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3-D inversion of magnetic data

Yaoguo Li* and Douglas W. Oldenburg*

ABSTRACT

We present a method for inverting surface magnetic
data to recover 3-D susceptibility models. To allow the
maximum flexibility for the model to represent geologi-
cally realistic structures, we discretize the 3-D model
region into a set of rectangular cells, each having a
constant susceptibility. The number of cells is generally
far greater than the number of the data available, and
thus we solve an underdetermined problem. Solutions
are obtained by minimizing a global objective function
composed of the model objective function and data
misfit. The algorithm can incorporate a priori informa-
tion into the model objective function by using one or
more appropriate weighting functions. The model for
inversion can be either susceptibility or its logarithm. If
susceptibility is chosen, a positivity constraint is imposed
to reduce the nonuniqueness and to maintain physical
realizability. Our algorithm assumes that there is no
remanent magnetization and that the magnetic data are
produced by induced magnetization only. All minimiza-
tions are carried out with a subspace approach where
only a small number of search vectors is used at each
iteration. This obviates the need to solve a large system
of equations directly, and hence earth models with many
cells can be solved on a deskside workstation. The
algorithm is tested on synthetic examples and on a field
data set.

INTRODUCTION

Magnetic surveying has been used widely over the years,
resulting in a great amount of data with enormous areal
coverage. Magnetic data have been used for mapping geolog-
ical structures, especially in the reconnaissance stage of explo-
ration, but when used in detailed prospecting, robust and
efficient inversion algorithms must be used. However, a prin-
cipal difficulty with the inversion of the potential data is the

inherent nonuniqueness. By Gauss’ theorem, if the field distri-
bution is known only on a bounding surface, there are infinitely
many equivalent source distributions inside the boundary that
can produce the known field. Any magnetic field measured on
the surface of the earth can be reproduced by an infinitesimally
thin zone of magnetic dipoles beneath the surface. From a
mathematical perspective, this means there i1s no depth reso-
lution inherent in magnetic field data. A second source for
nonuniqueness is the fact that magnetic observations are finite
in number and are inaccurate. If there exists one model that
reproduces the data, there are other models that will repro-
duce the data to the same degree of accuracy. The severity of
the nonuniqueness problem for magnetic data is illustrated in
Figures 1-3. (The gray scale in all figures indicates suscepti-
bility in SI units for model sections and magnetic data in nT for
data plots.) A 3-D dipping prism of uniform susceptibility in
Figure 1 produces the surface magnetic field shown in Figure 2,
which consists of 441 data. Slices of a 3-D susceptibility model
that adequately reproduces the 441 data are shown in Figure 3.
That result, however, bears little resemblance to the true
model. Susceptibility is concentrated near the surface and
displays zones of negative values. This mathematical model
solution provides little information about the true structure
that is useful.

Faced with this extreme nonuniqueness, previous authors
have mainly taken two approaches in the inversion of magnetic
data. The first is parametric inversion, where the parameters of
a few geometrically simple bodies are sought in a nonlinear
inversion and values are found by solving an overdetermined
problem. This methodology is suited for anomalies known to
be generated by simple causative bodies, but it requires a great
deal of a priori knowledge about the source expressed in the
form of an initial parameterization, an initial guess for param-
eter values, and limits on the susceptibility allowed (e.g.,
Bhattacharyya, 1980; Zeyen and Pous, 1991). Nonuniqueness
is not generally an issue because only a small subset of possible
models is considered due to the restrictive nature of the
inversion algorithm. A related, but unique, approach in Wang
and Hansen (1990) assumes polyhedronal causative bodies and
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3-D Inversion of Magnetic Data 395

inverts for the position of the vertices of these bodies using the
spectrum of the magnetic data. The method is general in
principle but has difficulties both in constructing the causative
bodies from the recovered vertices and in obtaining the
susceptibility distribution.

In the second approach to inverting magnetic data, the earth
is divided into a large number of cells of fixed size but of
unknown susceptibility. Nonuniqueness of solution is recog-
nized and the algorithm produces a single model by minimizing
an objective function of the model subject to fitting the data.
Green (1975) minimizes a weighted model norm with respect
to a reference model, and this allows the interpreter to guide
the inversion by varying the weighting according to the avail-
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FiG. 1. Slices through a 3-D magnetic susceptibility model
composed of a dipping slab in a nonsusceptible half-space. The
slab is buried at a depth of 50 m and extends to 400-m depth
at a dip angle of 45°. The gray scale indicates the value of
magnetic susceptibility in ST units.

able information. Last and Kubik (1983) choose to minimize
the total volume of the causative body so that the final model
is compact and structurally simple. Guillen and Menichetti
(1984) minimize the moment of inertia of the causative body
with respect to the center of gravity or an axis passing through
it. Their inversion result is guided by the estimate of the central
depth and dip of the causative body. These approaches have
merit but they are not flexible enough to handle problems we
are concerned with. This is especially true of methods that
attempt to collapse the anomalous susceptibility into a single
body; such a solution is rarely an adequate representation of
geologic structure.

In our inversion approach, we first make a decision about
the variable in which the interpretation is to be made, that is,
whether susceptibility, log susceptibility, or some function of
susceptibility is sought. Next, we form a multicomponent
objective function that has the flexibility to generate different
types of models. The form of this objective function is such that
it can correct for the undesirable aspects of the mathematically
acceptable model in Figure 3, namely—the concentration of
susceptibility near the surface, the excessive structure, and the
existence of negative susceptibilities. Qur objective function
incorporates an optional reference model so that the con-
structed model is close to that. It penalizes roughness in three
spatial directions, and it has a depth weighting designed to
distribute the susceptibility with depth. Additional 3-D weight-
ing functions in the objective function can be used to incorpo-
rate further information about the model. Such information
might be available from other geophysical surveys, geological
data, or the interpreter’s qualitative or quantitative under-
standing of the geologic structure and its relation to the
magnetic susceptibility. These 3-D weighting functions can also
be used to answer questions about the existence of suscepti-
bility features found from previous inversions. Negative sus-
ceptibilities are prevented by making a transformation of
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Fic. 2. The total field anomaly produced by the slab model in
Figure 1. The inducing field has direction f = 75° and D = 25°
and a strength of 50 000 nT. Uncorrelated Gaussian noise, with
a standard deviation of 2% of the datum magnitude plus 1 nT,
is added to the data. The gray scale indicates the magnetic
anomaly in nT.
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396 Li and Oldenburg

variables and solving a nonlinear inverse problem. The numer-
ical solution for the inversion is accomplished by dividing the
earth into a large number of cells so that relatively complex
geologic bodies can be constructed. The computational diffi-
culties often encountered in solving large matrix systems are
avoided by working explicitly with a generalized subspace
algorithm.

