that λ ≅ 0 upon termination of the optimization procedure. The 
originally described objective function in (9-14a) is minimized and yet all model quantities χi 
are positive. 
 
A second option for imposing positivity that avoids the complication introduced by adding a 
second regularization parameter is to re-parameterize the problem. Now, new parameters on the 
range (-∞,∞) are solved for but susceptibilities derived from these parameters lie in the range [0, 
∞). Any operator that maps a model quantity mi∈(-∞,∞) to χi∈[0,∞) is viable. Here, I use the 
square-root operator: 
 

mi = χi
1/2 ( χi = mi

2 ≥ 0)        (9-16) 
 
Instead of dealing with susceptibility values, the model holds values of square-root 
susceptibility. Square-root values are dealt with exclusively throughout the inversion algorithm. 
Only at the conclusion of the optimization process is the final recovered model of susceptibility 
values calculated from the square-root values, thus resulting in an all-positive final model. 
 
Positivity can also be introduced through use of the natural logarithm of susceptibility: 
mi = ln(χi), mi = exp(χi) ≥ 0. However, the logarithmic function is much less sensitive at high 
values of susceptibility and is therefore less appropriate. 
 
As discussed in Gill, Murray and Wright (1995), one must take care when eliminating 
constraints through such a transformation of the problem. Some general difficulties that may 
arise are an increase in the degree of nonlinearity of the problem, an introduction of additional 
local minima and stationary points, and the Hessian may become singular or ill-conditioned in a 
region of interest. These may make the problem more difficult to solve. However, a major 
advantage provided by this method is the simplification in coding compared to the logarithmic 
barrier alternative. If is for this reason that positivity was imposed in this thesis though use of 
the square-root transformation. 
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9.3 An iterative approach to the optimization problem 
 
9.3.1 A Gauss-Newton approach 
 
The resulting optimization problem is nonlinear and requires an iterative approach. A standard 
Gauss-Newton approach is chosen in which a perturbation direction δm is calculated at each 
iteration k and the model is updated as 
 
 m(k+1) = m(k) + δm         (9-17) 
 
Introduction of the positivity constraint through re-parameterization creates some complications 
in the process. Here, a discussion of the Gauss-Newton method is given without including the 
positivity constraint. Subsection 9.3.2 discusses the complications introduced by the re-
parameterization. 
 
The total discrete objective function to be minimized is 
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where the factors of one-half have been introduced to simplify the derivatives. Using the 
equalities 
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the gradient function can be written as 
 
 ( ) ( )ref
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Here, J is the sensitivity matrix, defined as 
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which indicates how the data predicted by the model changes as the model changes. Calculation 
of the sensitivity matrix is a major aspect of the inverse problem and is covered in Chapter 10. 
 
Continuing from (9-21), the Hessian is defined as 
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 ( ) ( ) mmddddmm WWJWWJdmWWJgH TTTTT ][~~ βF obs ++−∇=∇=    (9-22) 
 
The Gauss-Newton method makes the approximation 
 
 F[m+δm] ≅ F[m] + Jδm        (9-23) 
 
(9-23) is a Taylor expansion truncated to first order. The assumption is also made that 
 

J(m(k)+δm) ≅ J(m(k))          (9-24) 
 
(9-24) will be a good approximation provided the model perturbation αδm in (9-17) is not too 
large. Thus, ∇mJT is set to zero and the first term in (9-22) is neglected. This approximate 
Hessian is 
 
 HWWJWWJB mmdd

~~ TTT ≅+= β        (9-25) 
 
which is symmetric. The Gauss-Newton method combines (9-17) and (9-18) and solves for δm 
that minimizes Φ : 
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m(k) is the current model iterate. To simplify the discussion, the superscript will be temporarily 
dropped from m. To find the minimizer δm, the gradient of Φ  in (9-26) with respect to δm is 
set to zero and (9-23) and (9-24) are used to yield 
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           (9-27) 
Hence, the model perturbation δm is obtained by solving 
 

)(~)(~ )()( kk mgmmB −=δ         (9-28) 
 
In using this approach, one assumes that the computational costs involved in retaining the 
(∇mJT) term in (9-22) are not significantly outweighed by the potential gain in convergence of 
the inverse solution. This will be the case when near the optimal solution. The assumption (9-
23) will also be more appropriate when near the optimal solution and therefore, the inversion 
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algorithm was designed to stay close to the optimal solution at all times (as will be discussed in 
Section 9.7). 
 
In practice, the model is updated as 
 

m(k+1) = m(k) + αδm         (9-29) 
 
where the scalar α is determined by a line-search. The Gauss-Newton method approximates the 
objective function in the local vicinity of the current model as a quadratic function. The method 
then calculates the optimal position for this quadratic function and sets the perturbation 
direction toward that location. Therefore, the best value of α is expected to be close to unity, 
especially if the objective function is locally quadratic in nature. However, a line-search should 
be used to ensure that αδm is a descent direction (i.e. the perturbation in (9-29) reduces the 
objective function). 
 
An iterative method is required to solve the over-determined system (9-28). Solving (9-28) at 
the kth iteration is equivalent to solving the least squares problem 
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which is of the form  Ax = b. The Conjugate Gradient Least Squares (CGLS) algorithm is used 
to solve (9-30). CGLS is discussed in Paige and Saunders (1982), Hestenes and Stiefel (1952) 
and Björck, Elfving and Strakoš (1998). The pseudo-code for the CGLS solver, adapted from 
CGLS1 in Björck, Elfving and Strakoš (1998), is provided in Figure 9.1 below: 
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end
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Figure 9.1 
The Conjugate Gradient Least 
Squares method. 

 
 
The CGLS routine is started from some initial guess (x(0) in Figure 9.1). The initial guess used 
was a zero vector. The major computational requirements of the method involve two matrix-
vector products and two vector dot products per iteration. The two matrix-vector products 
require computation of the products Jx and JTx for some vector x. In fact, the matrix J never 
needs to be constructed, which greatly simplifies the solution. This is discussed further in 
Section 10.5. 
 
The stopping criterion chosen is not the norm of the residual vector r(k) in Figure 9.1. The 
residual norm is a measurement of the solution accuracy for (9-30). The stopping criterion 
chosen provides a measure of the solution accuracy for the equation of interest in (9-28). The 
residual norm is guaranteed to decrease monotonically with k. However, the stopping criterion 
can exhibit large oscillations when the condition number of A is large (Björck, Elfving and 
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Strakoš, 1998). Typical CGLS convergence curves for solution of (9-30) are shown in Figure 
9.2. 
 
 

 
Figure 9.2 
Typical CGLS convergence curves for the relative residual and the stopping criterion 
plotted on linear (left) and logarithmic (right) vertical axes. 

 
 
As expected, the relative residual norm decreases monotonically in this example. Furthermore, 
the stopping criterion shows oscillating behavior. This was a common occurrence. Often, the 
stopping criterion can drop to an acceptable value while the residual norm remains close to its 
initial value. This makes a stopping tolerance on the residual norm a poor choice. 
 
In the inversion code, the CGLS algorithm was continued up to a maximum number of 
iterations while looking for a stopping criterion below a specified tolerance. Because the 
stopping criterion oscillates, the best solution (i.e. the solution with the lowest value of the 
stopping criterion) my not be the final solution. Therefore, the best solution is saved in memory 
until completion of the procedure. 
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9.3.2 Complications arising from the positivity constraint 
 
Recall from Section 9.2 that positivity is imposed through a re-parameterization of the problem. 
Instead of dealing with susceptibility values, the model holds values of square-root of 
susceptibility. Consider two model vectors m and k with 
 
 ( )T21 ,,, ncχχχ K=k                   (9-31a) 

 ( )T21 ,,, ncχχχ K=m                  (9-31b) 
 
such that 
 
 k = m2                    (9-32a) 

m = k1/2                   (9-32b) 
 
Here, a superscript on a vector denotes an element-by-element to-the-power-of operation. The 
objective function should always deal with (e.g. measure differences between) susceptibility 
values and is therefore 
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However, throughout the inversion algorithm, m is dealt with exclusively. Perturbations are 
made to the square-root values, which are allowed to be positive or negative. Only at the 
conclusion of the optimization process is the final recovered model of susceptibility values 
calculated from the square-root values in m using (9-32a). The squaring operation results in an 
all-positive recovered susceptibility model. 
 
Use of this method results in some complications to the Gauss-Newton approach. I now define 
two quantities, Jk and Jm, which are the sensitivity matrices for the models in (9-31a) and (9-
31b) respectively. They are defined by 
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Here, the matrix S is defined as 
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where the function diag(m) takes the elements of the length nc vector m and places them along 
the main diagonal of an nc by nc matrix. (9-35) is easily derived from consideration of (9-31) 
and (9-32) to give 
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Let  Φkkg ∇=~   and  Φmmg ∇=~ . The gradient of the objective function with respect to the new 
model m in (9-31b) is 
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Continuing from (9-37), the Hessian becomes 
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where I use a subscript after a bracketed term being differentiated to indicate that the specified 
quantity is treated as a constant in the differentiation. In (9-38), the following derivation was 
used to obtain the final term: 
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In order to write an equation equivalent to (9-28), the approximate Hessian must now ignore not 
only the higher derivative term in (9-38) but also the final diagonal term. However, because this 
final term contains the gradient, it is not expected to be significant when near the optimal 
solution (where the gradient approaches zero). We then have 
 

SBSB km
~~ =           (9-40) 

 
9.3.3 The Steepest Descent method as backup 
 
Recall from Subsection 9.3.1 that the Gauss-Newton method approximates the objective 
function in the local vicinity of the current model as a quadratic function. The method then 
calculates the optimal position for this quadratic function and sets the perturbation direction 
toward that location. Hence, when seeking a minimum solution to the optimization problem, the 
Gauss-Newton method requires an objective function of positive curvature (i.e. the gradient 
decreases as the objective function decreases). This will be true if B~  is positive definite (i.e. 
contains entirely positive eigenvalues). 
 
As verified by experiment, there are situations in which B~  is not positive definite and the total 
objective function has regions of negative curvature (i.e. the gradient increases as the objective 
function decreases). If situated at such a location, the Gauss-Newton method will fail because 
the resulting perturbation direction will lead toward the maximum of the approximate quadratic. 
Taking such a direction would cause the objective function to increase, which is 
counterproductive to the minimization. 
 
This problem is overcome through use of the Steepest Descent method when negative curvature 
is encountered. The Steepest Descent direction is simply the negative of the gradient. This 
method is fail-safe but can be much less efficient than the Gauss-Newton method in many 
circumstances. 
 
 
9.4 A split model formulation 
 
As discussed in Section 6.4, a responsibly designed grid should have free-space padding cells in 
the outer portion of the grid to increase the accuracy of the approximated boundary conditions. 
There will also be free space model cells in the region of the grid corresponding to the above-
ground air region. The susceptibility of these model cells needs to remain fixed throughout the 
inversion. Furthermore, we may feel that the susceptibility of certain cells is known well enough 
to keep them fixed. 
 
To accomplish this, the grid is split into two regions. An inactive region, RI, contains the outer 
free-space padding region and any other cells to remain fixed during the inversion. An active 
region, RA, contains all the cells with unknown susceptibility values. The model vector is split 
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into mI and mA, which hold the susceptibility values contained in RI and RA respectively. mI and 
mA are length ncI and ncA respectively so that the total number of model cells is  nc = ncI + ncA . 
m can be expressed as 
 
 m = RImI + RAmA         (9-41) 
 
where RI and RA are sparse matrices of ones that combine mI and mA into m. For example, 
consider a small illustration in which the model contains three susceptible cells and the second 
is inactive. (9-41) is then 
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RA is formed from an identity matrix by removing the columns that correspond to the inactive 
cells. Hence, RA contains only zero elements in each row corresponding to an inactive cell. RI is 
formed in a similar manner. One can easily verify that m can be decomposed with these same 
matrices using 
 
 mI = RI

Tm                   (9-43a) 
 mA = RA

Tm                   (9-43b) 
 
For the small example in (9-42) we have 
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For the split formulation, the objective function is changed to 
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ref
obs βFΦ AAmd mmWdmW −+−=      (9-45) 

 
Wm needs to be altered to mW~  to account for the change in size of the model vector on which it 
now operates. The alteration is performed by simply removing the columns of Wm that are 
associated with the inactive cells. The model objective function measurements in (9-45) and (9-
33) are identical provided that mI,ref = mI . 
 
The same procedure of Subsection 9.3.1 can be followed, now taking derivatives with respect to 
mA, to arrive at an equivalent expression to (9-28) to be solved for δmA. With  
δmI = 0, the total model vector m is updated as 
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 m(k+1) = RImI + RA(mA
(k) + αδmA

(k)) = m(k) + αRAδmA    (9-46) 
 
The appropriate sensitivity matrix is now 
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and its transpose is 
 

( ) TTTT JRJRJ AAA ==          (9-48) 
 
The new sensitivity matrix JA is related to the original sensitivity matrix J through the matrix 
RA. When used as a right multiplier, RA simply removes the columns of J that are associated 
with the inactive cells. Similarly, when used as a left multiplier, RA

T removes the rows of JT 
that are associated with the inactive cells. 
 
 
9.5 The regularization parameter 
 
Recall from Section 9.2 that a regularization parameter β is needed to pose the inverse problem 
as an unconstrained optimization problem. β is referred to as the tradeoff parameter: choosing 
its value represents a tradeoff between minimizing the misfit Φd and minimizing the model 
objective function Φm. A typical representation of this relationship is shown in Figure 9.3 
below. This curve, named a “Tikhonov curve”, represents optimized conditions (i.e. 

0),(~ =βmg ) for a continuous range of β values. 
 
 

 
Figure 9.3 
A typical Tikhonov curve. 
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Finding an appropriate value of β that results in a solution that meets our requirements is an 
important aspect of the inverse problem. Because the survey data contains some level of 
uncertainty, a decision must be made on how well the data predicted by the recovered model 
should fit the observed survey data. Solving the inverse problem requires optimization of (9-45) 
for several values of β until a model is found that yields the desired level of misfit, Φd*. The 
inversion process will reduce the data misfit until this target misfit is attained within a certain 
tolerance (this is discussed further in Section 9.7). Hence, the inversion procedure contains two 
levels of iterations: in the outer iterations, β is altered to search for the target misfit; in the inner 
iterations, the model is perturbed to optimize the objective function for the current value of β. 
 
