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A B S T R A C T

With developments in instrumentation and computational resources, the collection of large, non-
conventional DC resistivity datasets has become commonplace. While the increased data content of these
large datasets can significantly improve the resolution of inverse models, these datasets also present chal-
lenges for standard data quality control (QC) methodologies. Standard QC methodologies for DC resistivity
datasets typically rely on our ability to decompose the dataset into 2D lines and/or reciprocal measure-
ments. Non-conventional electrode geometries and the cost of collecting a large number of reciprocal
measurements can severely limit the applicability of standard DC resistivity QC methodologies.
To address these limitations, we developed a more generalized data QC methodology which utilizes statisti-
cal analysis and classification tools. The merit of this methodology is illustrated using a field dataset collected
in an underground potash mine and several synthetic examples. Results from these applications show that
the methodology has the ability to identify and characterize highly noise-contaminated data from a number
of different sources. The flexibility of the 4-stage methodology allows it be tailored to accommodate data
from any type of DC resistivity survey and the use of statistical analysis and classification tools decreases
the subjectivity of the process. Although this study focuses on the applicability of this methodology for DC
resistivity data, it is potentially applicable to a variety of geophysical surveys.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Despite the many advances in multi-channel instrumentation
systems, survey design optimization, and inversion techniques, large
DC resistivity datasets can still be difficult to work with due to limita-
tions of standard data quality control (QC) methodologies. Identify-
ing and dealing with highly noise-contaminated or inconsistent data
is a vitally important part of the inversion process since it informs our
choice of measurement uncertainties. These uncertainties define the
relative importance or weight of each measurement. Standard tools
for data QC include 2D pseudo-section plots of apparent resistivity
and repeat or reciprocal measurements.

With 2D profiles, a pseudo-section of the apparent resistivities
is typically plotted to highlight spurious or noise-contaminated data
associated with a specific electrode (Deceuster et al., 2013; Edwards,
1977). Since the apparent resistivity is expected to vary smoothly
in most circumstances, spurious data can be identified by small,
anomalous regions of high or low apparent resistivity (Loke, 2000).
Similarly, conventional 3D surveys, which consist of a regular grid of
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electrodes, are typically decomposed into 2D profiles so that pseudo-
sections can be easily plotted (Auken et al., 2006). However, when
working with large non-conventional 3D datasets, plotting a map or
pseudo-section of the data is not straightforward or meaningful. Data
with very different electrode geometries can plot in similar locations
making it difficult to identify patterns associated with inconsistent
or noisy data.

Repeat and reciprocal measurements have been shown to be a
useful tool for assessing the noise levels of DC resistivity datasets
by several previous studies including LaBrecque et al. (1996), Slater
et al. (2000), Zhou and Dahlin (2003), LaBrecque and Daily (2008)
and Wilkinson et al. (2012). Repeat measurements are made any-
time that the same transmitter (TX) and receiver (RX) locations are
reoccupied, while reciprocal measurements are made when the TX
and RX locations are interchanged. A formal proof of the reciprocity
theorem for DC resistivity, assuming an arbitrary conductivity model,
is given by Parasnis (1988). Reciprocal measurements provide a more
reliable estimate of measurement noise levels since they account for
some systematic error sources which can go undetected by repeat
measurements (LaBrecque et al., 1996).

While reciprocal measurements are certainly a valuable tool for
assessing the noise level of DC resistivity datasets and identifying
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noise-contaminated measurements a full set of reciprocal measure-
ments is not always collected. In large distributed array systems,
such as Quantec’s Titan 24 system, a dense grid of RXs is laid out and
the TX is moved through the grid between the RXs. Since the RX loca-
tions are never occupied by the TX, no reciprocal measurements are
collected with this setup. In other scenarios, limited budgets and a
desire to maximize the data content of the survey prohibits the col-
lection of a large number of reciprocal measurements. If a large non-
conventional 3D dataset lacks sufficient reciprocal measurements,
other methods must be employed to QC highly noise-contaminated
data.