The paper begins by outlining our inversion methodology
and empirically estimating parameters for the depth weighting
based upon synthetic inversion of single 3-D prisms. Data from
two synthetic models are then inverted. The paper concludes
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FiG. 3. The susceptibility model constructed by minimizing [ic]|*
subject to fitting the data in Figure 2. As a mathematical
solution, this model provides little, if any, information about
the subsurface susceptibility distribution. It effectively illus-
trates the nonuniqueness inherent to the inversion of static
magnetic field data.

by inverting a field data set over a copper-gold porphyry
deposit and a subsequent discussion.

INVERSION METHODOLOGY

Each magnetic anomaly datum observed above the surface
can be evaluated by calculating the projection of the anoma-
lous magnetic ficld onto a given direction. Let the source
region be divided into a set of rectangular cells by an orthog-
onal 3-D mesh and assume a constant magnetic susceptibility
value k within each cell. Further we assume that there is no
remanent magnetization and that the demagnetization effect is
negligible. Thus only the induced magnetization is considered.
This magnetization is uniform within each cell and is given by
the product of the susceptibility and the inducing geomagnetic
field H. The magnetic anomaly at a location on, or above, the
surface is related to the subsurface susceptibility by a linear
relationship

d = Gk, (1)
where d = (d;, ..., dy)7 is the data vector and k = (k;, ...,
ky)! is the susceptibility in the cells. The matrix G has as
elements g;;, which quantify the contribution of a unit suscep-
tibility in the jth cell to the ith datum. Closed form solutions for
g; were first presented in Bhattacharyya (1964) and later
simplified in Rao and Babu (1991) into a form more suitable
for fast computer implementation. The function g; is the
projection onto a given direction of the magnetic field that is
produced by a rectangular cell, so equation (1) is valid for
computing different magnetic anomalies. For example, a pro-
jection onto the vertical direction gives the vertical magnetic
anomaly while a projection onto the ambient geomagnetic field
direction vields the total magnetic anomaly. Thus, the method
presented here can be used to invert different types of mag-
netic data and in the following, we simply refer to them as the
magnetic data with the understanding that it is direction
specific.

Our inverse problem is formulated as an optimization
problem where an objective function of the model is minimized
subject to the constraints in equation (1). For magnetic
inversion, the first question that arises concerns definition of
the “model.” Two possible choices are k and In (k), but any
function g(k) can, in principle, be used. In general, we prefer
to invert for k since the field anomaly is directly proportional
to the susceptibility that varies on a linear scale. But depending
upon the expected dynamic range of susceptibility and the
physical interpretation attached to its value or variation, it may
be that In (x) is more desirable. To accommodate this, we
introduce the generic symbol m for the model with the
understanding that it might be «, In (k), or any monotonic
function ¢g(k). Having defined a model, we next construct an
objective function, which when minimized, produces a model
that is geophysically interpretable. The details of the objective
function are problem dependent, but generally we need the
flexibility to be close to a reference model m and also require
that the model be relatively smooth in three spatial directions.
Here we adopt a right-handed Cartesian coordinate system
with x positive north and z positive down. Let the model
objective function be
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where functions wg, w,, w,, and w, are spatially dependent
weighting functions while ay, o, ay, and «, are coefficients
that affect the relative importance of different components in
the objective function. Here, w(z) is a depth weighting
function. It is convenient to write equation (2) as &, {m) =
Gs T by, Where ¢, refers to the first term in equation (2),
and ¢, refers collectively to the remaining three terms that
involve variation of the model in three spatial directions.
The objective function in equation (2) has the flexibility of
constructing many different models. The reference model m
may be a general background model that is estimated from
previous investigations, or it could be the zero model. The
reference model would generally be included in &, but can be
removed if desired from any of the remaining terms. Often we
are more confident in specifying the value of the model at a
particular point than in supplying an estimate of the gradient.
The relative closeness of the final model to the reference
model at any location is controlled by the function w,. For
example, if the interpreter has high confidence in the reference
model at a particular region, he or she can specify w, to have
increased amplitude there compared to other regions of the

extra information is incorporated, the inversion derives a
model that not only fits the data, but more importantly, also
has a likelihood of representing the earth. From the viewpoint
of magnetic inversion, such an approach allows one to con-
struct a most-likely earth model that uses all available infor-
mation, and it can also be used to explore the nonuniqueness.
These two aspects form the foundation of a responsible
interpretation.

The kernels (values of g;) for the surface magnetic data
decay with depth. It is for this reason that an inversion that
minimizes [ — my|? = [ (m — mg)* dv subject to fitting the
data will generate a susceptibility that is concentrated near the
surface. To counteract the geometric decay of the kernels and
to distribute susceptibility with depth, we introduce a weighting
of the form w(z) = (z + z9) P2 into ,,, and optionally
include it in ,,,,,. The values of B and z;, are investigated in the
following section, but their choice essentially aliows equal
chance for cells at different depths to be nonzero.