A discrepancy principle method is chosen for defining the target misfit, Φd*. Errors in the data 
are assumed to be Gaussian and uncorrelated with zero mean. Recall from Section 9.2 that under 
these assumptions the expected value of the misfit is the number of data, N. Thus, we expect 
Φd* ≈ N  but to allow more flexibility we specify 
 

Φd* = chifact × N         (9-49) 
 
where the parameter chifact can take any non-zero value but is expected to be close to unity 
(presuming the assumptions on the data errors are accurate). 
 
Adjustments of the multiplication factor chifact can be made so that the target misfit is 
consistent with any knowledge of supplied data errors. If data are noisy or they do not adhere to 
the assumptions made above then the target misfit may have to be larger than N in order to 
obtain an acceptable model. One then sets chifact > 1 so that the data are fit less well. This 
results in susceptibility models that have smaller amplitude and are generally closer to the 
surface. If the data errors have been overestimated then one sets chifact < 1. The resultant 
inversion produces a model that fits the data better and the model will exhibit more structure. 
 
 
9.6 The inversion algorithm 
 
The inversion algorithm is as follows. 
 
Given: 

i) a defined grid with active and inactive regions specified, 
ii) data observations specifying position, flux measurement, flux component and 

estimated uncertainty, 
iii) a reference model, 
iv) the inducing flux, 
v) and a target misfit, Φd

*
 : 
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1) Construct the following invariants associated with the forward problem: 
  D, G, B0 
 These quantities were discussed in Chapter 3. 
 
2) Calculate the following invariants associated with the objective function: 
  Wd, Wm (consisting of Ws, Wx, Wy, Wz and Wr) 
 These quantities were discussed in Section 9.2. 
 
3) Chose an initial model m(0) and estimate an initial beta value β (0). Subsections 9.7.2 and 

9.7.3 discuss how these are performed. 
 
4) Calculate dpred, Φd, Φm, Φ  and ∇mΦ for the current β and m. 
 
5) Calculate a Gauss-Newton model perturbation δm through a CGLS solution to (9-30). 
 
6) Check that δm is a descent direction (i.e. 0~T <mg δ ). If not then revert to a Steepest 

Descent direction. 
 
7) Perform a line-search for the step length α in (9-46) such that Φ (α) is reduced a significant 

amount. The line-search is discussed in Subsection 9.7.4. 
 
8) Update the model as in (9-46) and calculate dpred, Φd, Φm, Φ  and ∇mΦ for the updated 

model m(k+1). 
 
9) If close enough to the optimal solution for the current β then continue to 10). If not, then 

return to 5). This step is discussed in Subsection 9.7.5. 
 
10) Check if the misfit is close enough to the target misfit Φd*. If so, quit and return the current 

model and other pertinent information. If not then continue to 11). 
 
11) If still at the initial beta value β (0) and the misfit is below the target then set 

β = 100β (0)  and reset the model to m(0). Otherwise, if  Φd > Φd*  then reduce β  by some 
amount; if  Φd < Φd*  then perform either a linear or quadratic interpolation between the 
closest known points on the Φd vs. β curve to estimate β*. Return to 4). 

 
Steps 5 through 8 correspond to the inner iterative procedure, in which the model is perturbed. 
Step 11 is the update step for the outer iterative procedure, in which the value of β is altered to 
search for the target misfit. 
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9.7 Practical aspects of the inversion algorithm 
 
9.7.1 Depth weighting 
 
Recall from Section 9.2 that depth weighting is crucial for magnetic inversion because without 
it, the resulting susceptibility distribution will be concentrated at the surface. An immediate 
choice for the depth weighting function W(r) in (9-7) comes from Li and Oldenburg (1996): 
 

W(z) = (z + z0)-3         (9-50) 
 
Here, z is depth below the surface and z0 is some value that can be assessed from knowledge of 
the average survey height. This is an empirical estimate for the linear problem discussed in 
Section 1.2 and Li and Oldenburg (1996). 
 
The depth weighting matrix in the discrete objective function is 
 
 Wr = diag[(z + z0)-3/2]         (9-51) 
 
Here, z is a vector containing the z-coordinates of the centres of each active model cell. This 
depth weighting function will always be applied twice in the model objective function and the 
effective weighting is then consistent with (9-50). 
 
Recall from Section 4.2 that the field of a dipole drops off with distance r as 1/r3. Hence, the 
depth weighting function (9-50) is very good at counteracting the decay of any single isolated 
cell, regardless of the cell susceptibility or cell shape, especially at a significant distance away. 
For the linear problem, the depth weighting function (9-50) is satisfactory. The situation 
becomes more complicated when self-demagnetization effects are included because the cells are 
no longer in magnetic isolation. It is initially unclear how the depth weighting function needs to 
be altered for the nonlinear problem but experiment has shown (9-51) to be reasonable (this will 
be discussed in Chapter 11). 
 
9.7.2 Estimating an initial value for β 
 
It is most efficient to start the inversion algorithm with a value of β that is large enough to make 
the first optimization approximately quadratic so that the Tikhonov curve is approached quickly 
and easily. This can be done by finding a β such that the JTWd

TWdJ term in the approximate 
Hessian is negligible compared to the βWm

TWm term. This assures that the first iteration will 
involve an approximately quadratic system. 
 
Estimates for β (0) are calculated as 
 

rW
JrW

m

d100)0( =β          (9-52) 
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where r is some vector of random values. 
 
9.7.3 Choosing an initial model 
 
The most immediate option for an initial model is the reference model, but a more sophisticated 
approach could be used. However, when an appropriate initial value of β is chosen such that the 
first iteration is approximately quadratic, the choice of initial model makes little difference to 
the efficiency of the inversion. The model obtained after this first iteration will be 
approximately equal to the reference model, regardless of the initial model used. 
 
9.7.4 The line-search for α 
 
After solving for the perturbation direction δm, a line-search for α in (9-46) must be performed 
to determine how far to travel in the δm direction. With Φ =Φ (α),  
the line-search for α begins with Φ (0) and Φ′ (0) (i.e. Φ  and mg δT~  at the current iteration) and 
then calculates Φ (1). If 
 

25.0
)0(

)1()0(
≥

′
−

Φ
ΦΦ  and Φ (1) <Φ (0)      (9-53) 

 
then the value of α =1 is accepted. Otherwise, a quadratic interpolation is used to estimate the 
best value of α. The choice of the criterion (9-53) was arrived at through empirical 
investigation. 
 
If Φ  is still not reduced below Φ (0) after the first quadratic interpolation then further quadratic 
interpolations are performed. If Φ  has yet to be reduced below Φ (0) after several quadratic 
interpolations then it is assumed that the algorithm is close enough to the Tikhonov curve. 
 
Recall from Section 9.3 that for the Gauss-Newton direction, the best value of α is expected to 
be close to unity, especially when the objective function is locally quadratic in nature. However, 
when a Steepest Descent direction is used there is no expected value of α. Therefore, if the best 
α value found thus far is greater than or equal to unity, a “doubling” search (i.e. the opposite of 
a bisection search) can be employed to further constrain the best α value. The current best value 
is doubled and re-checked until the objective function begins to increase.  
 
This more in-depth search procedure ensures that a much larger perturbation can be taken (i.e. α 

>>1) if available. Although one forward solution must be performed for each additional α value, 
the doubling search may reduce the total number of model perturbations required in the 
optimization for the current value of β. Reducing the need to calculate a Gauss-Newton 
perturbation direction eliminates the need for a CGLS solution that may require many forward 
solutions. There is a tradeoff here that is difficult to quantify without further investigation. 
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9.7.5 Searching for m that minimizes Φ 
 
For the current value of β, the model perturbations are terminated if 
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g

g
          (9-54) 

 
for some user supplied tolerance tol1. Here, )(~ ig  is the gradient for the current model iterate and 

)0(~g  is the gradient for the initial model in the current outer iteration. Other possible termination 
criteria include a tolerance on mg δT~  (i.e. the slope in the search direction), a tolerance on how 
much Φ is changing with each model iteration, and a maximum number of model perturbations 
per β value. 
 
Recall from Section 9.2 that introduction of the positivity constraint through a re-
parameterization may make the problem more difficult to solve. For this reason, any inversions 
performed with the rudimentary code that were not thoroughly monitored made use of a very 
small tolerance in (9-44) and allowed many iterations per β value. This may result in 
unnecessary inner iterations, leading to unnecessarily long inversion times, but the algorithm is 
made more robust. For example, there is less chance of the algorithm getting “stuck” in a false 
minimum such as a saddle point or a local low-gradient section. 
 
9.7.6 Searching for an appropriate value of β 
 
In step 11) of the inversion algorithm in Section 9.6, β is reduced as 
 

β 
(n+1) = step × β 

(n)         (9-55) 
 
until the misfit is reduced below the target. The value of step can be specified by the user but the 
default value of 0.5 generally leads to a procedure that stays quite close to the 
Tikhonov curve without taking unnecessarily small steps in β. This is advantageous because the 
approximations made in (9-23) and (9-25) become more appropriate. 
 
When beta has been reduced such that the misfit is below the target, β* can be estimated using 
either a linear or quadratic interpolation between the closest known values. The interpolations 
continue until the current value of β can be accepted. I also allow for a bisection search for β *, 
which is more robust than the interpolation methods because it does not assume a particular 
curvature in the Φd vs. β relationship. 
 
The current value of beta is accepted as the final β * if 
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         (9-56) 

 
for some tolerance tol2. A default value of 0.05 is used but the value can be specified by the 
user. 
 
9.7.7 An initial guess for the forward solution 
 
Recall from Section 9.1 that solution of the forward problem requires solution of a system of 
equations of the form 
 
 A(m)u = q(m)          (9-57) 
 
for the potentials in u. The algorithm used is BiCGStab, which is started from some initial guess 
u(0). The closer u(0) is to the final solution, the shorter the BiCGStab solution time. Hence, in 
cases where a solution is known for a similar problem the known solution can easily be used as 
an initial guess to reduce the BiCGStab solution time. This approach was used successfully in 
the CGLS algorithm and in the line-search for α and this significantly increased the efficiency 
of the inversion algorithm. 
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Chapter 10 

Calculation of the sensitivity matrix 
 
 
10.1 Introduction 
 
The sensitivity matrix J was introduced in Section 9.3. J is defined as 
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which indicates how the data predicted by the model, dpred, changes as the Earth model, m, 
changes. F is the nonlinear forward modelling operator. Calculation of the sensitivity matrix is a 
major aspect of the inverse problem and will now be addressed. 
 
Section 10.2 revisits the flux formulation solution to the magnetostatic forward problem for use 
in an inversion algorithm. Sections 10.3 and 10.4 derive expressions for the sensitivity matrix 
for the total and secondary flux formulations. Practical aspects of performing calculations with J 
are discussed in Section 10.5 and the results for the total and secondary field formulations are 
given in Section 10.6. Difficulties arising from use of total field data (i.e. measurements of total 
field magnitude) are covered in Section 10.7 and Section 10.8 discusses the testing of the 
calculation code. 
 
Recall from Section 9.3 that in order to impose positivity, the model is chosen to contain square-
root susceptibility values. Two model vectors were defined, 
 

( )Tk ncχχχ ,,, 21 K=                   (10-2a) 

 ( )Tm ncχχχ ,,, 21 K=                  (10-2b) 
 
Let 

 
k
kJ k d

dF ][
=           (10-3) 

 
and recall 
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such that 
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∂
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==
d
dF

d
dF ][][        (10-5) 

 
In (10-4), the operator diag(m) takes the vector m and creates a matrix with m on its main 
diagonal. 
 
For simplicity, the model considered in the derivations of this chapter is 
 
 m = (χ1, χ2, χ3, …, χnc)T         (10-6) 
 
If positivity is later applied via a transformation of variables, then the model can be re-defined 
as in (10-2b) and (10-5) can be used to compute the new sensitivity matrix. 
 
 
10.2 Revisiting the forward problem for use in an inversion algorithm 
 
Recall the summary of the flux formulations in Section 5.3. For the total flux formulation, the 
discrete equations to solve are 
 
 DMGφ = DB0 + g                  (10-7a) 
 Bs = MGφ − B0                  (10-7b) 
 
For the secondary flux formulation the equations are 
 
 DMGφs = −D(µ0

-1M − I)B0 + g                (10-8a) 
 Bs = MGφs + (µ0

-1M − I)B0                 (10-8a) 
 
Recall from Section 5.5 that any formulation of the magnetostatic forward problem can be 
written as the system 
 
 A(m)u = q(m)          (10-9) 
 
where u is a vector of unknown scalar potentials within the discrete grid. Recall from Section 
9.1 that once u is determined, the predicted data of interest are calculated through some 
nonlinear operation, which can be written as 
 
 [ ] [ ])()(][ mb  umCBmd s +=== QQFpred                (10-10) 
 
The matrix C and vector b convert the potentials in u into the secondary flux values Bs 
throughout the discrete grid. The function Q then interpolates for specific flux quantities at 
specified measurement positions. For the moment, assume dpred contains single component 
secondary magnetic flux density values (i.e. Bx, By or Bz). In this case, Q becomes a matrix Q 
that performs eight-point linear interpolations and (10-10) can be written 
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 ( ))()(][ mb  umCQ QB   m  d s +=== Fpred                (10-11) 
 
The case for total flux magnitude data is discussed in Section 10.7. 
 
The forward modelling equations for the flux formulations can be written in the general notation 
of (10-9) and (10-11) as follows. For the total flux formulation, 
 

A(m) = DM(m)G                (10-12a) 
 u = φ                  (10-12b) 

q(m) = DB0 + g(m)                (10-12c) 
 C(m) = M(m)G                (10-12d) 
 b = −B0                 (10-12e) 
  
and for the secondary flux formulation, 
 

A(m) = DM(m)G                (10-13a) 
 u = φs                  (10-13b) 
 q(m) = −D(µ0

-1M(m) − I)B0 + g(m)              (10-13c) 
 C(m) = M(m)G                (10-13d) 
 b(m) = (µ0

-1M(m) − I)B0               (10-13e) 
 
In (10-11), the matrix  C = MG  acts on the potentials in u to give flux values on the cell faces. 
The vector b then adds to these fluxes to create the appropriate secondary values in Bs. Finally, 
the interpolation matrix Q calculates the single component secondary flux values at the 
measurement locations from the full set of face-centred flux values in Bs. 
 