1.1. Inversion background

After initial efforts to quality control the data and remove clear
outliers, the data are input into an inversion algorithm to find a
geologically reasonable conductivity model which acceptably repro-
duces the data. Since the inverse problem is typically very under-
determined, (i.e. there are far more model cells than data), we pose it
in a regularized optimization context as the minimization of a global
objective function (V). The inverse problem is solved by finding an
estimate of the true model (m̂), which minimizes the model objective
function (Vm), while driving the data misfit (Vd) to its target level
(V∗

d). This minimization problem can be formalized in the following
manner.

minV = Vd + bVm

s. t. Vd ≤ V∗
d (1)

where b is a regularization parameter that controls the relative
importance of the model objective function, which controls the com-
plexity and smoothness of the model, and the data misfit. To obtain
a meaningful solution to the inverse problem we need to choose a
metric by which to measure the data misfit, assign reasonable uncer-
tainties to each measurement, and define a target misfit to quantify
an acceptable data fit (Oldenburg and Li, 2005).

Data misfit provides a quantitative measure of the difference
between the observed data (dobs) and the predicted data (dpred)
derived through numerical modelling. The data are normalized
potentials or resistance values which are computed by dividing the
measured potential differences (VMN) by their injection currents (I).
An Lp norm is typically used for this metric with the L2 being the most
commonly used and the L1 norm sometimes employed to better han-
dle outliers. Here we use a standard L2 formulation for the data misfit
(Vd).

Vd =
n∑

i=0

(
dobs

i − dpred
i

ni

)2

=
∥∥∥Wd

(
dobs − dpred

)∥∥∥2

2
(2)

where n are the standard deviations of the data which quantify mea-
surement uncertainty. The data weighting matrix Wd is a diagonal
matrix with 1/n on the main diagonal. Since these standard devia-
tions are typically unknown, we must estimate these uncertainties,
which account for discrepancies between the observed and predicted
data. These uncertainties are often referred to as the noise model.

Developing a accurate noise model is challenging since many
factors contribute to measurement uncertainty and each has differ-
ent underlying statistical distributions. To capture the cumulative
effect of the various factors in a single distribution, we assume that
the noise is uncorrelated and Gaussian. Under these conditions, the
target misfit is given by the expected value, which equals the num-
ber of data, provided uncertainties have been assigned reasonably.
While these assumptions are almost certainly incorrect, they have
served researchers well. As per common practice the uncertainties

are assigned as a percentage of each measurement plus a floor value,
which is often dependent on the magnitude of survey measurements
and the instrument precision.

To control the complexity of the recovered model, the following
formulation for the model objective function (Vm) is used.

Vm =
∥∥Ws(m − mo)

∥∥2
2 +

3∑
i=1

∥∥Wim
∥∥2

2 (3)

Where the first term controls the “smallness” of the model (i.e.
how close the current model (m) is to the reference model (mo)) and
the summation contains directional derivative terms which control
the smoothness of the model in each direction. Ws is a diago-
nal matrix containing cell weights while the three components of
Wi (Wx, Wy, and Wz) combine finite difference operators and face
weight vectors in each direction.

The optimization problem is solved iteratively using a Gauss–
Newton based approach, where at each b iteration the model update
is estimated using an incomplete preconditioned conjugate gradient
solver. The initial b is chosen to be sufficiently large so that the Vm

dominates the objective function (Haber et al., 2004). b is then itera-
tively cooled with each iteration, placing more emphasis on reducing
Vd by allowing more structure to be incorporated into the model.

For additional information on geophysical inversion we refer the
reader to the following books: Menke (1989), Parker (1994), Aster et
al. (2012), and Haber (2014). Oldenburg and Li (2005) provide a gen-
eral overview of geophysical inversion in their tutorial while Li and
Oldenburg (1994), LaBrecque et al. (1996), Loke and Barker (1996),
Ramirez et al. (1996), and Loke et al. (2013) are a few of the many
papers which specifically discuss the inversion of DC resistivity data.

After inverting, data misfit plots are used to examine how well
the recovered model fits the data. A global misfit (Vd) close to the
target misfit indicates that there is good overall agreement between
the observed and predicted data. Looking at the distribution of indi-
vidual data misfits can help identify clear outliers and provides an
estimate of how many data have individual data misfits greater than
the target misfit of 1. If the recovered model does a poor job of fitting
the observed data then further data quality control (QC) analysis is
required.

1.2. A new data QC methodology

The limitations of standard data QC tools prompted us to develop
a new methodology which combines a search for correlations
between high misfit data and various survey parameters with stat-
ical analysis and classification tools to identify noise sources and
deal with highly noise-contaminated and inconsistent data. Graph-
ically this search for correlations can be done using a series of
survey parameter cross-plots. However, this type of manual multi-
variate analysis is difficult since there are many parameter spaces to
explore. Boxplots, SVD analysis, and k-Means clustering (MacQueen,
1967) are used to semi-automate this procedure and reduce the
subjectivity of the process.