The next step in setting up the inversion is to define a misfit
measure. Here we use the 2-norm measure

by = [Wald — d)|3, (3)

and we assume that the contaminating noise on the data is
independent and Gaussian with zero mean. Specifying W, to
be a diagonal matrix whose ith element is 1/a; where o; is the
standard deviation of the ith datum, makes ¢, a chi-squared
variable distributed with N degrees of freedom. Accordingly
E[Xz] = N provides a target misfit for the inversion.

The inverse problem is solved by finding a model m that
minimizes ¢, and misfits the data by a predetermined amount.
This is accomplished by minimizing &{m) = b, + A~ (b, —
by), where &} is our target misfit and \ is a Lagrangian
multiplier. To perform a numerical solution, we first discretize
the objective function in equation (2) using a finite-difference
approximation according to the mesh defining the susceptibil-
ity model. This yields

G (M) = s + by = (m—mg) "'WW,(m —my) + (m—mg)"(W/W, +WW, + WW,)(m — my)

= (l‘l‘l - mO)TWrZWM(m - mO) = ”Wm(m - mO)HZ’ (4)

model. The weighting functions w,, w,, and w, can be designed
to enhance or attenuate structures in various regions in the
model domain. If geology suggests a rapid transition zone in
the model, then a decreased penalty for variation can be put
there, and the constructed model will exhibit higher gradients
provided that this feature does not contradict the data. There-
fore, the reference model and four 3-D weighting functions
allow for the incorporation into the inversion of additional
information other than the magnetic data. The additional
information can be from previous knowledge about the sus-
ceptibility, from other geophysical surveys, or from the inter-
preter’s qualitative or quantitative understanding about the
geologic structure and its relation to susceptibility. When this

where m and m are M-length vectors. The individual matrices
W,, W,, W,, W, are calculated straightforwardly once the
model mesh and the weighting functions wg, w,, Wy, W, and
w(z) are defined (see Appendix). The cumulative matrix
W,'W,, is then formed. For our formulation, the matrix W, is
never computed explicitly but we shall use it to derive our final
equations.

The inverse problem is solved by minimizing ¢&(m) with an
appropriate minimization technique. To reduce computation
and to invoke positivity, we use a subspace methodology. In its
general form, the subspace technique allows the model param-
eter to be both positive and negative, and thus to ensure
positive susceptibility, we may need to invoke a transformation
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of variables. Whether or not the transformation is required
depends upon the relationship betweenm; and k;. It m; = In (x;),
so that interpretations are carried out in the logarithmic
domain, then no further transformation is necessary since k;
will be positive irrespective of the sign of m;. However, if
m; = k;, or m; = g(k;), and g(x) is a positive function, then a
transformation is required. All possibilities can be handled by
introducing a new parameter p, such that m; = f(p,), where
f(p) is a monotonic function whose inverse and first-order
derivative exist. This mapping is then incorporated directly into
the subspace minimization process.

Let p(”) denote the parameter vector at the nth iteration and
&p denote the sought perturbation. Performing a Taylor ex-
pansion of the perturbed model objective function about the
point p yields

(@™ + 8p) =W, Fop + W,,(m® —mg)|?, (5)

where F is a diagonal matrix with elements

_ 6f:‘
api pm api

am,-
Fy =

(6)

p(n)
A similar Taylor expansion applied to the misfit objective
functional &, (p™ + 8p) yields

by = |WaGEdp + Wa(d(p™) — d°)|*. (7)

At each iteration we desire a perturbation that minimizes
equation (4) subject to generating a data misfit of ¢, = &5,
where &5 is the target misfit at the nth iteration. In the
subspace technique we represent the perturbation as

q
o = 2, a;v; = Va, (8)

i=1

where the M-length vectors v;(i = 1, ¢) are as yet arbitrary.
Writing the objective function to be minimized in terms of the
coefficients « yields

d(a) = [W,FVa + W,,(m® —my)|*

+ A TN(|W,GFVa + W (d(p™) — a°%)|? = &%),

9)

Differentiating with respect to the coefficients e yields the final
equations

Ba = b,
B=VEN(GWIW,G +\W,W,)FY,
b=-V'E'G'W,W,(d" - d*)

~AYE'W,W,,(m"™ — m,). (10)

We note that the matrix B is ¢ X ¢ and therefore the system of
equations is easily solved if g is small. At each iteration, we
search for a value of A that yields the target misfit for that
iteration. If the target misfit cannot be reached, then the value

of \ that achieves the smallest misfit is taken. The search is
usually accomplished by solving equation (10) a number of
times using different A values. Once the optimum value of A is
found, the system is solved again to obtain the coefficients o
and the model perturbation. This iterative process is continued
until the final expected data misfit is achieved and the model
objective function undergoes no significant decrease with
successive iterations. Subspace vectors v; are generated mainly
from the gradients of the data and model objective functions.
The data are grouped to form subobjective functions of misfit,
and a steepest descent vector corresponding to each subobjec-
tive function is used as a subspace vector. Partitioning of the
data can be formed by grouping data that are spatially close, or
by grouping data such that each group has approximately the
same contribution to the total data misfit. Both approaches
have worked well. The model objective function is partitioned
and the gradient vector associated with each of the four
components in the model objective function provides addi-
tional subspace vectors. In addition, a constant vector is always
included, and the selected subspace vectors are orthonormal-
ized before being used in the search. More details on the
implementation of the subspace method for the linear inverse
problem can be found in Oldenburg and Li (1994).