 
10.3 Expressions for J from the flux formulation 
 
Recall from the definitions in Chapter 3 that D and G are solely functions of the grid geometry. 
Q depends on the survey locations with respect to the grid coordinates. B0 is a vector of 
inducing flux values. M and g are functions of geometry and of the model susceptibility values 
in m. Therefore, from (10-12) and (10-13), A, C, q and b will be functions of m (with the 
exception that  b = −B0  for the total formulation is not a function of m). With these in mind, use 
of (10-11) allows the sensitivity matrix J to be written as 
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where I use a subscript after a bracketed term being differentiated to indicate that the specified 
quantity is treated as a constant in the differentiation. J is simply a product of the invariant 
interpolation matrix Q with the derivative dBs/dm, which now becomes the quantity of interest. 
 
The derivative with respect to m of (10-9) is 
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Rearranging yields an expression for du/dm 
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In writing (10-16), A-1 is assumed to exist. D is nc by nf (where nc < nf) and can be shown to 
have rank nc. G is nf by nc and also has rank nc. M is an nf by nf full rank diagonal matrix so 
that  A = DMG  is nc by nc and has full rank. Thus, A is non-singular and is invertible. 
 
(10-16) can be substituted into (10-14) to obtain 
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          (10-17) 
 
(10-17) is now dealt with term by term. For both total and secondary formulations, 
 

[ ] [ ]uu GumM
m

DumA
m

)()(
d
d

d
d

=               (10-18a) 

[ ] [ ]uu GumM
m

umC
m

)()(
d
d

d
d

=               (10-18b) 

 
The expressions (10-18a) and (10-18b) hold for both formulations. However, u represents a 
different potential quantity in each. For the total formulation, 
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and for the secondary formulation, 
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The following function is defined to simplify the above expressions: 
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w )()(
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where w is some vector. Because the vector w is treated as a constant in the differentiation, the 
function Ψ(w) is linear. Consequently, after some trivial algebraic rearranging, the total and 
secondary formulation results can both be written 
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where w is a different quantity in each and 
 
 wsecondary  = Gφs + µ0

-1B0 
  = Gφs + Gφ0 
  = G(φs + φ0)                 (10-23) 
  = Gφ 
  = wtotal 
 
as expected. 
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10.4 Derivation of the required elements of J 
 
10.4.1 Derivation of Ψ(w) 
 
The first necessary quantity to derive in order to calculate J is Ψ(w), defined in (10-21). Recall 
from Section 3.6 that for the flux formulation, M has non-zero diagonal elements η that are 
harmonically averaged permeability values of the form 
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From (10-24), the derivative of ηij with respect to a model element χk is 
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where (2-4) was used to give 
 

dµ = µ0 dχ                   (10-26) 
 
Simple expressions for the elements of (10-21) can be obtained from (10-25). The product Mw 
will have the form 
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The element of (10-21) in the ith row and kth column will be 
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resulting in a sparse matrix of the form 
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It may be more advantageous to work in terms of matrices and vectors instead of single 
elements to obtain an expression for (10-21). M can be written as 
 
 M = µ0 diag( (Y(m+1)-1) -1 )                 (10-30) 
 
where a superscript on a vector quantity is used to signify an element-by-element to-the-power-
of operation. Y is an nf by nc matrix that picks out appropriate values of µ-1 from µ0(m+1)-1 to 
create (reciprocals of) the harmonic averaged permeability values: 
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(10-21) now becomes 
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Consider the first derivative on the right hand side of (10-32): 
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The quantity being differentiated is a diagonal matrix of the form diag(d-1) multiplied by some 
vector w. With  d = (d1, d2, …)T  and  w = (w1, w2, …)T, the quantity being differentiated is 
(d1

-1w1, d2
-1w2, …)T. Differentiating the ith term of this vector by dj will give  
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which leads to 
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Evaluation of the second derivative in (10-32) is trivial. The third derivative equals a matrix 
with elements  
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which leads to 
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(10-32) can now be written 
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which is simple to construct, given the geometry dependent matrix Y. Through careful 
consideration of (10-38), (10-31) and (10-29) one can verify that the two methods yield 
identical results. 
 
10.4.2 Derivation of dg/dm for a grid-centred congruous sphere 
 
The second necessary quantity to derive in order to calculate J is ∂g/∂m. Here, an expression for 
this quantity is derived when the boundary conditions are specified through use of the 
congruous sphere method of Section 4.2 with the sphere placed at the grid centre. Extension to 
more complicated boundary condition specification methods is discussed in Subsection 10.4.3. 
 
Recall from Sections 3.5 and 4.3 that the vector g arises in the discretization of the divergence 
equation (3-1a). g has elements that are secondary flux values divided by cell dimensions. These 
secondary flux values are the contributions to the boundary fluxes from the susceptible material 
within the grid as calculated for the congruous sphere. Recall from Section 4.2 that a magnetic 
sphere is equivalent to a magnetic dipole. The congruous dipole has moment m~  defined by 
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where m~  has length m~  and unit direction m̂ ; 

vi is the volume of the ith cell; 
 χi is the susceptibility of the ith cell; 
 
and the summation for V is only over those cells with χ≠0. ξ is a volume-averaged 
susceptibility. Take care not to confuse the model vector m and the dipole moment quantities 
m~ , m~  and m̂ . The secondary flux from the dipole at any point P is calculated using 
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where r is a vector with length r and unit direction r̂  pointing from the dipole to P. The 
moment vector has unit length 
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and therefore, (10-40) can be written as 
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To obtain dg/dm, an expression for dBdip/dm is required. With the dipole placed at the grid 
centre, the bracketed term in (10-42) is only dependent on geometry and B0. Thus, 
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From the definitions in (10-39), 
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is a scalar quantity dependent on m, and vk is the volume of the kth cell. 
 
(10-44) is only valid if  ∂V/∂χk = 0. V is defined as a summation of vi only over cells with χi ≠ 0. 
Hence,  ∂V/∂χk = 0  if and only if  χk ≠ 0. Therefore, the derivation above will not be valid for 
model cells with permeability of free space. This problem can be overcome simply by using 
homogeneous boundary conditions such that ∂g/∂m is not required. Furthermore, the problem 
can be overcome for any choice of boundary conditions through use of the split model 
formulation of Section 9.4 so that ∂g/∂m is no longer required for model cells with χk = 0. 
 
Combining (10-43) and (10-44) gives 
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Each element of g corresponds to a particular model cell. Thus, each element of dg/dm can be 
determined from (10-46) given knowledge of the position and dimensions of the corresponding 
cell. A single element gi of g will have a value of the form 
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where the constants cix, ciy and ciz are either –1, 0 or +1, depending on the location of the ith cell 
within the grid. The i

dipB  terms are flux values on cell faces. Use of (10-46) and (10-47) gives 
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from which an expression for dg/dm is obtained: 
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m
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v is a length nc vector of cell volumes. (10-49) yields a non-sparse, nc by nc matrix with 
nc− (nx−2)(ny−2)(nz−2)   full rows corresponding to the number of cells adjacent to the grid 
boundary. The remaining  (nx−2)(ny−2)(nz−2)  rows are empty. There is no need to compute the 
matrix gvT because it will only be used to multiply some vector x within the CGLS algorithm 
discussed in Section 9.3. The most cost-effective way to compute gvTx is to first perform the 
operation vTx, which yields a scalar. 
 
10.4.3 Options for dealing with the boundary conditions 
 
Recall that the flux from the congruous dipole used to approximate the boundary conditions was 
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In order to obtain dg/dm, an expression for dBdip/dm was required. When the dipole is placed at 
the grid centre, the bracketed term in (10-50) is only dependent on grid geometry and the 
inducing flux and the derivation of dBdip/dm is straightforward. 
 
Recall from Section 4.2 that this approach can be extended to more sophisticated boundary 
condition approximation techniques. These would calculate spatial susceptibility moments in 
order to define the shape, orientation and location of the congruous body. The bracketed term in 
(10-50) would then become a function of both grid geometry and of the model susceptibility 
values. The derivation for dBdip/dm would become much more complicated and the resulting 
calculation of dg/dm would be more time consuming. Because the boundary conditions are 
calculated for each new model iterate in the inversion process, this would ultimately lead to a 
slower inversion process. 
 



 

 139 
 

There is a simple option for removing the need to derive or calculate an exceedingly 
complicated expression for dg/dm. This is to use a less complicated boundary condition 
approximation method when calculating dg/dm but to keep the more complicated method when 
calculating g. Hence, the less complicated method enters into the calculation of J(m(k)) on the 
left-hand-side of (9-30) but the more complicated method remains in the calculation of F[m(k)] 
on the right-hand-side. 
 
Order of magnitude estimates and experimentation have indicated that for most applications it 
may be acceptable to do so. The dg/dm term in (10-22) is comparatively small to begin with. 
Furthermore, the differences in the various options for boundary condition approximation 
become minor provided the user has followed the advice of Section 6.4 and kept the active 
susceptible region separated from the grid boundary by a sufficient number of free space 
padding cells. 
 
A more quantitative method of determining whether or not the above shortcut is appropriate for 
a given scenario is to monitor the quantity 
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where d1

pred is the predicted data when the more complicated method of boundary condition 
approximation is used and d2

pred is the predicted data when the less complicated method is used. 
 
 
10.5 Computing Jx and JTx 
 
Recall from Section 9.3 that at each iteration of the inversion algorithm, a model perturbation 
direction δm is calculated using 
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where m(k) is the model at the current iterate. The algorithm CGLS is used to solve (10-52) and 
this requires computation of the products Jx and JTx for some vector x. The matrix J never 
needs to be constructed, which greatly simplifies the solution. 
 
Now that expressions for J have been derived, methods for calculating the products Jx and JTx 
can be established. From Section 10.3, 
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where w depends on the formulation being used: 
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wtotal  = Gφ                (10-54a) 
wsecondary  = Gφs + µ0

-1B0               (10-54b) 
 
Substitution of (10-38) and (10-49) into (10-53) yields 
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             (10-55) 

 
The derivation for the required elements of J in Section 10.4 considered a model containing the 
susceptibility values of every cell. The actual model used differs in two ways. First, it uses 
square-root susceptibility values. Second, it only holds those values associated with cells in the 
active portion of the grid. Therefore, (10-55) needs to be modified as indicated in (10-5) and (9-
47) to give 
 

( ) ( ){ }
( ) ( ) A

A

SRmYwQMM

SRmYwDMMgvQMGAJ
2

2T1

)1(

)1(
−

−−

++

+−=

diagdiag

diagdiag Kγ
            (10-56) 

 
where S and RA are simple sparse matrices defined in (10-4) and Section 9.4 respectively. 
 
Computation of Jx is performed as follows: 
 

(i) Let  xSRx A=~               (10-57a) 
 

(ii) Let  ( ) ( )xmYwMMz ~)1( 2−+= diagdiag            (10-57b) 
 and  Dzxgvb −= ~Tγ              (10-57c) 
 
(iii) Compute y = A-1b              (10-57d) 
 
(iv) Jx = Q(MGy + z)               (10-57e) 

 
Step (iii) represents one forward modelling operation in which  Ay = b  is solved for y using the 
ILU-preconditioned BiCGStab approach discussed in Section 6.2. 
 
From (10-56), JT is written as 
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where the equalities  MT = M  and  ST = S  have been used (recall that these matrices are 
diagonal). Computation of JTx is performed as follows: 
 

(i) Let  xQz T=               (10-59a) 
MzGb T=               (10-59b) 

 
(ii) Compute y = A-Tb              (10-59c) 
 

 (iii) ( ) ( ) ( ) ySvgRyDzMMwYmSRxJ AA
TTTT2TT )1( γ+−+= − diagdiag          (10-59d) 

 
Step (ii) represents one forward modelling operation in which  ATy = b  is solved for y using the 
ILU-preconditioned BiCGStab approach discussed in Section 6.2. 
 
Through careful choice of multiplication order, all steps in the computation of Jx or JTx can be 
carried out avoiding any matrix-matrix multiplications. Eleven matrix-vector multiplications 
and one vector dot product are necessary for each computation (not including any such 
operations required by the BiCGStab solver). 
 
 
10.6 Results for the field formulation 
 
10.6.1 Revisiting the field formulation 
 
Following the same procedure of Sections 10.2 through 10.5 for the field formulation of Section 
3.7, 
 
 A(m)u = q(m)                 (10-60a) 
 ( ))()(][ mb  umCQ QB   m  d s +=== Fpred              (10-60b) 
 A(m) = DM(m)G                (10-60c) 

C = µ0G                 (10-60d) 
 
The interpolation step (10-60b) for the field formulation is much simpler than for the flux 
formulation because C is no longer a function of the model. Therefore, the hope was that the 
objective function optimized in the inversion process would contain less irregularities than for 
the flux formulation, leading to more efficient inverse solutions. However, because all 
interpolations occur within free space, (10-60b) is expected to be essentially equivalent for both 
formulations. From Section 8.5, the flux formulation is more accurate for high susceptibilities 
and may be more appropriate for use in the inversion algorithm for this reason. Nevertheless, 
both formulations were considered for use in the inversion algorithm. 
 