The data quality control methodology presented, is potentially
applicable to a variety of field surveys. Here we test it in an under-
ground environment with DC resistivity data. We find that a combi-
nation of a few poor electrodes and current leakage problems within
the cables, that connect electrodes, have conspired to generate a
highly noise-contaminated dataset. Despite the highly contaminated
nature of the dataset, we are able to use the outlined data QC
methodology to identify a subset of reliable data for inversion and
obtain an interpretable inversion model.

In this paper, we open with a description of the case history,
which provided the impetus for this research, and then present the
4-stage data QC methodology in the context of the case history.
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The final results of the field data inversion and the results of sev-
eral synthetic problems are shown to illustrate the utility of the
methodology. We conclude with a discussion of the results and the
performance of the data QC methodology.

2. Motivating case study

Engineers at the Mosaic K2 potash mine outside of Esterhazy,
Saskatchewan have been combating water inflow problems for over
a decade with limited success. In an effort to learn more about their
problem a large non-conventional DC resistivity dataset was col-
lected. Using this data, we aim to accurately image the source of the
water inflow and map the conduits through which the water enters
the mine.

The K2 mine has workings approximately 1 km beneath the sur-
face, in the upper layers of the Middle Devonian (393–382 mya)
Prairie Evaporite. Although several aquifers in the lower Dawson
Bay Formation overlie the Prairie Evaporite, a roughly 20 m thick
layer of evaporites and a dolomitic shale layer, known as the Sec-
ond Red Bed, provide an impermeable membrane which keeps water
from the permeable aquifers out of the mine. When the integrity of
the Second Red Bed and the overlaying evaporite are weakened by
naturally occurring voids and inhomogeneities or mining induced
fracturing related to subsidence and “creeping,” water inflow prob-
lems often result. Gendzwill and Stead (1992) and Chouteau et al.
(1997) present a more detailed discussion of the types of problems
encountered in potash mining and review many of the associated
geophysical studies. Fig. 1 shows an overview of the mine environ-
ment and provides context regarding the geological setting.

Like many other potash mines, the Mosaic K2 mine is currently
having water inflow problems, which are largely due to mining
induced fractures. To prevent flooding, an estimated 38,000 L of brine

per minute are being pumped out of the K2 mine. The brine is
pumped to the surface and then injected back into a deeper aquifer.
Recent developments have led mine officials to worry about the
prospect of the brine injection over pressurizing the deeper aquifer.
Under these circumstances water could be entering the mine both
from above and below. These two threatening water sources are
illustrated in Fig. 1.

Electrical and possibly electromagnetic (EM) methods offer the
best chances of imaging the wet zones as a result of the large contrast
in conductivity between the wet salt or briny water (0.1–20 S/m) and
dry salt (2.5 × 10−5–0.01 S/m) (Chouteau et al., 1997; Duckworth,
1992). Identifying the location and geometry of these water bearing
regions is vitally important to mining operations to avoid flooding.
Accurate conductivity models of the region surrounding the mine
workings can help the engineers identify and seal off current water
inflow sources and hopefully avoid hitting water bearing zones in the
future.

2.1. DC resistivity data and instrumentation

The data used in this study were collected using a non-
conventional 3D dipole-dipole array, which was designed and col-
lected by Golder Associates. The full survey uses 120 stainless steel
electrodes which are combined in a variety of combinations to form
a survey comprised of 2,351 current electrode pairs (transmitters,
TXs) and 95,194 associated potential electrode pairs (receivers, RXs).
The measurements were collected using an IRIS Syscal Pro, which is a
multi-channel switching system capable of simultaneously measur-
ing 10 potential differences for a given TX (current dipole). Switch-
ing cables were 50 m long with electrode take-outs every 5 m. Six
switching cables are linked with connecting boxes to connect elec-
trodes 1–60 with the control box and another six switching cables

Fig. 1. A simple cartoon showing the basic overview of the K2 mine including its geological setting and mine infrastructure.
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are used to connect electrodes 61–120. We refer to these combined
cables as Cable 1 and Cable 2 respectively.