The final item of practical importance is the specification of
the mapping needed to ensure positivity of susceptibility. The
positivity is required since we are dealing only with induced
magnetization, and the presence of negative susceptibility is
negligible in practical geophysical applications. Although our
formalism permits the minimization of m = g(k), the two most
common situations are m = In (k) and m = k. When m =
In (x), we set p = m and hence the matrix F in equation (10)
is the identity matrix. If m = k, we use the two-stage mapping
proposed in Oldenburg and Li (1994). It is composed of an
exponential segment and a straight line. The two segments are
joined together such that the mapping and its first derivative
are both continuous. The mapping is given by

0 P <Pp»
Pry=p=p1, (11)
(p—p1+1eP —xky p>p,

k=1ef — Kk

where p = p, is the transition point between exponential and
linear segments, and k, is selected to be small enough such
that susceptibilities smaller than k,, are not significantly differ-
ent from zero when the final interpretation is carried out. Here,
k, and hence p; are chosen so that the ratio (k; + Kk, )/k,
does not exceed about two orders of magnitude. This prevents
the elements F; from becoming too disparate. We note that
the ith row of V is multiplied by F;;, and if this value is too
small, the ith row of V is essentially annihilated and there will
be no possibility of adjusting the value of the ith cell. However,
if the ratio is too small, the flexibility in the mapping will be
restricted and this affects the convergence rate of the
algorithm. In the limit that k, — k,, the nonlinear mapping
degenerates into a linear truncation and the inversion will not
converge. However, between the above two extremes, there is
a wide range of values for the ratio that can yield a good
mapping. Based upon numerical experiments (Oldenburg and
Li, 1994), we have chosen a value of 50.0 for this ratio for the
examples throughout this paper.
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DEPTH WEIGHTING

It is well known that static magnetic data have no inherent
depth resolution. For instance, when minimizing |pn||7 =
[ m? du, structures tend to concentrate near the surface
regardiess of the true depth of the causative bodies. In terms of
model construction, this is a direct manifestation of the nature
of the kernels whose amplitudes rapidly diminish with depth.
The tendency to put structure at the surface can be overcome
by introducing a depth weighting to counteract this natural
decay. Intuitively, a weighting that approximately compensates
for the decay gives cells at different depths equal probability to
enter into the solution with a nonzero susceptibility. Before
proceeding with the details of the weighting function for
magnetic inversion, we illustrate the necessity, and effective-
ness, of such a weighting function using a simple 1-D problem.

Considerasetofdatad = (dq, .. .,dy) T generated from the
equation

1
din' gi(z)m(z) dz, i=0,...,N, (12)
0

where the kernels are

1.4

1.0
—~
@60.3
£ os
0.4+
0.2F
0.0+

my(z)

~06
5
£0.4

9i(z) = e % cos (2miz).
The decay factor e " causes the constructed model m.(z) to
have structure concentrating toward the region of small z in the
classic model construction that minimizes [m||*, since the
model will be a linear combination of the kernels, i.e.,

N

m.(z) = 2 a;e % cos (2wiz). (13)
i=0

This is shown in Figure 4a and 4b for two different models.
These models are constructed from five data (i = 0, 4) to which
noise has been added. It is apparent that the constructed
model is shifted toward small z where the amplitude of kernels
is relatively large. One way to counteract the bias is to seek a
solution in model space that is spanned by the nondecaying
portion of the kernels, in this case just the cosine functions.
The desired model would have the form

N

m.(z) = 2 a; cos (2miz), (14)

i=0

1.0}
0.8

T

0.0

FiG. 4. A 1-D example showing the use of a weighting function in the inversion procedures to counteract the natural decay in the
kernel function. In all panels the dashed line shows the true model. Panels (a) and (b) show, for the two different true models,
respectively, the model constructed using the original kernel functions with the decaying factor ¢ %, Notice the shift of the
recovered model towards the small z region. Panels (¢) and (d) show the weighted models recovered by applying a weighting function
w(z) = e ““2_ They are better representations of the true model.
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where @; are coefficients. Free from the influence from the
decay factor, a model constructed from this set of basic
functions should have a better chance of having significantly
high values at depth.

We accomplish this by finding an appropriate weighting
function w(z). We first rewrite the data equation as

Jlgi(z) JI ‘
d; = *w(z)m(z) dv= g/ (z2)m™(z) dv, (15)
0

w(z) .

where g/”(z) are the weighted kernels and m"(z) is the
weighted model. Then the inverse problem is solved by mini-
mizing [m"(z)||* and the solution is given by

N

mX(z) = 2,

i=0

a;g;(z). (16)

Dividing m}’(z) by the weighting function and substituting in
9" (2) yields

Y e "% cos (2miz)
me(2) = _E 2<z =2 & — 7,

=0

(17)
This equation can be made identical to equation (14) by
choosing w(z) = e *“%. Carrying out the weighted inversion
for the above two data sets produces models shown in
Figures 4c and 4d. They are much better representations of
true models.

This methodology is then applied to the inversion of surface
magnetic data by finding the appropriate weighting function
that counteracts the depth decay of the data kernels. There is
no distinct separable factor defining the decay in the kernel,
therefore we resort to an empirical estimate. Since the decay
rate depends upon the observation height as well as the size
and aspect ratios of the cells making up the 3-D model, such
estimates are expected to be problem dependent. Numerical
experiments indicate that the function of the form (z + z;) *
closely approximates the kernel’s decay directly under the
observation point, given a correctly chosen value of z;. This is
consistent with the fact that, to first order, a cubic-shaped cell
acts like a dipole source whose magnetic field decays by inverse
distance cubed. The value of z; can be obtained by matching
the function (z + z,) > with the kernel function beneath the
observation point. Thus, a reasonable candidate for the depth
weighting function is given by

1
w(z) =TTz (18)

The susceptibility model constructed by minimizing a model
objective function consisting of only ¢,,, i.e.,

& () =J (w(z)m(x,y, z))* dv, (19)
14

subject to fitting the data should place the recovered anomaly
at approximately the depth of the causative body. This hypoth-
esis is tested by inverting surface data produced by a suscep-
tible cubic body at three different depths. The cube is 200 m on
a side. Data are calculated over a 21 X 21 grid of 50-m spacing

in both directions, and 2% Gaussian noise is then added. The
observation is assumed to be 1 m above the surface and the
inducing field has ] = 75°, D = 25°. The region directly beneath
the data grid is taken as the model domain and discretized into
4000 cells (20 cells in each horizontal direction and 10 along
depth) of 50 m on a side.