For the total field formulation, 
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 DM(m)Gφ = DB0 + g(m)            (10-61a) 
 Hs = Gφ − H0             (10-61b) 
 u = φ                  (10-61c) 
 q(m) = DB0 + g(m)                (10-61d) 
 b = −B0                 (10-61e) 
 
and for the secondary field formulation 
 
 DM(m)Gφs = -D(µ0

-1M(m) − I)B0 + g(m)            (10-62a) 
 Hs = Gφs             (10-62b) 
 u = φs                  (10-62c) 
 q(m) = −D(µ0

-1M(m) − I)B0 + g              (10-62d) 
 b = 0                  (10-62e) 
 
The expression for dBs/dm is now 
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10.6.2 Derivation of Ψ(w) for the field formulation 
 
Calculation of (10-63) again requires expressions for Ψ(w) and dg/dm. Expressions for the 
latter are exactly as in Subsection 10.4.2. However, expressions for Ψ(w) differ from those in 
Section 10.4.1. Recall from Section 3.7 that for the field formulation, M has non-zero diagonal 
elements η that are arithmetic averaged permeability values. In Appendix B, these are shown to 
be of the form 
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Again, the derivations will be made for a model of susceptibility values. From (10-64), 
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from which simple expressions for the elements of Ψ(w) in (10-21) can be obtained. The 
resulting sparse matrix is of the form 
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Again, it may be more advantageous to work in terms of matrices and vectors instead of single 
elements to obtain an expression for Ψ(w). M can be written as 
 
 M = µ0 diag(Y1(m +1) + Y2)                 (10-67) 
 
Y1 is an ne by nc matrix that picks out appropriate values of µ from µ0(m +1) to create 
arithmetic averages of permeability. Y2 is an ne by 1 vector that accounts for the extra layer of 
µ0 padding cells that need to be added to the grid for the field formulation. Y1 and Y2 are of the 
form 
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Ψ(w) is 
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which is simple to construct, given the geometry dependent matrix Y1. Through careful 
consideration of (10-69), (10-68a) and (10-66), one can verify that the two methods yield 
identical results. 
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10.6.3 Computing Jx and JTx for the field formulation 
 
Substituting (10-49) and (10-69) into (10-63) leads to an expression for J for an active-set 
model of square-root susceptibility values: 
 

( ){ } A1 SRYwDgvQGAJ diag−= − T1
0 γµ                (10-70) 

 
Computation of Jx is performed as follows: 
 

(i) Let  xSRx A=~               (10-71a) 
 
(ii) Let  xYwDxgvb 1

~)(~T diag−= γ             (10-71b) 
 
(iii) Compute y = A-1b              (10-71c) 

 
 (iv) QGyJx 0µ=                 (10-71e) 
 
Step (iii) represents one forward modelling operation in which  Ay = b  is solved for y using the 
ILU-preconditioned BiCGStab approach discussed in Section 6.2. 
 
From (10-70), JT is 
 

( ){ } TT-TTT
1

TTT
0

T QGADwYvgSRJ A diag−= γµ               (10-72) 
 
and computation of JTx is performed as follows: 
 

(i) Let  xQGb TT=               (10-73a) 
 
(ii) Compute y = A-Tb              (10-73b) 

 
 (iii) ( ){ }yDwYvgSRxJ 1A

TTTTT
0

T diag−= γµ             (10-73d) 
 
Step (ii) represents one forward modelling operation in which  ATy = b  is solved for y using the 
ILU-preconditioned BiCGStab approach discussed in Section 6.2. 
 
 
10.7 Measuring the total flux magnitude 
 
The formation of the sensitivity matrix becomes slightly more complicated when dealing with 
total flux magnitude data. A total flux magnetometer measures the total magnitude of the flux, 
|B|. The total anomalous flux is then calculated as 
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Btotal = |B| − |B0| = |B0 + Bs| − |B0|                (10-74) 
 
where  B0 = (B0x, B0y, B0z)  is a three component vector that describes the Earth’s field, so that 
|B0| is a scalar. In some applications, the assumption can be made that the anomalous secondary 
flux is small compared to the inducing flux B0 so that Btotal can be approximated as 
 
 Btotal ≅ Bs⋅B0                   (10-75) 
 
This assumption may not be appropriate in applications where data measurements are taken in 
close proximity to highly susceptible material (e.g. as with bore-hole data). For (10-75), the 
anomalous total flux magnitude predicted data (i.e. forward modelled data) can be written 
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Here, Bs is the vector of secondary flux values throughout the grid returned by the forward 
modelling code. The matrices Qx, Qy and Qz are those that would be required to interpolate for 
the x-, y- and z-components of the secondary flux at the observation locations. (10-76) describes 
a linear operation and calculation of the associated sensitivity matrix, making use of the results 
of Sections 10.3 through 10.6, is straightforward. However, for (10-74) the total flux magnitude 
predicted data must be written as 
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where the squares and square-root are operations on the elements of the associated vector 
quantities. (10-77) involves nonlinear operations and, therefore, calculation of the associated 
sensitivity matrix is not as straightforward. (10-77) can be rewritten as 
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The sensitivity matrix is now 
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where the subscript and superscript labels on pred
totald  and pred

totalD  have been removed to simplify 
the derivation. With  D = (D1 , D2 , D3 , …, DN)T, 
 

 iji
j

i D
D

D δ2/1
2/1

2
1 −=

∂
∂                   (10-80) 

 
and therefore 
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In order to calculate the second term in (10-79), dD/dm, the following derivative is required: 
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for some direction v∈{x, y, z}. Let  x = y = B0v + QvBs  so that 
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where the following derivation has been used: 
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Combining (10-79), (10-81) and (10-83) yields 
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Hence, to compute the sensitivity matrix when using total flux magnitude data, one only needs 
to compute dBs/dm in (10-22) or (10-63) and then left multiply by 
 

( ) ( ) ( ){ }K+++++= −
ysyxsxtotal QBQQBQBdmQ yx BdiagBdiagdiag 00

1
0)(    (10-86) 

 
 
10.8 Testing the calculation algorithm 
 
The calculation code, using the derived expressions for the products Jx and JTx in the 
proceeding sections, was tested against a brute force, finite difference approach. The test used a 
small, simple model involving a 33 grid of cubic cells. The cell sizes and susceptibility values 
were chosen from uniform random distributions and there was one observation location at the 
centre of the grid. 
 
Such tests showed that the two calculation approaches were always consistent in the calculation 
of the dg/dm and Ψ(w) terms. However, the results were not always consistent for dBs/dm even 
when consistent for dg/dm and Ψ(w). This only occurred when cell dimensions were highly 
varying (i.e. with some cell dimensions being an order of magnitude or more different from 
others). Such inconsistent results could be pushed toward consistency by altering the BiCGStab 
solution tolerance or by altering the finite difference step length. Therefore, the inconsistency 
was assumed to result from some rounding effect in the BiCGStab solution, which is required in 
the calculation of dBs/dm but not for dg/dm or Ψ(w). One would very rarely (if ever) use a grid 
containing such highly varying cell dimensions. Therefore, the conclusion was made that the 
calculation algorithm for Jx and JTx of this chapter was sound. 
 
To test the calculation code with a more practical model, a grid of 333 cubic cells with 1m 
dimensions was created with a central susceptible cell with χ =1. Total flux magnitude data are 
calculated 5m above the centre of this body across a 10m square grid with one datum per grid 
cell (i.e. the number of data, N, is 100). The inducing flux used was B0 = (1,1,1). The sensitivity 
matrix calculated for the single-cell is a column vector of length N. The complete sensitivity 
matrix can be calculated through a finite difference approach or through the analytic methods of 
this chapter by calculating Jx for a vector with a single element of 1. In Figures 10.1 and 10.2 
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below, both solutions are displayed as a data map with each element of J in its corresponding 
data location. The difference between these two maps is displayed in Figure 10.3, which shows 
a confirmatory result. 
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Figure 10.1 
The finite difference solution for J using a secondary flux 
formulation with positivity imposed and with boundary 
conditions calculated using the congruous sphere method. 

 
 

 
Figure 10.2 
The analytic solution for J using a secondary flux 
formulation with positivity imposed and with boundary 
conditions calculated using the congruous sphere method. 
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Figure 10.3 
The difference between the finite difference and analytic 
solutions for J using a secondary flux formulation with 
positivity imposed and with boundary conditions 
calculated using the congruous sphere method. 
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Chapter 11 

Testing the inversion algorithm 
 
 
11.1 Introduction 
 
The inversion code, structured as discussed in Chapters 9 and 10, was coded in MATLAB. 
Testing for the inversion code included inversion of synthetic data for a simple body and 
inversion of survey data collected over a planted UXO target. The survey data for mineral 
exploration from the Osborne mine, introduced in Section 1.4, was not inverted. This problem 
was too large for the MATLAB inversion algorithm to handle within a practical time scale for 
computing power available at the time. 
 
The synthetic test involved a horizontally oriented, elongated rectangular prism. This simple 
target body is similar to that of the spheroid in Section 1.3 and the effects of self-
demagnetization are similar. These include reduction in magnitude of the magnetization and 
rotation of the magnetization direction away from the inducing field.  
 
In the synthetic test, data was first forward modelled and then inverted using the same grid and 
forward modelling methods. This allowed testing of the inversion algorithm regardless of the 
accuracy and legitimacy of the forward solution. Hence, this test served only as an internal test 
of the inversion algorithm itself, not of its adequacy for solving real-world inversion problems. 
 
Recall from Section 10.6 that the interpolation step in the forward solution is simpler for the 
field formulation than for the flux formulation. Therefore, the hope was that the objective 
function optimized in the inversion process would contain less irregularities for the field 
formulation than for the flux formulation. Use of the field formulation would then lead to more 
efficient inverse solutions. However, because all interpolations occur within free space, the 
interpolation step was expected to be practically equivalent for both formulations. This 
expectation was observed in the inversion tests. Although only the results from the flux 
formulation are presented here, the results for the field formulation were practically identical 
and the efficiency of the inversion process (i.e. the time and number of iterations required) for 
both methods was not significantly different. 
 
 
11.2 Inversion of synthetic data for an elongated rectangular prism 
 
Here, the data for a horizontally oriented, elongated rectangular prism was forward modelled 
and then inverted. The grid, synthetic model and data positioning are shown in Figure 11.1 
below. The grid used contained cells of 1m dimension in the inner portion with increased 
dimensions of 1.5m and 2m in the padding cells. The 10m by 4m by 4m target prism was 
discretized by 160 cells. The data were calculated at z = −4.5, a height of 2.5m above the top of 
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the target body, across a 26.5m square area. The total number of grid cells was  nc = 323 = 32768  
and the number of data was  N = 242 = 576. 
 
 

 
Figure 11.1 
The grid, target body and location of data used in the synthetic inversion test. The view is 
an x-z cross-section bisecting the central target body. The inset on the lower right shows 
the central target body as would be viewed in a y-z cross-section. 

 
 
The inducing flux was  B0 = (B0x, B0y, B0z) = (30000, 0, 40000)nT, which has a strength of  
50000nT inclined 53.1° to the horizontal and with zero declination (i.e. in the x-direction). This 
inducing flux was chosen to nearly maximize the rotation of the induced magnetization in the 
azimuthal direction. 
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A small amount of noise, ε, was added to the synthetic forward modelled data, dfwd, so that the 
observed data inverted were 
 

dobs = dfwd + ε          (11-1) 
 
The noise was chosen randomly from a normal distribution with zero mean such that the 
standard deviation for the ith datum, di

obs, was 
 

σi = e1max(|dfwd|) + e2|di
fwd|        (11-2) 

 
where max(|dfwd|) is the maximum absolute value in dfwd. The first term in (11-2) is a floor term 
and the second is a relative term. A value of 0.01 was used for both e1 and e2. The synthetic 
observed total flux magnitude data are displayed in Figure 11.2 below. 
 
 

 
Figure 11.2 
Synthetic observed data map and profile for the first inversion 
test. 
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For the inversion of these data, and for all subsequent inversions discussed in this chapter, the 
flux formulation was used with positivity imposed as discussed in Section 9.2. The alpha 
parameter values were  αs = 0.001  and  αx=αy=αz=1, all spatial weighting functions were 
constant throughout the grid, and a constant zero-valued reference model was used. The 
boundary conditions were calculated without any secondary field approximation (i.e. g = 0). 
 
Here, the active region used in the inversion is indicated in Figure 11.1 and the initial model 
was constant over the active region with a square-root susceptibility value of 0.1. The target 
misfit was  N = 576  and the misfit obtained was  600 = 1.04N, corresponding to a β value of 
375. The data predicted by the recovered model are displayed below in Figure 11.3. 
 
 

 
Figure 11.3 
Predicted data map and profile for the model recovered in the 
synthetic inversion test. 

 
 
For a more comprehensive comparison of the observed and predicted data, consider Figure 11.4 
below. Figure 11.4 shows the observed data used in the inversion, the predicted data, the 
difference between these, and the actual errors that were added to the observed data. 
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Figure 11.4 
Maps and profiles for various data quantities associated with the synthetic inversion test. 
The observed data is shown at top left, the predicted data at top right, the difference between 
these (dobs − dpred) at middle left and the errors added to the observed data (ε = dobs − dfwd) at 
middle right. The profiles for the observed and predicted data are plotted together at bottom 
with the observed data profile in black and the predicted data profile overlaid in grey. 
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The observed data has been fit less well around the positive and negative peak values. This is as 
expected from the form of the standard deviations assigned in (11-2). Furthermore, the 
amplitude of the difference values (dobs − dpred) is close to (i.e. within an order of magnitude of) 
the amplitude of the true errors (dobs − dfwd). This is a favourable result because we are seeking a 
model that reproduces dfwd. 
 
Below, Figures 11.5 and 11.6 show vertical and horizontal cross-sections through the recovered 
model. The cross-sections would exactly bisect the synthetic target body. 
 
 

 
Figure 11.5 
A vertical cross-section through the model recovered in the synthetic 
inversion test. The position of the synthetic target prism is indicated 
by a black and white dotted rectangle. 
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Figure 11.6 
A horizontal cross-section through the model recovered in the 
synthetic inversion test. The position of the synthetic target prism is 
indicated by a black and white dotted rectangle. 

 
 
Essentially identical results were obtained when other flux components (i.e. Bx and Bz) were 
used in the inversions. As expected from the form of the objective function being minimized, 
the recovered model is more smooth than the true synthetic model. Consequently, the 
susceptibilities in the recovered model are lower than that of the target prism. However, the 
volume summed susceptibility of the synthetic and recovered models where close (1600 and 
1672 respectively), which is a favourable result. 
 
There is a certain level of asymmetry in the recovered model that is not characteristic of the 
synthetic model. This can be explained through the non-uniqueness of the inverse problem. The 
level of error assigned to the data was large enough to provide the inversion algorithm enough 
freedom that it was able to minimize the objective function more by moving the central body to 
an off-centred position. Further investigation showed that when the errors assigned to the data 
where reduced, the recovered model became more symmetric with the central body closer in 
spatial alignment to the target prism. 
 
Below, Figure 11.7 shows the behavior of various values of interest to the inverse problem for 
the first synthetic inversion. 
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Figure 11.7 
Values of the total objective function (top), gradient norm (second from top), 
misfit (middle), model objective function (second from bottom), and the slope 
in the search direction (bottom) at each model iteration for the first synthetic 
inversion test. The circled values are those at the beginning of each outer 
iteration (i.e. the initial values for each value of β ). 