The geometry of the tunnels and the general layout of the elec-
trodes are shown in Fig. 2 (a) while a typical TX is shown in
Fig. 2 (b). Within the mine, electrode placement is typically restricted
to the mine workings (drifts-horizontal tunnels, raises-small vertical
shafts, and smaller sub-drifts). Main drifts are typically 3–6 m wide
and 3–4 m tall, most of the raises extend approximately 20 m
vertically up to the Second Red Bed (Shale) above the Prairie Evap-
orite, and the sub-drifts are usually 2–3 m wide and 2–3 m tall. The
electrodes are laid out along the interior tunnel walls as shown in
Fig. 2 (a) with a spacing of 5 m to image the central region between
the tunnels, where a water inflow source is suspected.

In the most basic sense DC resistivity measurements are made
by injecting a constant current into the ground and measuring the
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Fig. 2. Plot (a) shows the layout of the discretized tunnels (blue resistive cells) on
the octree mesh and the location of all 120 electrodes (marked by white spheres)
while plot (b) shows a typical TX (connected with the orange line) and its 349 associ-
ated RX electrode pairs (connected with blue lines). Electrodes 1–60 (connected with
Cable 1) fall south of the gap in electrodes near the location (20,720m, 14,900m) while
electrodes 61–120 (connected with Cable 2) are north of this gap.

associated potential differences set up by the currents. For a dipole–
dipole experiment the current is injected between the A and B elec-
trodes and one or more potential measurements are made between
M and N electrode pairs. In this way each A–B electrode pair consti-
tutes a TX and each M–N electrode pair a RX. To avoid problems with
electrode polarization, the TX electrode locations are switched fre-
quently to give charge build-ups near the current electrodes a chance
to dissipate (Dahlin, 2000). Rapid reversals of the injection current
orientation as part of a standard plus–minus–plus current injection
cycle also help mitigate electrode polarization problems and cancel
out spontaneous potential (SP) effects (Dahlin, 2000; Telford et al.,
1990).

3. Initial inversions

In preparation for the initial inversion we must first design a
mesh. Since the tunnels are on average 3–4 m square in cross section
and an electrode separation distance of 5 m was used, the problem
was discretized onto an octree mesh with a minimum cell size of 1
m cubed (see Fig. 2 (a)). This insured that there were at least 3 cells
between adjacent electrodes to reduce discretization errors around
the current electrodes. The core region between the tunnels was also
refined to the minimum cell size and 10 small cells were required
adjacent to each electrode location. This insured that large discretiza-
tion errors were not introduced by coarsening the mesh too rapidly
near electrodes or regions of the model which might contain con-
ductivity anomalies of interest. Mesh validation tests show that 95%
of the forward modeled data from a 0.005 S/m full-space have dis-
cretization errors smaller than 2% when compared to the analytic
solution. An octree mesh, in which the cell refinement is a function of
the electrode locations and any structures in the reference conduc-
tivity model was used to greatly reduce the number of model cells
from that of a standard tensor mesh. Haber and Heldmann (2007)
and Haber et al. (2012) provide a good discussion of the details asso-
ciated with solving electromagnetic forward and inverse problems
on octree meshes.

Normalized potentials were computed by dividing the measured
potential differences (VMN) by their injection currents (I), and initial
uncertainty estimates of 5% plus a floor of 2 mV/A were assigned. If
necessary, uncertainties can be modified during the data QC process
to account for new insight into the distribution of noise.

After testing several conductivities between 0.01 and 0.001 S/m
a background conductivity of 0.005 S/m was selected for the refer-
ence and initial models. This background conductivity is consistent
with literature values for the Prairie Evaporite (Chouteau et al., 1997;
Duckworth, 1992) and the observed apparent resistivities. The ref-
erence and initial models are uniform except for the air cells of the
discretized tunnels which have a conductivity of 1×10−8 S/m and are
set as inactive cells in the inversion. All forward modeling and inver-
sion results were obtained using the DCIP3D octree code developed
by the UBC-GIF research group. For a more detailed description of the
DCIP3D octree code please refer to the manual (UBC - Geophysical
Inversion Facility, 2012).