Given the stated data parameters and model discretization,
the estimated value of z; in the depth weighting function is
25 m. Figure 5 shows the comparison of the kernel beneath a
datum point and the function wz(z). This weighting function is
used to invert surface data caused by the susceptible prism, and
the results of minimizing ¢,,, are shown in Figure 6. Each
panel in the figure is the cross-section through the center of the
model obtained by inverting the data set produced by a cube at
a different depth. They are rather good recoveries in terms of
source depth, which is indicated by the superimposed outline
of the true body in each section.

In the above analysis we have established a practical way for
estimating an appropriate depth weighting function that dis-
tributes the susceptibility more uniformly with depth. The
weighting is valid when the model objective function consists
only of ¢,,. In general, we like to include a penalty against
roughness and thereby produce a model that is smooth. To
incorporate the above weighting scheme in the spatial varia-
tions, we make the following argument. Since minimizing ¢,
tends to provide a reasonable depth distribution, we wish only
to improve the model’s smoothness while maintaining the
depth characteristic. A conceptually consistent approach
would be to apply the roughness measures to the weighted
model. We form a generic model objective function

bnulm) = o, f w{w(2)[m(r) — m,1}? dv
14

aw(z)[m(r) —mo])?
+ o, Wy o dv
14
J aw(z)[m(r) ~ mo]| 2
+ay wy{ 3 } dv
v y

L I L 1
100 200 300 400
Z (m)

Fic. 5. Comparison of the kernel function (solid) directly
beneath the observatlon point with_the estimated curve
(dashed) given by w 2(z) = (z + z9) > with zy = 25 m. The
source cell is a cube of 50 m on a side. Here, z denotes the
depth to the center of the cell. Both curves are normalized for
comparison.
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2
. azj WZ{M(Z)[m(r) mo]} i 20)
dz
v

where the depth weighting is applied inside the derivatives of
the roughness components and the reference model m, can be
removed from any term if desired. This type of depth weighting
has proven to work satisfactorily on a number of synthetic
examples and is the default choice in our algorithm. The
examples to be presented in the following sections all use this
depth weighting function.

Before proceeding further, we remark that the above
weighting represents only one possibility. One could poten-
tially design a different weighting by incorporating the depth
weighting in the usual 3-D weighting functions we, wy, wy, w,.
Such an approach applies the depth weighting outside the deriv-
ative operators directly. However, the decay rate of the depth
weighting for each component will be different, and it is difficult to
establish a consistent rule for the choice of the different weight-
ings. In addition, the extra set of parameters required by such a
weighting scheme introduces more subjectivity into the inversion
process. We have not explored this approach in detail; however,
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Fic. 6. Cross-sections through the center of the recovered
model for a cube at a central depth of 150, 200, and 250 m. The
cube is 200 m on a side. The inversion uses the weighting
function derived from the kernel decay estimated in Figure 5.
The true position of the cube is outlined in each cross-section,
As the true source depth increases and, as a result, the
high-frequency content n the data decreases, the recovered
model becomes increasingly smooth and attains a smaller
amplitude. However, the depth of the recovered model is close
to the true value.

it is observed that straightforward inclusion of the depth weight-
ing derived above into the 3-D weighting function in the form of
Iy waw?(2){o[m(r) — my)/az}? dv can yield reasonable results.

PRACTICAL ASPECTS OF DATA PREPARATION

The data used in the inversion are the residual data obtained
by subtracting a regional field from the initial observation. The
inversion algorithm has been developed under the assumptions
that the surface magnetic anomaly is produced by the induced
magnetization only and that there are no remanent magneti-
zation or demagnetization effects present. Incorrect removal of
regional field, or any deviation from the above assumptions, is
expected to cause a deterioration in the inversion results.
Furthermore, the susceptibility distribution is mathematically
represented by a piece-wise constant function defined on a
user-specified grid of cells. Magnetic sources, however, have a
wide range of physical sizes. In some cases, source dimensions
will be significantly smaller than the size of cells in the
mathematical model. If measurements are taken close to such
a source, the resulting anomaly will have a width that is
significantly smaller than that produced by a single cell in the
mathematical model and this may produce artifacts. We ame-
liorate this problem by inverting data that have been upward
continued to a height approximately equal to the width of the
surface cells in the model. We arrive at this conclusion from a
numerical experiment. We first generate the magnetic field H,
from a small localized surface source that is assumed to be a
cube of width €. At each height & above the surface, a
one-parameter inverse problem is carried out to find a uniform
susceptibility of a large surface cube that has a width of L and
shares a common horizontal center with the small cube. If H;
is the field of the large cell that best reproduces H, then the
misfit functional,

j (Hg—HL)ZdS
AS

rh) = — , (21)

j Hids
AS

FiG. 7. The misfit between magnetic field as a result of a small
cubic source and the field as a result of a larger cubic model
cell having a best fitting susceptibility. The numbers indicate
the ratio of the cell width. The misfit 1s plotted as a function of
the observation height normalized by the width of the model
cell. Note that the misfit decreases rapidly until the height is
approximately equal to the width of the model cell, and that it
changes slowly thereafter.
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can be computed, where AS is the surface area of the data map.
Figure 7 shows the misfit function (k) for trial values of ¢/L. =
0.1, 0.2, 0.4. We note that r(h) decreases rapidly until 4 ~ L,
and that it changes slowly thereafter. Since the above misfit
analysis i a worst case scenario because the contaminating
body is located at the surface, the suggestion of upward
continuing the data to a height approximately equal to the
width of surface cells may be somewhat conservative, and
inversionists may want to vary this. However, in many field
surveys, magnetically susceptible small bodies exist close to the
surface and hence upward continuing the data prior to inver-
sion is prudent.