 
 
The initial value of β was 1000 and the initial model (i.e. at iteration 0 in Figure 11.7) had high 
Φd and Φm values. Φ was reduced greatly during the first few iterations at the high initial β, as 
expected from the discussion in Section 9.7. Φd and Φm eventually settled to limiting values for 
the initial β as the minimization of Φ continued. Furthermore, both the gradient norm and the 
slope in the search direction reduced in magnitude smoothly toward zero. At iteration 13, the 
objective function was changing slowly enough for the algorithm to break from the inner 
iterative process (i.e. model iterations at a constant β). At this point, Φd was greater than the 
target misfit (Φd* = 576) so the value of β was reduced to 500 and minimization of the objective 
function was continued, beginning with the model at iteration 13. The optimizations at each 
value of β proceeded as for the initial value. After a subsequent minimization with β = 250, Φd 
had been reduced below the target misfit. A bisection search was then entered in order to narrow 
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in on β* (corresponding to Φd*). After optimizing at the first bisected value of β = 375, the 
misfit was close enough to the target and the inversion algorithm quit. 
 
The values of Φd and Φm for the recovered model were 600 and 2.48 respectively. These values 
for the true synthetic model were 300 and 187 respectively, where this misfit value is the misfit 
between the noisy data being inverted and the clean forward modelled data. The two misfit 
values are close, as expected, and the much smaller Φm value for the recovered model indicates 
a consistent solution. 
 
A section of the Tikhonov curve, and other associated curves, calculated around the target misfit 
(i.e. a greater range than provided in Figure 11.7) is shown below in Figure 11.8. 
 
 

 
Figure 11.8 
Plots of the relationships between the misfit, model objective function and 
β for the first synthetic inversion test. The plots are centred around the 
target misfit. In each, the circled datum corresponds to the lowest value of 
β. The Tikhonov curves (at bottom) are plotted on both linear-linear (left) 
and log-log (right) scales. 
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The curve characteristics in Figure 11.8 are as expected. At optimal conditions (i.e. when on the 
Tikhonov curve), Φd increases with increasing β and Φm decreases with increasing β. The shape 
of the Φd vs. β relationship is such that the optional linear or quadratic interpolations for β* 
(discussed in Section 9.7) would be appropriate. The Tikhonov curve exhibits a typical shape 
when plotted on linear axes but not when plotted on logarithmic axes. This has consequence on 
the use of an L-curve method for choosing β, in which an appropriate value is chosen as one 
corresponding to the elbow (i.e. the point of maximum curvature) in a log-log plot. The L-curve 
method is discussed further in Section 12.3. 
 
 
11.3 Inversion of survey data above a planted UXO target 
 
Here, total flux magnitude survey data collected over a planted UXO body was inverted. This 
data was collected with the Multi-Sensor Towed Array Detection System, MTADS, developed 
by the Chemistry Division of the US Naval Research Laboratory. Further information on this 
data and on MTADS can be found in McDonald and Robertson (1996) and McDonald et al. 
(1997). 
 
Regional fields (i.e. background magnetic gradients) had been removed from this data using a 
linear (planar) interpolation through background measurements. The data contain both effects of 
self-demagnetization: reduction in magnitude of the magnetization and rotation of the 
magnetization direction away from the inducing field. The ordinance was a 105mm projectile 
with diameter 10.5cm and length 42.7cm. It was buried with its centre of mass at a depth of 
50cm and was declined and inclined at 45°. The situation is pictured below in Figure 11.9. 
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Figure 11.9 
The buried 105mm projective viewed in a vertical 
cross-section along a 45°E declination. 

 
 
The inducing flux in the region had a strength of 53612nT inclined 67.4° to the horizontal and 
declined –10.7°E: B0 = (20238, –3831, 49506)nT. Hence, the angle between B0 and the UXO 
symmetry axis (i.e. long axis) was 36.3°. The grid used in the inversion contained cubic cells of 
0.13m dimension in the inner portion with increased dimensions of 0.26m in the padding cells. 
The data were calculated at z = −0.25m (i.e. 0.25m above the ground surface at z = 0) across a 
4m by 4m area. The total number of grid cells was  nc = 46×46×33 = 69828  and the number of 
data was  N = 504. The standard deviations assigned to the data were defined as in (11-2) with 
e1= 0.025 and e2= 0. The survey data are displayed in Figure 11.10 below. 
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Figure 11.10 
Map and profile of the observed survey data collected 
above the planted UXO. 

 
 
This data can be fit well by a high susceptibility, prolate, spheroidal body with similar 
dimensions and identical location and orientation as the UXO target. For example, Figure 11.11 
below shows analytic data for such a spheroid with minor axis 0.105m, an eccentricity of 4.07 
(i.e. equal to the length-to-diameter ratio of the UXO) and a susceptibility of 1000. Figure 11.12 
shows the difference between this analytic data and the observed data in Figure 11.10. 
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Figure 11.11 
Analytic data map and profile for a prolate spheroid with 
minor axis 0.105m, an eccentricity of 4.07 and a 
susceptibility of 1000. The observed data profile from 
Figure 11.10 is also included in the profile, with the 
observed data profile in black and the analytic data profile 
overlaid in grey. 
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Figure 11.12 
A map of the difference between the observed UXO data 
and the analytic data for the approximate prolate spheroid. 

 
 
The observed data was inverted and the attained misfit was  6.26 = 0.0124N. The data could be 
fit very well without introduction of complicated, unnecessary structure. This indicates that the 
errors assigned to the data were higher than the actual values. Below, Figure 11.13 shows 
predicted data for the recovered model. The difference between the observed and predicted data 
is shown in Figure 11.14. Cross-sections through the recovered model are shown in Figures 
11.15 and 11.16. 
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Figure 11.13 
Predicted data map and profile for the model recovered in 
the UXO inversion test. 
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Figure 11.14 
A map of  (dobs − dpred)  for the UXO inversion test and a 
comparison of the profiles for these two data sets. The 
observed data profile is black with the predicted data 
profile overlaid in grey. 
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Figure 11.15 
A vertical cross-section through the model recovered in the UXO inversion 
test. The cross-section runs SW to NE (i.e. on a 45°E declination). 
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Figure 11.16 
A horizontal cross-section through the model recovered in the UXO 
inversion test. The cross section is at depth  z = 0.50m. 

 
 
The body recovered bears more resemblance to a low susceptibility, oblate spheroidal body than 
to the high susceptibility, prolate target UXO. The recovery of a compact, low susceptibility 
body that achieves rotation of the magnetization away from the inducing field direction was 
unanticipated. The susceptibilities in the recovered model were low enough to perform a linear 
forward modelling. This yielded data consistent with the predicted data in Figure 11.13 and, 
therefore, the nonlinear forward modelling is not in question. 
 
The unanticipated result can be explained through the non-uniqueness of the inverse problem 
and the way in which this non-uniqueness was dealt with. It can be shown that there are many 
compact spheroidal bodies of various shape, size, orientation and susceptibility that can be used 
to fit the observed data in Figure 11.10. This particular inversion result has recovered a low 
susceptibility, oblate body. Without adding further a priori information about the target body, 
this result is inescapable since the inversion seeks a solution with a small volume-summed 
susceptibility (i.e. the inversion prefers low susceptibility bodies to high susceptibility bodies). 
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11.4 Conclusion 
 
The inversion methods developed were successful in inverting both synthetic and real-world 
survey data collected above regions containing highly magnetic bodies. The inversion algorithm 
and code were concluded to be sound. The survey data used was that collected above a single, 
isolated UXO. This problem was small enough for the MATLAB inversion algorithm to handle 
within a practical time scale (i.e. within several days). The survey data for mineral exploration 
from the Osborne mine, introduced in Section 1.4, was not inverted. This problem was too large 
for the MATLAB inversion algorithm to handle within a practical time scale for computing 
power available at the time. 
 
Appendix C discusses more notable observations from the inversion tests of this chapter. The 
topics discussed in Appendix C leave room for further study. I now move on, in Chapter 12, to 
discuss possible application of, amendment to and alteration of the forward and inverse methods 
developed in this thesis. The advantages of and drawbacks to the various magnetic modelling 
methods are discussed and the thesis concludes with a brief overview. 
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Chapter 12 

Discussion and conclusions 
 
 
12.1 Summary 
 
Both synthetic and real-world examples have indicated the need for full forward modelling and 
inversion (accounting for demagnetization effects) of magnetic data from regions of high 
magnetic susceptibility. The ultimate goal of this research was to invert geophysical magnetic 
data to recover three-dimensional distributions of subsurface magnetic susceptibility of any 
magnitude and geometric complexity. 
 
A full solution to Maxwell’s equations for source-free magnetostatics was developed using a 
finite volume discretization. The Earth region of interest is discretized into many prismatic cells, 
each with constant susceptibility, which allows for models of arbitrary geometric complexity. 
The finite volume forward modelling method is valid for any linear medium and is appropriate 
for modelling the response of highly magnetic objects. The forward modelling method was 
refined and the code was tested against analytical solutions for simple bodies and against a 
slower, more memory intensive full solution for general distributions formulated in the integral 
equation domain. All tests showed the forward modelling method to be sound within expected 
error tolerances. 
 
The finite volume modelling method formed the foundation for a subsequent inversion 
algorithm. In the discretization, many more model cells are used than there are data. As such, 
the inverse problem is underdetermined. The inverse problem was formulated as an 
unconstrained optimization problem in which an objective function is minimized. The objective 
function was designed so that the data are fit to an acceptable degree and the recovered model 
has desired spatial characteristics. The resulting optimization problem was nonlinear and 
required an iterative solution, for which a Gauss-Newton approach was used. Testing for the 
inversion code included inversion of synthetic data for simple bodies and inversion of survey 
data collected over a planted UXO target. All tests showed positive results and the inversion 
algorithm and code were concluded to be sound. 
 
 
12.2 Application of the methods presented 
 
12.2.1 Assumptions made in the forward solutions 
 
The major physical assumptions made in the numerical solution of the forward problem have 
significant consequences to application of the methods presented. Recall from Section 2.2 that 
any magnetic media is assumed to be magnetically isotropic and linear and contain no remanent 
magnetization. Under some conditions, strong ferromagnetic materials exhibit anisotropy and 
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nonlinearity and, as a consequence, remanent magnetization. Before one uses the methods 
presented in this thesis for a particular application, one must determine the validity of the 
assumptions made. 
 
In the low field limit, nonlinearity disappears. In practice, one often accepts linearity as valid as 
long as flux densities do not exceed one Tesla (Bossavit, 1998). For applications in which the 
geomagnetic field is the inducing field, flux densities should be low enough that the assumption 
of linearity can be made. 
 
Due to the assumption of isotropy, one must be careful in applications where minerals 
exhibiting anisotropy are present. If one assumes that mineral grains are oriented randomly and, 
as a result, have no net orientation when averaged on model scales (i.e. model cell size), then 
the overall effect of the anisotropy may be ignored. However, remanent magnetization may still 
be important in such a situation. 
 
For application to UXO problems, any remanent magnetization present in an unexploded 
projectile is often removed upon impact (Nelson, 1998). However, shrapnel often contains 
remanence due to heating during explosion of its source ordinance. Remanent magnetization is 
also problematic in some mineral exploration applications. The direction and strength of the 
remanence may be confined from knowledge of the age and composition of the subsurface rocks 
and this information may be of aid to the problem. 
 
The concepts of anisotropy and remanent magnetization are discussed further in Appendix D, 
along with a brief discussion on possible incorporation of these phenomena into the modelling 
methods. 
 
12.2.2 Application of the methods to linear problems 
 
An FVD solution could be incorporated into a linear inverse solution for materials of low 
susceptibility where self-demagnetization effects are negligible. The full forward solution in the 
integral equation domain is much slower than the flux or field formulation FVD solutions (in 
the differential domain). However, the approximate, linear forward solution in the integral 
equation domain requires much less time than the full integral solution. The linear integral 
solution only requires construction of the dense forward modelling matrix G and a 
multiplication of the model vector m by this matrix. This still requires considerable construction 
time and memory requirements and one may consider the benefits of using an FVD forward 
solution in place of the linear integral forward solution. 
 
One major advantage of the FVD methods is that the forward solution time is not a function of 
the number of data. The size of the system of equations to solve for the scalar potentials is only 
dependent on the size of the model grid. The data are interpolated from these potentials and the 
time required for this second step is negligible in comparison to that required in the solution for 
the potentials. In contrast, an integral domain forward solution time is very much dependent on 
the amount of data. For the linear integral solution, the size of the problem is determined by the 
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size of the matrix G, which is nc (the amount of susceptible model cells) by N (the amount of 
data). Hence, the more data, the longer the linear integral solution time. 
 
To quantify the differences in solution time between the various methods, investigation was 
performed for problems of reasonable size and scope for mineral exploration applications. The 
linear integral forward solutions generally took an order of magnitude longer than the FVD 
forward solutions. Keep in mind that the solution times for the FVD methods depend on the 
accuracy to which the potentials are solved in (6-1). Irrespective of the relative residual 
tolerance or amount of data used, the time difference is large enough to conclude that an FVD 
forward solution is an appropriate replacement for the linear integral forward solution when 
performing a linear inversion. 
 
12.2.3 Application of the methods to dispersed problems 
 
Here, problems are considered in which the region to be modelled contains a dispersed 
susceptibility distribution and, therefore, requires a large number of cells. The various numerical 
solution methods for the full magnetostatic problem were compared for use in such a disperse 
inverse problem. 
 
Often, the full integral forward solution could not be completed due to memory issues. Recall 
that there are 3nc equations for the 3nc unknown magnetization values, where nc is the number 
of susceptible cells. This requires a system to solve of the form  Ax = b  where the matrix A is of 
size 3nc by 3nc. For a problem with a susceptible grid 40 cells by 40 cells by 20 cells this 
equates to 9.216 billion elements in A, which is clearly a cause for concern. In contrast, a major 
advantage of the FVD methods is that they deal with sparse matrices with amounts of non-zero 
elements on the order of the number of model cells. The memory requirements are, therefore, 
much less problematic. 
 