3.1. Initial inversion results

Although the large scale conductivity structures in the recovered
model seem geologically reasonable (see Fig. 3), the high normal-
ized data misfit indicates that the model does not fit the observed
data to within the tolerances specified by the assigned uncertainties
(see Fig. 4 (a)). Inspection of the individual misfits revealed that the
high global data misfit was not due to a few outliers in the data, but
was instead a more wide spread problem. Approximately 25–30% of
the data fall within a band of high normalized misfits between 10–
20 (see Fig. 4 (b)). Since the uncertainties were assigned assuming
5% error plus a floor of 2 mV/A, a normalized data misfit of 10–20
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Fig. 3. A depth slice through the recovered conductivity model after the 10th inver-
sion iteration. The electrode locations are marked by white dots. While the model
seems geologically reasonable its validity is questioned due to the large data misfits
shown in Fig. 4.

indicates that many of the data require an assigned uncertainty of
50 − 100% to reach target misfit. Misfits of this magnitude show that
the inversion is doing a very poor job of fitting a large proportion
of our data. Extensive data QC analysis is required to identify noise
sources and deal with highly noise-contaminated data which can
bias inversion results.

3.2. Dealing with high data misfits

Since carefully sifting through data to weed out the highly noise-
contaminated data can be very time consuming, short cuts are often

taken and large quantities of data are thrown out. The danger in this
is that in addition to discarding noise-contaminated data, important
information about the perspective target may also be discarded. To
avoid this pitfall, we need to focus more carefully on those factors
which affect the data misfit. These factors can generally be lumped
into the two following categories.

1. Data quality control

• Factors such as unaccounted for noise sources or unreason-
ably assigned uncertainties.

2. Inversion limitations

• Any factors which control the model space and might cause
the optimization algorithm to get trapped in a local minimum.

For the sake of this study, we focus only on the data quality
control based factors, but it is important to acknowledge that the
inversion algorithm and our choice of the objective function also play
important roles (Farquharson and Oldenburg, 1998; Oldenburg and
Li, 2005). A detailed analysis of the field data was undertaken to form
a reliable subset of data for inversion, develop a meaningful noise
model, and identify the key sources of noise. To accomplish this we
developed a set of tools and a methodology which can be used to
standardize the data QC process and reduce its subjectivity.

4. Data quality control

The data QC methodology that we developed begins with a thor-
ough analysis of the data to identify possible noise sources and
then utilizes a k-Means clustering algorithm to help distinguish and
characterize heavily noise-contaminated data. The general 4-stage
methodology proceeds as follows:

• Stage I: Search for possible noise sources and select data sub-
sets worthy of further analysis.
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Fig. 4. (a) shows the normalized misfit curve for the initial inversion. Near iteration 6 the global misfit plateaus 2 orders of magnitude above the target misfit of 1. A histogram
showing the distribution of individual normalized data misfits is shown in panel (b). The clear spike in the number of data with normalized misfits around 20 shows that a large
proportion of the data is fit very poorly by the initial inversion.
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Fig. 5. Detailed workflow for Stage I.

• Stage II: Use data clustering analysis to identify and deal with
highly contaminated and inconsistent data.

• Stage III: Recombine clusters from individual subsets and check
for inter-cluster consistency.

• Stage IV: Recombine data subsets to form a single inversion
ready dataset and check for inter-subset consistency.

The methodology presented here assumes that initial estimates
for data uncertainty were assigned and that preliminary inversions
have been run. If clear outliers were evident within the dataset after
the first inversion they were removed. If a large percentage of the
data have high normalized data misfits, which cannot reasonably be
dealt with by adjustments to the noise model, it is likely that the

dataset contains highly noise-contaminated or inconsistent data and
requires further data QC analysis.

4.1. Stage I: search for possible noise sources

The goal of the first stage is to identify possible noise sources
and select data subsets worthy of further analysis (See outline in
Fig. 5). This search for possible noise sources allows us to gain a
better understanding of the dataset and characterize the general
distribution of various survey parameters. If we can identify the char-
acteristic signature of specific noise sources we can quantify the
impact each has on the dataset. If the dataset is highly contaminated
by a systematic noise source it may be possible to isolate the most
highly contaminated data and focus further analysis on the more
reliable data subsets.

We began by assessing modeling errors to insure that we had
done an adequate job of discretizing the problem. This was done
using mesh validation tests (Refer to the discussion of mesh design
in Section 3) and an analysis of electrode location errors (See
Appendix A). Results showed no correlation between estimated
modelling errors and high misfit data.