SYNTHETIC EXAMPLES

As the first example, we invert the total field anomaly data
given in the Introduction. The model consists of a 3-D dipping
slab buried in a nonsusceptible half-space (slab model).
Figure 1 shows three slices through the slab model. The
susceptibility of the slab is 0.06 (SI unit). Under an inducing
field with a strength of 50 000 nT and a direction at/ = 75° and
D = 25° the slab model produces the surface total magnetic
anomaly shown in Figure 2, which consists of 441 data over a
21 X 21 grid of 50-m spacing. The data have independent
Gaussian noise added whose standard deviation is equal to 2%
of the accurate datum magnitude plus 1 nT. We invert these
441 noise-contaminated data to recover the susceptibility of an
earth model parametrized by 4000 cells of 50 m on a side (20
cells in each horizontal direction and 10 in depth).

The data are partitioned into 49 groups to provide 49 search
vectors for the subspace algorithm. In addition, each compo-
nent in the model objective function provides one basis vector,
and a constant vector is included. For the depth weighting, the
value of z is estimated as 25 m. The additional 3-D weightings
in the objective function are all set to unity. The reference
susceptibility model is set to zero. For the nonlinear mapping,
we choose k;, = 0.0002 and k; = 0.01.

First, we invert the data by minimizing an objective function
composed only of the ¢,,, and using m = «k as the model
parameter. A total of 51 subspace vectors are used at each
iteration. The inversion reaches the expected misfit in 13
iterations but a few extra iterations are performed in an
attempt to further reduce the value of the model objective
function while keeping the misfit at the target value. By
iteration 18, the objective function is decreasing by less than
1% per iteration, and the process is terminated. The con-
structed susceptibility model is shown in Figure 8 and can be
compared with the true model in Figure 1. The tabular shape
of the anomaly and its dipping structure are clear, and the
depth extent is reasonably recovered. The amplitude of the
recovered model is slightly higher than the true value, but the
dip angle inferred from the recovered model is close to the true
value. We point out that the model sections should be plotted
using gray shading for each cell to reflect the piece-wise
constant nature of the model. However, when the model has
only a small number of cells in each spatial direction, the
structural trends are more readily shown when contours are
used. For this reason, we have contoured the model sections.

Next, the same data are inverted using a model objective
function that includes penalty terms on spatial roughness, ¢,
The depth weighting is applied to all terms, as in equation (20).

The inversion uses 54 subspace vectors and achieves the
expected misfit in 13 iterations. The recovered model is shown
in Figure 9. It is smoother, has a slightly lower amplitude than
the model in Figure &, and it recovers the essential features of
the true model such as the depth and dip angle.

It is observed, in this example and in other synthetic and
field test examples, that minimizing either the first term in the
model objective function in equation (20), ¢,,,, or using all
four terms, generates models that are reasonable representa-
tions of the true structure. In the absence of prior information,
both models can provide useful information about the subsur-
face susceptibility distribution. However, the model minimiz-
ing ¢, can be obtained at less computational cost. Further-
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Fic. 8. Model obtained from inverting the data shown in
Figure 2 by minimizing only &,,,, which has the depth weight-
ing applied. This is to be compared with the true model in
Figure 1. The major features in the true model, such as dip
angle and depth extent, are evident in the recovered model.
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more, the depth weighting in this case is rather well supported
by mathematical analysis whereas it is an argued extension for
the three roughness components. Therefore, a reasonable
approach to inverting field data might be a two-step process.
The data can be inverted first by minimizing ¢,,,, and the
resultant model may be used in the interpretation as a prelim-
inary result. If there are interesting features present and if one
desires to refine the model by incorporating prior information
to enhance or attenuate the structural complexity in different
regions, a second inversion can be carried out using an
objective function consisting of both ¢,,,, and &,,,. The model
obtained by minimizing &,,, can then be used in this inversion
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FiG. 9. The model derived from inverting the slab model data
in Figure 2 by minimizing the model objective function having
both &, and &,,,. The same depth weighting is used. This
model appears to be smoother and has a smaller amplitude
than that in Figure 8.

as an initial model. The available prior information can be
incorporated into the second inversion by forming a reference
model and 3-D weighting functions, wy, w,, w,, w,.

We now invert the same data by using m = In (k) as the
model. It is not possible to incorporate a zero susceptibility as
the reference model, so we minimize an objective function
consisting of ¢,,,, with the reference model removed. The same
depth weighting is applied to all terms of ¢,,.,. Since k = ¢,
the positivity of the susceptibility is ensured without invoking
the transformation of variables. The resuit is shown in
Figure 10a. This is a cross-section at x = 500 m and plotted on
a logarithmic scale in accordance with the model used in the
inversion. The inverted susceptibility shows the presence of the
dipping anomaly as a broad region of high susceptibility.
However, the interpretation based upon such a model can be
complicated by the variations of susceptibility that are small
and have little effect on the surface data. We have replotted
the cross-section on a linear scale in Figure 10b and the
anomalous region is now delineated more clearly. Its top
portion indicates the tabular body and defines the depth to the

0,1E-9 0.1E-8 0.1E-7 0.1E-6 0.1E-6 0.1E<4 0.1E-3 0.1%-2 0.1E-1

Z (m)

Z (m)

Z (m)

SRR ) S0 R KRR SRS SRR 0 B

F1G. 10. The model obtained from inverting the data shown in
Figure 2 by using m = In (k) as the model and minimizing &,,,,,
with the reference model removed. The inverted loganthmc
susceptibility in cross-section at x = 500 m is shown in (a) and
it is replotted on a linear scale in (b). As a comparison, the
result obtained by using m = k, and the same objective
function is shown in (c).
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top and dipping angle. The anomaly terminates at a shallower
depth than the true model and has a nearly horizontal exten-
sion to the left. As an exact comparison, Figure 10c is the
susceptibility model obtained by minimizing &,,, but using
m = x as model and invoking the positivity. This is a smoother
model and exhibits more gradual changes in the susceptibility.
It has a slightly deeper extent than the model in Figure 10b. With
the exception of details toward the bottom, however, both models
provide almost the same information about the anomalous sus-
ceptibility region. It might be concluded that inversion using
either linear or logarithmic susceptibility is viable for practical
applications. However, we note that the presentation in
Figure 10b is inconsistent with the model used in the inversion.
Since the inverted susceptibility is easier to interpret on a linear
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FiG. 11. The second synthetic test example. The top and
bottom portions of the anomalous susceptibility are offset to
simulate a norm fault structure. It also has a large strike length
in the north direction.

scale as demonstrated here, and since the magnetic data are
linearly related to the susceptibility, we generally prefer to work
with the susceptibility  as the model in the inversion.