For smaller problems with practical memory requirements, the full integral forward solution 
took one or two orders of magnitude longer than the FVD solutions. Keep in mind that the 
solution times for both methods depend on the accuracy to which the potentials or 
magnetizations are solved in (6-1) and (7-14). Regardless, the time difference is extreme and an 
FVD solution is much more appropriate than a full integral solution for such dispersed 
problems. 
 
A drawback of the FVD methods is that in order to maintain accuracy, a responsible grid design 
should finely discretize from the level of the ground surface up to and beyond the survey height. 
This will significantly increase the problem size when the data are close to the surface compared 
to the depth dimension of the near-surface susceptible cells. In order to decrease the required 
level of discretization in this region, the data could be upward-continued to a higher surface. 
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12.2.4 Application of the methods to compact problems 
 
Here, problems are considered in which the distribution of susceptibility contains one or several 
spatially isolated, compact bodies. This is the situation for UXO applications if the ordinance 
are buried within a non-magnetic soil. In such a situation, it may be more feasible to make use 
of the full integral forward solution. The FVD methods would require a large grid covering the 
entire region of interest plus a number of padding cells outside this region. In contrast, the 
integral solution would only require small grids encompassing each isolated magnetic body. For 
many such problems, the full integral forward solution would be faster than an appropriate FVD 
forward solution. However, when inverting for compact bodies of unknown position and shape, 
the grid would have to be designed as for the FVD methods. Therefore, from the discussion in 
Subsection 12.2.3, the FVD methods would be more appropriate for such an inverse problem. 
 
 
12.3 Possible amendments to the methods presented 
 
12.3.1 Extension to include anisotropy and remanent magnetization 
 
The methods in this thesis do not consider magnetic anisotropy or the presence of remanent 
magnetization. A discussion of these phenomena and how they may be introduced into the 
modelling methods is provided in Appendix D. Introduction of these phenomena would yield a 
much larger and more complicated inverse problem. The question of whether or not to be 
concerned with these phenomena in the inverse problem depends on the application. If the 
geology in the region of interest is known to contain significantly anisotropy on scales similar to 
model cell dimensions then this information needs to be incorporated into the inversion. If there 
is no anisotropy on any scale then there can be no remanent magnetization. If remanence is 
possible, one needs to determine whether a significantly large and problematic remanent 
magnetization in a direction other than the present inducing field is probable. 
 
12.3.2 Alteration of the inversion algorithm 
 
A first possible alteration to the inversion algorithm would be to use the alternate logarithmic 
barrier method of imposing the positivity constraint. This method was introduced in Section 9.2 
and is discussed in Li and Oldenburg (in press). Although a second regularization parameter 
appears in the objective function to be minimized, which complicates the inversion algorithm, 
this method may be an improvement over the re-parameterization approach. This stems from the 
expectation that in making the re-parameterization of the model to deal with square-root 
susceptibility values, the objective function contains more irregularities and thus leads to less 
efficient inverse solutions. 
  
A second possible alteration to the inversion algorithm would be to allow more options for 
choosing an appropriate value of the tradeoff parameter, β. Recall from Section 9.5 that there is 
a tradeoff between the data misfit, Φd, and the model objective function, Φm. Finding an 
appropriate value of β that results in a solution that meets our requirements is an important 
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aspect of the inverse problem. Three methods of choosing β that have been commonly used in 
the approximate linear inverse problem are discrepancy principle, L-curve, and cross validation 
(CV) methods. All three methods assume that the errors in the data are Gaussian and 
uncorrelated with zero mean. The discrepancy principle method, discussed in Section 9.5, 
requires knowledge of these errors but the L-curve and CV methods do not. 
 
The L-curve method is a heuristic approach to choosing β when data errors are unknown. A 
series of optimizations for a range of β values are performed and the resulting Tikhonov curve 
(refer to Figure 9.3) is plotted using log-log axes. This plot is sometimes called an L-curve. A 
reasonable choice for β may be the value that corresponds to the point of maximum curvature 
on the L-curve (i.e. at the “elbow” of the curve). The model corresponding to this particular 
solution then becomes the inversion result. We do not wish to fit the data too poorly or too well 
and we do not wish to recover a model with too little or too much structure. Hopefully, the L-
curve model will present an acceptable compromise. Unfortunately, there is no guarantee that 
this model will be appropriate or that the L-curve will even contain a pronounced elbow (refer 
to the inversion test result in Figure 11.8). 
 
The CV method is a more rigorous and computationally intensive approach to choosing β when 
data errors are unknown. Oldenburg, Li and Jones (1999) discuss the basics of the CV method. 
The basic CV concept is that a good model should accurately predict any new datum and the 
choice of β  should therefore be the one that generates a model which best predicts all data 
points. Each datum is assumed to have the same level of Gaussian, independent error but the 
individual errors are unknown. For each β value in a chosen range, N inversions are performed, 
each with a different datum omitted. The cumulative data misfit for a certain value of β  (i.e. the 
sum of the misfits for the N inversions with that β value) is called a cross validation. The model 
chosen is the one associated with the value of β with the smallest cross validation and is thus the 
model least affected by any single datum. In practice, an alternate formulation providing an 
identical result is used that is far less computationally intensive. This is the Generalized Cross 
Validation (GCV) method. The specifics of this method are discussed in Golub and von Matt 
(1997). 
 
A third possible alteration to the inversion algorithm would be to use full Newton model 
perturbations. Recall from Section 9.3 that the Gauss-Newton approach neglects the higher 
derivative term in the Hessian when calculating the model perturbations. In a full Newton 
approach, the exact Hessian would be used. Expressions for the exact Hessian can be derived 
from the results in Chapter 10. The equations to solve for the full Newton perturbation could no 
longer be written as a least-squares problem and a tradeoff is introduced: more time would be 
required to calculate the more accurate perturbation directions but taking them may reduce the 
total amount of perturbations required in the optimization. Without further investigation it is 
unclear if a full Newton approach would be a significant improvement or not. 
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12.4 Conclusion 
 
Both synthetic and real-world examples have indicated the need for full forward modelling and 
inversion (accounting for demagnetization effects) of magnetic data from regions of high 
magnetic susceptibility. The ultimate goal of this research was to invert geophysical magnetic 
data to recover three-dimensional distributions of subsurface magnetic susceptibility of any 
magnitude and geometric complexity. The work in this thesis was successful in reaching this 
goal. The inversion methods developed were successful in inverting both synthetic and real-
world survey data collected above regions of high susceptibility. The survey data inverted was 
collected above a single, isolated UXO. This problem was small enough for the MATLAB 
inversion algorithm to handle within a practical time scale. The survey data for mineral 
exploration from the Osborne mine, introduced in Section 1.4, was not inverted. This problem 
was too large for the MATLAB inversion algorithm to handle within a practical time scale for 
computing power available at the time. 
 
The methods developed use several assumptions about the physical properties of the magnetic 
materials involved. Any media is assumed to be magnetically isotropic and linear and contain 
no remanent magnetization. The assumption of magnetic linearity should be appropriate for any 
application in which the geomagnetic field serves as the inducing field. Appendix D suggests 
simple extension of the methods to include anisotropy and presence of remanent magnetization. 
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Appendix A 

Nomenclature 
 
 
The information in this appendix covers the nomenclature conventions for mathematical 
equations used throughout this thesis. 
 
 
A.1 Differential and integral equations 
 
Scalar quantities are symbolized by Greek letters or by italicized Roman letters. Vector 
quantities are symbolized by bold letters. Hats (^) are used to denote vectors of unit length (e.g. 
x̂ , ŷ  and ẑ  are unit vectors in the three Cartesian directions). Individual directional 
components of vector quantities are expressed as either italic or bold type letters with italic 
subscripts to indicate directions: 
 

e.g.    B = Bx x̂  + By ŷ  + Bz ẑ  
 = Bx + By + Bz 

 
 
A.2 Matrix-vector equations 
 
Matrices are symbolized by bold capital letters. Vectors are symbolized by bold lowercase 
letters with the exception of B and H, which contain single component flux and field values 
respectively. Elements of vectors or matrices are denoted by numerical subscripts: 
 
 e.g. B = [B1  B2  B3 … ]T 
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Appendix B 

Discretization for the field formulation 
 
 
B.1 Introduction 
 
In Chapter 3, a numerical solution to Maxwell’s equations for magnetostatics was presented 
using a cell-centred discretization scheme referred to as the “flux formulation”. Section 3.7 
summarized the results for an alternate node-centred discretization scheme referred to as the 
“field formulation”. Here, the complete derivation for the field formulation is provided. 
 
 
B.2 The system 
 
Instead of choosing to work with fluxes in a cell-centred scheme, one could work with fields in 
a node-centred scheme. The problem of interest is governed by two of Maxwell’s equations and 
one continuity equation: 
 

∇⋅(µH) = 0          (B-1a) 
H = ∇φ          (B-1b) 

nHnH ˆˆ 21 ×=×          (B-1c) 
 
The advantage of keeping H in the system instead of discretizing (2-6) directly is that methods 
can be designed to allow for higher order interpolation functions for H, the quantity of interest. 
 
 
B.3 The discrete grid and discrete variables 
 
B.3.1 Nomenclature for the discrete variables 
 
The nomenclature for the discrete variables in the field formulation is exactly as described in 
Subsection 3.3.1 for the flux formulation. 
 
B.3.2 The discrete grid 
 
The orthogonal grid system pictured in Figure B.1 is used for the discretization. 
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Figure B.1 
A single discrete grid cell 
for the field formulation. 

 
 
The coordinate system used has +x in a northerly direction, +y easterly, and +z vertically 
downward. The permeability, µ, is constant within each cell (i.e. piecewise constant) and the 
potentials, φn, are placed at cell corners (i.e. the nodes). The field values, vH l , are placed at the 
centres of the cell edge interfaces: there is one component per edge depending on the edge 
location. This grid leads to a node-centred discretization scheme. 
 
Location of the fields results from (B-1c) requiring continuity of tangential H across cell 
interfaces. The positioning of the potential results from (B-1b): use of central differences to 
calculate ∇φ  results in both ∇φ  and H being defined at the same points in space, as required by 
(B-1b). 
 
B.3.3 Grid coordinates and lengths 
 
Definitions for grid coordinates and lengths for the field formulation are exactly as described in 
Subsection 3.3.3 for the flux formulation. 
 
The three dimensional volume to be modelled is divided into  nc = nx⋅ny⋅nz  rectangular cells, 
which are denoted as being in nx rows, ny columns and nz layers. In the derivations that follow 
it is useful to consider a one dimensional problem and refer to the discretized line in Figure B.2 
below. 
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Figure B.2 
Position and numbering of discrete variables in the 
field formulation for a one dimensional discretization. 

 
 
B.3.4 Variable numbering 
 
Numbering of the variables for the field formulation follows the conventions described in 
Subsection 3.3.4 for the flux formulation. 
 
Let the number of nodes be 
 

nn = (nx+1)⋅(ny+1)⋅(nz+1) 
 
There are then nn unknown φn quantities, nx⋅(ny+1)⋅(nz+1) unknown x

iH  values on the x-edges 
(i.e. edges parallel to the x-direction), (nx+1)⋅ny⋅(nz+1) unknown y

jH  values on the y-edges and 

(nx+1)⋅(ny+1)⋅nz unknown z
kH  values on the z-edges. The number of unknown field values is 

equal to the number of edge interfaces, 
 

ne = nx⋅(ny+1)⋅(nz+1) + (nx+1)⋅ny⋅(nz+1) + (nx+1)⋅(ny+1)⋅nz 
 =      nex             +   ney        +       nez 

 
B.4 Finite volume discretization 
 
As in the flux formulation, a finite volume discretization is used to formulate a numerical 
solution. The equations to discretize are 
 

∫V ∇⋅(µH) dv = 0         (B-2a) 
∫V H dv = ∫V ∇φ dv         (B-2b) 

 
 
B.5 Discretizing the divergence equation 
 
The volumes of integration for the divergence equation are now the dual grid cells, defined so 
that the potentials are at their centres (i.e. they are the Voronoi cells defined by the nodal points 
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of the true grid – refer to Figure 3.9). To approximate (B-2a) it is integrated over each dual grid 
cell. Gauss’s Theorem is applied to obtain 
 

∫V ∇⋅µH dv = ∫S µH⋅n ds = 0        (B-3) 
 
H assumed constant over each dual grid cell face. With field defined as positive-out, the 
integration over a dual cell with centre (xi, yj, zk), divided by dual cell volume, is 
 

V-1∫S µH⋅n dS ≅  (ηi+1/2,j,kHx
i+1/2,j,k − ηi-1/2,j,kHx

i-1/2,j,k)/∆xi-1  
 + (ηi,j+1/2,kHy

i,j+1/2,k − ηi,j-1/2,kHy
i,j-1/2,k)/∆yj-1     (B-4) 

 + (ηi,j,k+1/2Hz
i,j,k+1/2 − ηi,j,k-1/2Hz

i,j,k-1/2)/∆zk-1    = 0 
 
where the subscripted indices on the fluxes indicate their x, y and z locations. The η values are 
arithmetic averages of the permeability around the field quantities. They are of the form 
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kjikjkjikj

x
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   (B-5) 

 
Note that we have arrived at the use of arithmetic averages without having to decide the form of 
the equations to discretize as was necessary in Section 3.6 for the flux formulation. 
 
The boundary conditions are used to close the discretization. In order to simplify the following 
discussion, consider the case where the prescribed boundary fluxes are equal to the constant 
inducing field H0 = (H0x, H0y, H0z). As discussed in Section 3.7, the incorporation of the 
prescribed boundary fields must occur outside of the defined grid of permeable cells (the true 
grid). This requires the addition of a half layer of padding cells to the true grid, all of which 
have permeability of free space, µ0. 
 