Using cross-plots, repeat/reciprocal measurements, SVD analy-
sis, and boxplots we checked for sources of correlated electrical
noise. Some sources of correlated electrical noise might include:
electrode polarization effects, high contact resistance of particu-
lar electrodes, electrical noise from infrastructure, current leakages
within the multi-channel switch cables or connectors, and other
instrument related malfunctions or calibration issues. Cross-plots of
different survey parameters are often useful in identifying unusual
correlations between certain survey parameters and high misfit
data. Some useful parameters to plot include: potential differences
between M and N Rx electrodes (VMN), potential differences across A
and B TX electrodes (VAB), injected currents (I), TX powers (PAB), TX
resistances (RAB), apparent resistivities (qa), electrode Ids, electrode
separation distances, and timing variables. Determining which plots
are the most meaningful for a particular dataset will require some
experimentation.
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Fig. 6. These histograms show the distribution of normalized data residuals (r̃) for all 7,109 repeat/reciprocal pairs identified in the dataset. (a) shows the total number of
repeat/reciprocal pairs in each r̃ bin while (b) shows them as a percentage of the total number of repeat or reciprocal measurement pairs. For both repeat and reciprocal data
approximately 15 − 20% of the pairs have r̃ > 15.
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For example, electrode polarization effects can often be charac-
terized by calculating electrode rest times, which provide a measure
of how long charge accumulations near the potential electrodes
have been given to dissipate after having been used as a current
electrode. To avoid electrode polarization errors, current electrodes
need to be given a sufficiently long rest time for the polariza-
tion to decay before reoccupying them as potential electrodes
(Dahlin, 2000; Merriam, 2005; Wilkinson et al., 2012). Any cor-
relation between short electrode rest times and high data misfits
should raise concerns about electrode polarization errors. Since no
correlation of this type is observed in the field data electrode polar-
ization effects are not believed to be a primary source of electrical
noise.

If available, repeat and reciprocal measurements should be ana-
lyzed to identify inconsistent measurements and provide a general
assessment of noise levels. To quantify the consistency of each
repeat/reciprocal pair the normalized data residual (r̃), which is
the data difference divided by the sum of the uncertainties (See
Appendix B), was computed. Fig. 6 shows the distribution of normal-
ized data residuals for all of the identified repeat/reciprocal pairs.
While about half of the pairs have r̃ ≤ 1, many of the pairs have r̃ as
large as 20. Here both repeat and reciprocal data show similar noise
levels. These large r̃ indicate the presence of a pervasive noise source.

A consistent repeat/reciprocal dataset is produced by removing the
inconsistent data which have r̃ > 1.

After inverting the consistent repeat/reciprocal data subset high
normalized data misfits persisted. This indicates that although the
repeat/reciprocal pairs may be precise or self-consistent this does
not insure that the pairs are accurate or consistent with one another.
Careful analysis of the consistent repeat/reciprocal data showed gen-
eral correlations between survey parameters such as high VMN, low
I, low PAB, and high data misfits. However, selecting cutoffs for these
parameters by which we can confidently separate the highly contam-
inated data from usable data is challenging and quite subjective.

To identify the presence of electrical noise due to instrumentation
problems or infrastructure more rigorous statistical analysis is often
useful. Two valuable tools for this type of analysis include the SVD
analysis of indicator matrices (which identify those electrodes or
cables utilized by each measurement) and boxplots which show the
distribution of normalized data misfits associated with each electrode.

In the SVD analysis a binary indicator matrix is created which
contains information about which electrodes were used for each
measurement or other characteristics about the survey geometry.
A data misfit criterion is selected and the data is lumped into high
and low misfit categories. SVD analysis is then performed on the
indicator matrices of the high and low misfit data independently.
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(b) SVD Electrode Analysis: Low Misfit Data
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(c) SVD Cable Analysis: High Misfit Data
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(d) SVD Cable Analysis: Low Misfit Data

Fig. 7. Panels (a) and (b) show the singular vectors from the SVD factorization of the high and low data misfit indicator matrices, from the electrode SVD analysis while (c) and
(d) show the singular vectors from the cable SVD analysis. In both tests that first singular value is considerably larger that the remaining singular values. The results of these tests
show that electrodes 1–60, connected with Cable 1, are more often associated with high misfit data than electrodes 61–120 or Cable 2.
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The SVD factorization decomposes the indicator matrix into a series
of linearly independent basis vectors, known as singular vectors, and
singular values. The magnitude of the singular values indicate the
relative importance of each singular vector in being able to recon-
struct the original matrix. If the SVD of the indicator matrix has a
few large singular values then the corresponding right singular vec-
tor is representative of a consistent pattern which was identified in
the indicator matrix. In this way the first few singular vectors can
often be used to identify patterns within the high and low misfit
portions of the dataset.