As the second example we invert the total field anomaly data
produced by a slightly more complicated model and with two
different inducing field directions. The true model is shown in
Figure 11 in the same format as before. It is a dipping slab
having its top and bottom portions offset to simulate the result
of a normal faulting. The faulted slab strikes north. The data
from this model, when the inducing field has a direction of 7 =
45° and D = 45°, are shown in Figure 12. Again Gaussian noise
has been added to the data. The inversion minimizes an
objective function consisting of ¢, and ¢,,, that have the
same depth weighting and nonlinear mapping as used to
produce the results in Figure 9. Figure 13 displays the recov-
ered model in three slices. It shows two distinct anomalous
regions of susceptibility that correspond to those in the true
model. The dipping structure is evident from the top block. On
plan view, the strike direction and the strike length of the
anomaly are also well recovered.

When the inducing field direction is / = 0° and D = 45°, the
surface anomaly with added Gaussian noise is that shown in
Figure 14. Carrying out the inversion using an identical model
objective function generates the model shown in Figure 15. Tt
is similar to the model shown in Figure 13, which is recovered
under an inducing field at 45° inclination. Again, the two
separate blocks, the dipping direction, and the length and
direction of the strike, are all reasonably recovered. This is a
positive result in that, although the surface anomalies have
very different expressions under different inducing field direc-
tions, the inversion algorithm is able to consistently recover the
source structure. Moreover, the algorithm had no difficulty in
inverting data generated from an inducing field having zero
inclination; such data often pose problems in interpretations
that include a reduction to pole.

We emphasize that positivity has played a pivotal role in all
the inversions. Magnetic data generally have regions of nega-
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F16. 12. The surface total field anomaly produced by the
faulted slab in Figure 11, under an inducing field at I = 45° and
D = 45°. Uncorrelated Gaussian noise is again added to the
data.
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tive values that result from dipping bodies or inclined inducing
field, or both. Without positivity, the constructed susceptibility
is often negative and the dipping bodies appear more vertical.
Recovery of correct dip and, to some extent, depth to the top
of the anomalous body, are often the result of invoking
positivity. Once the positivity is imposed, it is no longer true
that an equivalent stratum that reproduces the data exists at
any depth. Therefore, cells of anomalous susceptibility cannot
be placed arbitrarily close to the surface, and no equivalent
source can be constructed with negative susceptibilities. This
restricts the class of admissible models and, consequently,
reduces the nonuniqueness.
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Fic. 13. The susceptibility model recovered from the data
shown in Figure 12. It is seen that both the top and bottom
block of the true model are recovered and the strike direction
and length are well defined.

FIELD EXAMPLE

As the final example, we invert field data taken over a
copper-gold porphyry deposit at Mt. Milligan in central British
Columbia. The host rocks for the deposit are early Mesozoic
volcanic and sedimentary rocks and contain intrusive monzo-
nitic rocks that have accessory magnetite. Porphyry-style alter-
ation and copper-gold mineralization are contemporaneous
with the intrusive events. The copper and gold are known to be
concentrated in the potassic alteration assemblage, which is
mainly around the contact of the monzonite intrusions and
may extend outward and into fractured volcanic rocks. Among
other minerals, magnetite is one of the strong indicators of the
potassic alteration. Ground magnetic data are acquired in the
region at 12.5-m spacing along lines in the east direction and
spaced 50 m apart. Our study of the data set has focused on a
1.2 km X 1 km area, which covers a large monzonite body
known as the MBX stock and contains a reasonably isolated set
of magnetic anomalies. Fairly detailed information about the
geology is available through a major drilling program, but no
susceptibility logs were available.

Magnetic data from a larger area were first upward contin-
ued to 20 m. A regional field was then defined and removed
from the upward continued data. The continuation operation
suppresses the noise in the data and also facilitates the
discretization of the topographic surface for the model so that
all observation points remain above the discretized surface.
Although the original data were collected at 12.5-m spacing,
we use the data at 25-m spacing. This yields 1029 data points at
varying elevations. Figure 16 shows the data contoured accord-
ing to their horizontal locations. The direction of the inducing
field is I = 75° and D = 25.73°. Several major magnetic highs
are observed in the map. However, the influence of anomalies
adjacent to the map is also visible along the edges. We choose
a model domain that is horizontally larger than the data area,
coincides at the top with the highest point on the topographic
surface, and extends to 450-m depth. The model is discretized
horizontally at a 25-m interval beneath the area of data. In the
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Fic. 14. The surface total field anomaly produced by the
faulted slab in Figure 11 under an inducing field at I = (° and
D = 45°. Uncorrelated Gaussian noise is added to the data.
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vertical direction, the first 100 m is divided at a 12.5-m interval
so that the surface can be adequately discretized onto the
model mesh. Below the depth of 100 m, an interval of 25 m is
used. This results in a mesh with 52 X 44 X 22 cells. Once the
mesh is defined, the topography is discretized onto it. The
43 428 cells below this surface define the susceptibility model,
and the inverse problem is therefore formalized by inverting
1029 data to recover the susceptibilities in those cells. The
depth weighting is referenced to the top of the model domain.
Each datum is assumed to have an error whose standard
deviation is equal to 5% of its magnitude plus 10 nT. The error
estimate includes not only the repeatability of the instrument
reading but also the geological noise and errors introduced by
the inaccurate recording position and by separating the anom-
alous field from the initial total field measurements. One
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Fi. 15. The susceptibility model recovered from the data
shown in Figure 14. This model is similar to that shown
Figure 13.