A cell on a dual grid boundary face would produce an equation of the form 
 

 (ηi+1/2,j,kHx
i+1/2,j,k − µ0H0x)/∆xi-1  

+ (ηi,j+1/2,kHy
i,j+1/2,k − ηi,j-1/2,kHy

i,j-1/2,k)/∆yj-1       (B-6a) 
+ (ηi,j,k+1/2Hz

i,j,k+1/2 − ηi,j,k-1/2Hz
i,j,k-1/2)/∆zk-1    = 0 

 
or 

 
   ηi+1/2,j,kHx

i+1/2,j,k/∆xi-1  
+ (ηi,j+1/2,kHy

i,j+1/2,k − ηi,j-1/2,kHy
i,j-1/2,k)/∆yj-1       (B-6b) 

+ (ηi,j,k+1/2Hz
i,j,k+1/2 − ηi,j,k-1/2Hz

i,j,k-1/2)/∆zk-1    = µ0H0x/∆xi-1 
 
Similarly, a cell on a dual grid boundary edge would produce an equation of the form 
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   ηi+1/2,j,kHx

i+1/2,j,k/∆xi-1  
+   ηi,j+1/2,kHy

i,j+1/2,k/∆yj-1         (B-7) 
+ (ηi,j,k+1/2Hz

i,j,k+1/2 − ηi,j,k-1/2Hz
i,j,k-1/2)/∆zk-1    = µ0H0x/∆xi-1 + µ0H0y/∆yj-1 

 
and a cell on a grid boundary corner would produce an equation of the form 
 

 ηi+1/2,j,kHx
i+1/2,j,k/∆xi-1  

+ ηi,j+1/2,kHy
i,j+1/2,k/∆yj-1         (B-8) 

+ ηi,j,k+1/2Hz
i,j,k+1/2/∆zk-1    = µ0H0x/∆xi-1 + µ0H0y/∆yj-1 + µ0H0z/∆zk-1 

 
When all such equations (i.e. one for each dual grid cell) are combined, the matrix-vector 
equation obtained is 
 

DMH = q          (B-9) 
 
Here, the divergence matrix D is nn by ne; the vector H is length ne and holds the unknown 
field values; and the vector q is length nn and contains  nn−(nx−1)⋅(ny−1)⋅(nz−1)  non-zero 
elements arising from the prescribed boundary fields. This number corresponds to the number of 
dual cells lying on the boundary of the true grid. 
 
The matrix-vector equation (B-9) can be split into parts: 
 

qHMD =                (B-10a) 

[ ] q
H
H
H

M
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               (B-10b) 

qHMDHMDHMD zzzyyyxxx =++                (B-10c) 
 

The matrices M, Dx, Dy and Dz are as follows. 
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where v

lη  is defined at the same position as vH l . 
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Here, the dual grid cell length ∆x0 enters the discretization because we have added an extra layer 
of padding cells to the grid. The 0th and -1st diagonals of xD~  are filled. xD~  is (nx+1) by nx and 
is diagonally tiled (ny+1)⋅(nz+1) times to create Dx. Hence, Dx is nn by nex. 
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The 0th and –(nx+1)th diagonals of yD~  are filled. yD~  is (nx+1)⋅(ny+1) by (nx+1)⋅ny and is 
diagonally tiled (nz+1) times to create Dy. Hence, Dy is nn by ney. 
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The 0th and –(nx+1)⋅(ny+1)th diagonals of Dz are filled. Dz is nn by nez. 
 
 
B.6 Discretizing the gradient equation 
 
In the field formulation, one does not need to decide the form of the gradient equation to 
discretize as was necessary in Section 3.6 for the flux formulation. The gradient equation is first 
split into three parts, each corresponding to a different Cartesian direction: 
  
 Hx = ∇xφ                   (B-15a) 

Hy = ∇yφ                   (B-15b) 
 Hz = ∇zφ                   (B-15c) 
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Consider (B-15a). The volume of integration for this equation runs along a cell edge in the x-
direction so that an unknown field x

iH  is at the centre of the integration volume. The integral is 
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Assuming that Hx is constant over the integration volume leads to 
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Assuming  ∂φ /∂x ≅ ∆φ /∆x  and dividing by the integration volume yields 
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The matrix-vector equation obtained is 
 

Hx = Gxφ          (B-19) 
 
When (B-15b) and (B-15c) are discretized in a similar fashion, the following system is obtained: 
 
 Hx = Gxφ                   (B-20a) 
 Hy = Gyφ                   (B-20b) 
 Hz = Gzφ                   (B-20c) 
 
which can be combined to give 
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   H    =   G    φ                  (B-21b) 
 
In (B-21b), the gradient matrix G is ne by nn and the vector H is length ne and holds the 
unknown field values. The vector φ is length nn and holds the unknown potentials. The matrices 
Gx, Gy and Gz are as follows: 
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The 0th and 1st diagonals of xG~  are filled. xG~  is nx by (nx+1) and is diagonally tiled 
(ny+1)⋅(nz+1) times to create Gx. Hence, Gx is nex by nn. 
 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

y

y

y

y

G

G
G

G

~

~
~

O
                 (B-23a) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

−

=

−−

−−

−−

−−

11

1
2

1
2

1
1

1
1

1
1

1
1 00

~

nyny hyhy

hyhy
hyhy

hyhy

OO

OO

L

yG         (B-23b) 

 
The 0th and (nx+1)th diagonals of yG~  are filled. yG~  is (nx+1)⋅ny by (nx+1)⋅(ny+1) and is 
diagonally tiled (nz+1) times to create Gy. Hence, Gy is ney by nn. 
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The 0th and (nx+1)⋅(ny+1)th diagonals of Gz are filled. Gz is nez by nn. 
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B.7 Derivation of the secondary field formulation 
 
B.7.1 The total field formulation 
 
Above, a finite discretization was performed on the governing equations 
 

∇⋅µH = 0                   (B-25a) 
H = ∇φ                   (B-25b) 

 
to yield a method of numerical solution. The discrete matrix-vector equations obtained were 
 

DMH = 0                   (B-26a) 
H = Gφ                   (B-26b) 

 
In (B-25), the field, H, and potential, φ, are representative of the total field. That is, they contain 
contributions from both the primary inducing field and the secondary anomalous response: 
 

φ = φ0 + φs                   (B-27a) 
H = H0 + Hs                   (B-27b) 

 
In order to solve for the anomalous secondary field using this formulation, (B-26a) and (B-26b) 
are combined and one first solves for the vector of total potentials, φ, in 
 

DMGφ = q                   (B-28) 
 
The total potentials are then used to calculate the total field through (B-26b) and the secondary 
field is obtained after subtraction of the primary field: 
 

Hs = Gφ − H0                   (B-29) 
 
Because the secondary field values may be considerably small compared to the primary field 
values, some accuracy may be lost through machine precision and rounding problems. To avoid 
this significant difficulty, the secondary potentials can be solved for directly and the secondary 
fields can be calculated directly from these. 
 
B.7.2 Secondary formulation approach 1: formulate first, discretize second 
 
As in the flux formulation, there are two possible approaches to developing a secondary 
formulation in which the secondary potential is solved for directly. Here, the governing 
equations (B-25) are first reformulated to yield equations containing the primary and secondary 
quantities. Consider the primary response to be that with  µ = µ0  and  H = H0 (a constant). (B-
25) is then 
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∇⋅µ0H0 = 0                   (B-30a) 
H0 = ∇φ0                   (B-30b) 

 
For a combined primary and secondary response, (B-25) can be decomposed to yield 
 

∇⋅µ(H0 + Hs) = 0                  (B-31a) 
H0 + Hs = ∇(φ0 + φs)                  (B-31b) 

 
Combining (B-30) and (B-31), and using (2-4) to relate µ to χ, yields 
 

∇⋅µHs = −µ0∇⋅(χH0)                  (B-32a) 
Hs = ∇φs                   (B-32b) 

 
Combining (B-32a) and (B-32b) leads to the div-grad system for the secondary potential: 
 

∇⋅µ∇φs = −µ0∇⋅(χH0)         (B-33) 
 
One can proceed with the finite volume discretization of (B-32) as in Sections B.2 through B.6. 
The gradient equation (B-32b) would yield a similar matrix-vector equation as before: 
 
 Hs = Gφs          (B-34) 
 
The divergence equation (B-32a) is integrated over each dual grid cell and Gauss’s Theorem is 
applied to obtain 
 

∫S µH⋅n ds = −µ0∫S χH0⋅n ds        (B-35) 
 
Note the subscript ‘s’ has been dropped and all quantities are secondary unless otherwise 
indicated (e.g. H0). H is assumed constant over each dual grid cell face and field is defined as 
positive-out. After dividing by the dual cell volume, the left and right integrals in (B-35) over a 
dual cell with centre (xi, yj, zk) are 
 

V-1∫S µH⋅n dS ≅  (ηi+1/2,j,kHx
i+1/2,j,k − ηi-1/2,j,kHx

i-1/2,j,k)/∆xi-1  
 +  (ηi,j+1/2,kHy

i,j+1/2,k − ηi,j-1/2,kHy
i,j-1/2,k)/∆yj-1              (B-36a) 

 +  (ηi,j,k+1/2Hz
i,j,k+1/2 − ηi,j,k-1/2Hz

i,j,k-1/2)/∆zk-1    = 0 
 

V-1∫S χH0⋅n dS ≅  (κi+1/2,j,k − κi-1/2,j,k)H0x/∆xi-1  
 +  (κi,j+1/2,k − κi,j-1/2,k)H0y/∆yj-1                (B-36b) 
 +  (κi,j,k+1/2 − κi,j,k-1/2)H0z/∆zk-1    = 0 
 
The η and κ values are arithmetic averages of the permeability and susceptibility respectively 
around the H quantities and are defined as in (B-5). 
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The secondary boundary conditions are used to close the discretization and the matrix equation 
obtained is 
 

DMHs = −µ0DKH0 + g         (B-37) 
 
where M has non-zero diagonal elements η and K has non-zero diagonal elements κ. 
 
B.7.3 Secondary formulation approach 2: discretize first, formulate second 
 
Here, a secondary formulation is developed though the opposite procedure: discretize first and 
then split the matrix quantities into primary and secondary quantities. (B-27) and (4-9) are used 
to decompose (B-26) into 
 

DM(H0 + Hs) = f + g                  (B-38a) 
H0 + Hs = G(φ0 + φs)                  (B-38b) 

 
The equations for the primary response are 
 

DM0H0 = f                   (B-39a) 
H0 = Gφ0                   (B-39b) 

 
M0 has non-zero diagonal elements  η0 = µ0  so that  M0 = µ0I  (I is an ne by ne identity matrix). 
Substitution and elimination using (B-38) and (B-39) yields 
 

DMHs = D(−M + µ0I)H0 + g                 (B-40a) 
Hs = Gφs                   (B-40b) 

 
B.7.4 Comparison of the Two Approaches 
 
The first approach yielded 
 

DMHs = −µ0DKH0 + g                  (B-41a) 
 Hs = Gφs                   (B-41b) 
 
and the second approach yielded 
 

DMHs = −D(M − µ0I)H0 + g                (B-42a) 
Hs = Gφs                  (B-42b) 

  
(B-41a) and (B-42a) are only equivalent if 
 

µ0K = M − µ0I                 (B-43a) 
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or 
 κ = µ0

-1η − 1                  (B-43b) 
 
with κ and η defined as in (B-5). Because κ and η are arithmetic averages, it is simple to show 
that (B-43b) is equivalent to 
 
 χ = µ0

-1µ − 1                   (B-44) 
 
which is just a rearrangement of (2-4) and, therefore, the two approaches are identical. 
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Appendix C 

Notable observations from the inversion tests 
 
 
This appendix discusses some of the notable observations from the inversion tests of Chapter 
11. The topics discussed here leave much room for further study. 
 
C.1 Depth weighting 
 
Recall from Section 9.7 that the depth weighting function introduced into the inversion 
algorithm was a function appropriate for the approximate linear problem. It was initially unclear 
how the depth weighting function needed to be altered for the nonlinear problem. The 
experiments of this chapter have shown the linear depth weighting to be reasonable. Hence, the 
conclusion can be made that this method of depth weighting should be generally acceptable. 
 
C.2 Practical choice of the initial model 
 
The re-parameterization of the model to hold square-root susceptibility values introduces a 
practical issue with regard to the choice of the initial model. Consider the square-root function, 
pictured in Figure C.1 below. 
 

 

 
Figure C.1 
The square-root function. 

 
 
When situated near the origin (i.e. x<<1 in Figure C.1), large changes in the square-root 
function, sqrt(x), correspond to relatively small changes in x. Therefore, if the initial model 
contains small values, the model perturbation calculated using the Gauss-Newton method and 
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subsequent line-search may be such that although it is a large perturbation in model-space (i.e. 
square-root space) it is a small perturbation in susceptibility space. Neither the susceptibility 
distribution nor the predicted data would change significantly through such a perturbation and 
consequently, neither would the objective function. The inversion algorithm would continue to 
make only minor reductions to the objective function until the model values became large 
enough that the process accelerated to a practical rate. This supposition was confirmed through 
experiment. 
 
To avoid this problem, one may consider the approach of setting the initial model to large 
values throughout the active grid. However, this causes difficulties for cells that are close to the 
boundaries. Any susceptibility placed close to the boundary will have a diminished effect on the 
solution. This is because the prescribed boundary fluxes are invariant and, therefore, have an 
increased effect on the flux values close to them. Investigation showed that when large 
susceptibility values were placed close to the boundary in the initial model, the inversion 
generally failed to remove this susceptibility in the recovered model. This result indicates that 
susceptibility near the boundary does indeed have a diminished effect on the forward solution. 
 
For example, recall the synthetic inversion test of Section 11.2. There, the initial model 
contained a square-root susceptibility value of 0.1 (i.e. χ = 0.01) throughout the active region 
and the susceptibility in the recovered model was concentrated predominantly in a central 
location corresponding to the location of the target prism. Here, inversions were performed with 
an initial value of 1.0 and with all other parameters equal to those in Section 11.2. Below, 
Figures C.2 and C.3 show two horizontal cross-sections through the recovered model at two 
different depths: z = 0m and z = 8m. Refer to the z-axis in Figure 11.5 for the depth location of 
these cross-sections with respect to the target prism. z = 0m corresponds to the centre of the 
target prism and z = 8m lies 6m below the bottom of the target prism. As expected, the inversion 
was not able to completely remove the susceptibilities in the outer grid portion, as evident in 
Figure C.3. 
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Figure C.2 
A horizontal cross-section at z = 0m through the model recovered 
from inversion of the synthetic test data for an initial model 
containing a value of 1.0 throughout the active region. The position 
of the synthetic target prism is indicated by a black and white dotted 
rectangle. 
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Figure C.3 
A horizontal cross-section at z = 8m through the model recovered 
from inversion of the synthetic test data for an initial model 
containing a value of 1.0 throughout the active region. 

 
 
The data predicted by the recovered model are displayed in Figure C.4 below. When the 
susceptible material in the outer region of the recovered model was removed (i.e. set to zero) 
and the data for the central body was modelled, the data was very similar to the predicted data in 
Figure C.4. Figure C.5 shows this forward modelled data and Figure C.6 shows the difference 
between the two data sets (i.e. those in Figures C.4 and C.5). 
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Figure C.4 
Predicted data map and profile for the model shown in 
Figures C.2 and C.3. 
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Figure C.5 
Forward modelled data map and profile for the central 
body shown in Figure C.2. The predicted data profile from 
Figure C.4 is also included in the profile, with the 
predicted data profile in black and the forward modelled 
data profile overlaid in grey. 

 
 



 

199  

 
Figure C.6 
The difference between the data in Figures C.4 and C.5. The 
maximum and minimum values are 579.205 and -664.825. 

 
 
C.3 Regional removal 
 
For the linear inverse problem, if high susceptibility is placed close to the grid boundaries in the 
recovered model it is an indication that a regional in the data was not correctly removed prior to 
inversion. This is discussed in Li and Oldenburg (1998). A regional is some component in the 
data, usually containing long spatial wavelengths, that is due to magnetic material outside of the 
region included in the model grid. The linear inversion algorithm will place susceptible material 
as close as possible to these bodies in order to fit the regional field. The result is high 
susceptibility adjacent to the grid boundary. In such an inversion, the effect on the central model 
region (i.e. the region away from the boundary) is often minor. 
 
In the nonlinear inversion methods, the active model region is often surrounded by an inactive 
region of free-space padding cells. In this situation, the inversion is not free to place susceptible 
material close to the boundaries in order to help fit any existing regional in the data. 
Furthermore, from the discussion in Section C.2, even if the inversion was free to place 
susceptible material close to the boundaries it may not be able to do so such that the regional is 
successfully fit. Hence, it is expected that presence of a regional in the data will significantly 
affect the central model region recovered by a nonlinear inversion. Therefore, regional removal 
from survey data becomes much more important when it is to be inverted with the nonlinear 
methods for the full magnetostatic problem. 
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Appendix D 

Remanent magnetization and anisotropy 
 
 
D.1 Introduction 
 
When any magnetic object is placed in an external magnetic field it will obtain an induced 
magnetization. Unlike diamagnetic and paramagnetic materials, ferromagnetic materials can 
retain a permanent magnetization, or “remanent” magnetization, when the external field is 
removed (Tarling and Hrouda, 1993). Section D.3 discusses the mechanisms that lead to the 
acquisition of remanent magnetization. 
 
An important concept related to remanent magnetization is magnetic anisotropy. Without 
anisotropy, permanent magnetization would not be possible (O’Reilly, 1984). In many magnetic 
materials, the induced magnetization depends on the orientation of the material with respect to 
the applied field (Tarling and Hrouda, 1993). This phenomenon of anisotropy is a result of 
energy minimization. It causes certain orientations of magnetization to be preferred. Anisotropy 
is discussed further in Section D.2. 
  
Possible incorporation of the phenomena of anisotropy and remanent magnetization into the 
modelling methods of this thesis are discussed in Sections D.4 and D.5. 
 
 
D.2 Magnetic anisotropy 
 
There are three types of magnetic anisotropy: magnetocrystalline anisotropy is a function of 
crystal composition, shape anisotropy is dependent on grain shape and size, and strain 
anisotropy results from crystal deformation. 
 
Every ferromagnetic material has certain crystallographic directions (i.e. axes or planes) along 
which the magnetic moments of the lattice ions prefer to lie (Stacey and Banerjee, 1974). This 
phenomena, which depends on the crystal structure, is called magnetocrystalline anisotropy. In 
the absence of an applied field, the magnetization of the material will lie along the preferred 
directions in order to minimize the magnetostatic energy associated with the crystal lattice 
(Tarling and Hrouda, 1993). 
 
Shape anisotropy arises when a magnetic particle lacks spherical symmetry (O’Reilly, 1984). It 
is a product of the magnetostatic forces generated by interaction of the surface charges on the 
particle (Butler, 1992). Shape anisotropy is related to the concept of self-demagnetization, 
introduced in Section 1.1. For example, a prolate, spheroidal magnetic grain will have a shape 
anisotropy leading to a preferred magnetic alignment along its long axis. 
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Strain anisotropy is intimately related to magnetocrystalline anisotropy and results from 
deformation of a crystal lattice due to strain. This effect can modify a pre-existing 
magnetocrystalline anisotropy or can cause an intrinsically isotropic material to become 
anisotropic (Stacey and Banerjee, 1974). Strain anisotropy becomes important wherever 
magnetic rocks are in a process of deformation. 
 
 
D.3 Remanent magnetization and hysteresis 
 
Ferromagnetic material is characterized by hysteresis, or irreversibility of magnetism. In this 
phenomenon, the magnetic polarization of a ferromagnetic material depends not only on the 
field to which it is exposed at a particular instant but also on its magnetic history (Stacey and 
Banerjee, 1974). Hysteresis curves, such as that in Figure D.1 below, demonstrate the 
dependence of rock magnetization on the applied field. The characteristics of a hysteresis curve 
for any substance are determined by the balance between the internal lattice forces and the 
forces exerted by the applied field (Butler, 1992). 
 
 

 
Figure D.1 
A typical hysteresis curve for a ferromagnetic substance. The inset figures show 
spheroidal magnetic grains and their moments within a typical anisotropic 
material. 
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To understand how a magnetic material can obtain a remanent magnetism, or “remanence”, 
consider a rock sample consisting of randomly oriented anisotropic ferromagnetic mineral 
grains within a non-ferromagnetic matrix, as depicted in the insets of Figure D.1. Here, the 
particles are prolate spheroids and their preferred magnetization directions are along their long 
axes. Initially, there is no externally applied field and the mineral grains are in their minimum 
energy states with magnetic moments in the preferred directions. Assuming no prior remanence, 
the combined effect of the randomly oriented particles will be a net magnetization of zero. This 
corresponds to the origin (point ‘O’) on the hysteresis curve in Figure D.1. 
 
Anisotropy produces energy barriers that resist the rotation of the particle magnetic moments 
away from their preferred directions. When an external field, Hex, is applied, the magnetic 
moments of the individual grains are forced to rotate away from their preferred directions and 
toward the direction of Hex. This results in a net magnetization roughly in the direction of Hex 
and corresponds to point ‘A’ in Figure D.1. As the magnitude of Hex is further increased, some 
grain moments will rotate past the energy barriers associated with their anisotropy (i.e. past the 
spheroid short axis symmetry plane). At a sufficiently strong applied field, the magnetization of 
each grain becomes parallel to Hex and the material is said to be saturated, with saturation 
magnetization Ms. This corresponds to point ‘B’ in Figure D.1. When the external field is 
removed, the grain moments will rotate back to their nearest preferred directions (i.e. the nearest 
spheroid long axis). This corresponds to point ‘C’ in Figure D.1. Not all grain moments will be 
in their initial directions and there will result a remanent magnetization, Mr, in the direction of 
the previously applied field. The ratio |Mr|/|Ms| can be used as a measure of efficiency of 
acquiring remanent magnetization for the specific sample (Butler, 1992). To force the net 
magnetization back to zero (point ‘D’ in Figure D.1), an opposing external field must be 
applied. The magnitude of this field, Hc, is called the “bulk coercive force” (Butler, 1992). 
 
Remanent magnetization is not possible without anisotropy. Perfectly isotropic materials do not 
show hysteretic effects and can not retain a remanent magnetization. This is because there are 
no energy barriers preventing randomization of the grain moment directions after removal of the 
inducing field. 
 
There is a temperature called the Curie point above which ferromagnetic properties disappear. 
Above this temperature, thermal agitation overcomes the electron coupling interactions that 
produce ferromagnetic characteristics (i.e. mutual alignment of atomic magnetic moments) and 
the material then behaves paramagnetically (Stacey and Banerjee, 1974). Rocks are magnetized 
by the Earth’s field as they cool and the so-called “thermoremanent magnetization” (TRM) 
acquired (as the temperature decreases below the Curie point and ferromagnetic properties are 
restored) is frequently very stable (Stacy and Banerjee, 1974). The direction of the remanent 
magnetization depends on the geomagnetic field at the time of cooling. 
 
There are several ways that a prior remanent magnetization can be removed from a sample of 
magnetic material. One method is to heat the sample past its Curie temperature and cool. 
Another, important in UXO applications, is “shock demagnetization”, in which a forceful 
collision applies enough energy to the unexploded item to “knock” the prior magnetization out 
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of the object (Nelson, 1998). In either method, the object will re-magnetize, through induction, 
in the direction of the applied field present at the time. This may lead to a remanence at some 
point in the future if the object is reoriented with respect to the Earth’s field. 
 
 
D.4 Modelling anisotropy 
 
The methods in this thesis do not consider magnetic anisotropy. Here, a discussion is provided 
on extension of the methods to include this phenomenon. The question of whether or not to be 
concerned with anisotropy in the inverse problem depends on the application. If the geology in 
the region of interest is known to contain significantly anisotropy on scales similar to model cell 
dimensions then this information needs to be incorporated into the inversion. 
 
In Sections 2.2 and 3.2, Maxwell’s equations for source-free magnetostatics led to the following 
governing equations for the flux formulation: 
 

∇⋅B = 0                   (D-1a) 
B = µ∇φ                   (D-1b) 

 
(D-1b) is valid for any isotropic, linear medium. It is possible to introduce anisotropy into the 
methods presented. In anisotropic materials, the permeability has some directional dependence. 
The permeability can no longer be written as a scalar and becomes the following second-order 
tensor: 
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so that (D-1b) becomes 
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(Tarling and Hrouda, 1993). In (D-2), µij = µji so that there are only six independent components 
of the permeability tensor. If the non-diagonal elements in (D-2) equal zero then (D-3) can be 
split into three simple parts, one for each Cartesian direction. The following governing 
equations are obtained: 
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∇⋅B = 0                   (D-4a) 
Bx = µxx∇xφ                   (D-4b) 
By = µyy∇yφ                   (D-4c) 
Bz = µzz∇zφ                   (D-4d) 

 
The same finite volume discretization of Chapter 3 could be performed with this new set of 
equations. The resulting discrete matrix-vector equations would be essentially unchanged: 
 

DB = f + g                   (D-5a) 
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where (D-5b) is of the form  B = MGφ  with M a diagonal matrix. For the forward problem, the 
number of unknown potentials remains unchanged but there are now three times the amount of 
known model parameters (i.e. µxx, µyy and µzz for each model cell). 
 
Use of (D-4) would yield a much larger inverse problem. A suitable model objective function 
would now have twelve terms instead of the original four. The associated weighting functions 
would allow incorporation of any a priori information about the geology that could have 
consequence on anisotropy (e.g. known directions of foliation). 
 
If the off-diagonal elements in (D-2) are considered, the forward and inverse problems become 
even larger. The governing equations become 
 

∇⋅B = 0                   (D-6a) 
Bx = µxx∇xφ  + µxy∇yφ  + µxz∇zφ                (D-6b) 
By = µyx∇xφ  + µyy∇yφ  + µyz∇zφ                (D-6c) 
Bz = µzx∇xφ  + µzy∇yφ  + µzz∇zφ                (D-6d) 

 
and a finite volume discretization would yield the discrete matrix-vector equations 
 

DB = f + g                   (D-7a) 
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where (D-7b) is of the form  B = MGφ  with M no longer a diagonal matrix. The discrete 
equations and constituent quantities are identical to those derived in Chapter 3 with the 
exception of the matrix M, which remains sparse but now contains three times as many non-
zero elements of homogenized permeability. 
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D.5 Modelling remanent magnetization 
 
The methods in this thesis do not consider the presence of remanent magnetization. Here, a 
discussion is provided on extension of the methods to include this phenomenon. The question of 
whether or not to be concerned with remanent magnetization in the inverse problem depends on 
the application. If there is no anisotropy on any scale then there can be no remanent 
magnetization. If remanence is possible, one needs to determine whether a significantly large 
and problematic remanent magnetization in a direction other than the present inducing field is 
probable. 
 
If remanent magnetization needs to be modelled, a convenient law for low fields (i.e. less than 
1T) is 
 

M = χH + Mr          (D-8) 
 
where Mr is a vector quantity that is not dependent on time or on the magnetic field, H, and is 
zero outside the magnetic material (Bossavit, 1998). The total flux is now the sum of the 
inducing field, B0, an induced component, Bi, and a remanent component, Br: 
 

B = B0 + Bi + Br         (D-9) 
 
where 
 

Br = µχ -1Mr                   (D-10) 
 
and Mr does not exist in free-space. The governing equations become 
 
 ∇⋅B = -∇⋅(µχ -1Mr)                (D-11a) 
 B = µ∇φ                 (D-11b) 
 
Here, Mr enters the problem as a source term in (D-11a). 
 
The question of where best to define the Mr quantities in the discrete grid is a significant one, 
especially considering the relationship between remanent magnetization and anisotropy. 
Depending on the placement of the Mr quantities, the resulting discrete FVD forward modelling 
equations may change significantly from those in Chapter 3. Furthermore, approximation of the 
boundary conditions and homogenization of the permeability values may become more 
complicated. 
 
In the integral equation domain, the system of equations to be solved for the magnetizations in 
each cell would only change slightly from (7-8) to become 
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Here, p

iM~  is the ith component of the remanent magnetization in cell p. The system of equations 
is now consistent with (D-8). p

iM~  are known quantities in the forward problem and (D-12) is 
solved for the unknown full magnetizations p

iM . 
 
Introduction of remanence would yield a larger and more complicated inverse problem. 
Additional model objective function terms may be required for size and smoothness of the 
remanence, as well as those necessary for dealing with anisotropy. 
 
The direction of remanence may be relatively constant and related to some past inducing field 
direction. Knowledge of this information may simplify the inverse problem. However, the 
remanence will also be related to the susceptibility distribution, and more importantly, to the 
degree and direction of anisotropy. An appropriate inversion should take these relationships into 
account. This would require “cross terms” in the model objective function that measure some 
correspondence between the anisotropy and the remanence magnitude and direction. It is not 
immediately clear how these cross terms should be defined. 
 