hundred subspace vectors generated by dividing the data map
into small subareas are used in the inversion. We use a
nonlinear mapping with x, = 0.0002 and x; = 0.02. The
recovered model is shown in Figure 17 as one plan-section and
three cross-sections. From the plan-section, two concentrated
susceptibility highs are observed in the central region. Sur-
rounding them are three linear anomalies trending northeast.
In the cross-sections, the major anomalies are seen at moder-
ate depths but there is considerable variation in the depth to
the top. There are also smaller anomalies extending to the
surface. In general, there are more detailed structures near the
surface and the model becomes increasingly smooth at greater
depths. As required by the objective function, there is no
excessive structure associated with each unit of high suscepti-
bility region. Comparison with drill logs indicates that the
recovered magnetic susceptibility highs are mostly associated
with the monzonite intrusions and with faults or fracture zones.
Figure 18 compares the recovered susceptibility model with the
geology (Cam DeLong, personal communication) in the cross-
section at x = 600 m. The large susceptibility high is spatially
well-correlated with the MBX stock and reflects the initial
magnetite content in the intrusion. Two smaller susceptibility
highs are present east of the stock. The high at y = 650 m
coincides with the boundary of stock and porous trachytic units
while the high at y = 900 m coincides with the upper portion
of the Rainbow dyke. These are locations of the most intensive
potassic alterations and the susceptibility highs are indicative
of the magnetite produced by the alteration process. Over all,
this 1s a rather encouraging result.

CONCLUSION

We have developed an algorithm to invert surface magnetic
data for general 3-D susceptibility distributions. Although we
have illustrated the algorithm using examples on the scale
pertinent to mining applications, the method is general and
applicable to problems on different scales ranging from envi-
ronmental to regional investigations. To overcome the inher-
ent nonuniqueness, we obtain the solution by minimizing a
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Fic. 16. The extracted total field anomaly from ground mag-
netic data at Mt. Milligan Copper-gold porphyry deposit. The
data are contoured according to their horizontal locations in
this map, although they are at different elevations,
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specific objective function of the model. Our model objective
function has the ability to incorporate prior information into the
inversion via a reference model and 3-D weighting functions. A
crucial feature of the objective function is a depth weighting
function that counteracts the natural decay of the kernel func-
tions. The parameters of the depth weighting depend upon the
discretization of the model but are easily calculated. The minimi-
zation is carried out using a subspace technique that reduces the
computational effort and allows the positivity constraint of sus-
ceptibility to be incorporated. Both susceptibility and logarithmic
susceptibility can potentially be used as the model in the inver-
sion. Since the data are linearly related to susceptibility, and since
usually absolute values of susceptibility are required for interpre-
tation rather than relative values, especially in regions of very low
susceptibility, we have generally chosen to work with susceptibil-
ity. To suppress the noise from small magnetic bodies near the
surface, we recommend in general that the data be upward
continued to a height comparable with the width of the surface
cell before inversion.
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Fi1G. 17. The recovered susceptibility model shown in one
plan-section and three cross-sections. The plan-section is at the
depth of 150 m and the three cross-sections are atx = 600, 500,
and 400 m, respectively.
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FiG. 18. Comparison of the recovered susceptibility model in a
cross-section (x = 600) with the geology for the Mt. Milligan
deposit. The susceptibility high within the MBX stock reflects
the initial magnetite in the intrusive while the susceptibility
highs near the Rainbow dyke are related to the magnetite
produced by potassic alteration.

Applications of our inversion to synthetic data sets have
produced models representative of the true structures and
demonstrated the ability of the algorithm to construct consis-
tent models at different magnetic latitudes. Inversion of field
data has produced a susceptibility model that is consistent with
the known geology and mineralization information. These
results represent an encouraging conclusion: although the
inversion of magnetic data seems impossibly nonunique when
one has a large number of cells, inversions using a properly
designed model objective function can produce susceptibility
distributions that yield meaningful geologic information.
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APPENDIX
MODEL OBJECTIVE FUNCTION

Our inversion method uses a model objective function of the
form

(bm(m) =0y f WS{W(Z)[m(r) - mO]}Zdv
V

+0fo Wx{avV(Z)[m(r)-mo]}zdv
14

ax

+ayj Wy{GW(Z)[ma(r)—mo]}zdv
. y

_ 2
-I-otzf WZ{BW(Z)[m(r) mO]} dv. (A-1)
v

dz

The numerical evaluation of this functional is carried out by
introducing the model mesh and evaluating all terms using a
finite-difference approximation. The discretized model objec-
tive function has the form

b, (m) = (m — mo) (W/W, + WIW, + WW,
+ WW,)(m — my)

= (m — mo) "Wy W, (m ~ my). (A-2)

Each component matrix can be written as the product of three
individual matrices and one coefficient. That is,

Wi=a,8,D:Z, i=s,xy,z (A-3)

where §; are diagonal matrices representing the spatially
dependent 3-D weighting functions, D; are the finite-difference
operators for each component, and Z is a diagonal matrix
representing the discretized form of depth weighting function
w(z).

The elements of §; are given by Vw;. They are defined
over each cell for §,, and over each interface between
adjacent cells in the respective directions for S, §,, and §,.
D, has elements VAxAyAz on its diagonal, where Ax, Ay,
and Az are the cell width. The matrix D, has two elements
+VAyAz/d3x in each row, where &x is the distance between
the centers of cells adjacent in the x-direction. Similarly, D,
and D, have elements +V/AxAz/dy and +V/AxAy/dz, respec-
tively, where 8y and 8z are the distances between centers of
adjacent cells in the y- and z-directions. Once the mesh is
defined and all weighting functions, w;, w, w,, w,, and w(z)
are chosen, equation (A-3) is evaluated straightforwardly
and WIW, is formed.