For the first SVD analysis test, a number of data by number of
electrodes indicator matrix was formed, with a 1 entry in any ele-
ment where the ith measurement utilized the jth electrode. In this
way each row of the indicator matrix sums to 4 since dipole–dipole
measurements were collected. Based upon the distribution of data
misfit values shown in Fig. 4 (a) a misfit level of 15 was selected to
split the high and low misfit data into two separate indicator matri-
ces. SVD analysis was performed on each matrix. Several additional
trials were run using normalized misfit cut-offs of 5 and 10 along
with a trial which used separate high and low misfit cut-offs of 15
and 2 respectively. Comparable results were produced with each of
the tested misfit cut-offs. The results of this analysis (see Fig. 7 (a)
and (b)) show that electrodes 1–60 were more often associated with
high misfit data and electrodes 61–120 with low misfit data. This
indicates that there may be problems associated with Cable 1 which
connects electrodes 1–60.

Another indicator matrix was then made to look for correlations
between data misfits and pairs of electrodes on the same cable. The
same misfit level of 15 was used to differentiate between high and
low data misfits. The results shown in Fig. 7 (c) and (d) provide more
evidence of a strong correlation between Cable 1 and high misfit
data.

Although it is possible to construct many other types of indicator
matrices, these proved the most useful for this specific dataset. For
other datasets, experimentation with different indicator matrices may
prove useful. Having identified a potential problem within the switch
cables or connection boxes which link electrodes 1–60 to the central
control box we proceed to a boxplot analysis of misfit distributions
for each electrode to see what additional information can be derived.

Each column of the boxplot shows the distribution of misfits asso-
ciated with data using the specified electrode as an A, B, M, or N
electrode. Only the distribution of misfits associated with the M elec-
trode IDs are shown in Fig. 8. Here the first column of Fig. 8 (a) shows
the distribution of all misfits associated with data which use elec-
trode 1 as their M electrode. Since electrode noise levels may differ
depending on whether an electrode is used as a current electrode
or a potential electrode, similar boxplot graphs should also be made
for A, B, and N electrode IDs. For all of the boxplots presented in the
paper, the median is used to mark the midpoint of the distribution,
the edges of the box correspond with the 25th and 75th percentiles,
and the whiskers extend to the most extreme data within 2.7 stan-
dard deviations. Data points which fall outside of the whiskers are
considered outliers and are plotted using a red +.

When we analyze the full dataset using these boxplot graphs (see
Fig. 8 (a)) there is a distinct difference in the noise levels associated
with electrodes 1–60 and 61–120. The fact that this dichotomy corre-
lates perfectly with the separation between Cables 1 and 2 provides
strong evidence suggesting that our data is highly contaminated by
electrical noise associated with current leakages.

By separating the data into subsets based on which cable the TX
dipole and RX dipole are on we produce plots in Fig. 8 (b)–(j) which
prove that current leakages between the TX lines and RX lines are
the primary source of noise within the data. This is most clearly
illustrated by the low median misfit values attained when the TX and
RX electrodes are on separate cables (see plots in Fig. 8 (d) and (e))
compared to the uniformly high median misfits observed when the
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(b) ABMN-Cable 1
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(c) ABMN-Cable 2
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(d) AB-Cable 1, MN-Cable 2
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(e) AB-Cable 2, MN-Cable 1
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(f) AB-Cable 1, MN-Mixed
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(g) AB-Cable 2, MN-Mixed

10 20 30 40 50 60 70 80 90 100 110 120

N
or

m
al

iz
ed

 D
at

a 
M

is
fit

0

5

10

15

20

25

30

35

40

(h) AB-Mixed, MN-Cable 1
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(i) AB-Mixed, MN-Cable 2
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(j) AB-Mixed, MN-Mixed

Fig. 8. A series of boxplot diagrams which show the distribution of the normalized
data misfits associated with each electrode when it is used as an M potential electrode.
These plots clearly show that current leakages in the switch cables or connection boxes
which link the electrodes to the central control box are the primary source of noise in
this dataset. The current leakages are more severe in Cable 1 which connects electrodes
1–60 than in Cable 2 which connects electrodes 61–120.

TX and RX electrodes are both on the same cable (see plots in Fig. 8
(b) and (c)). Plots in Fig. 8 (b) and (c) also show that the current
leakages within Cable 1 are more severe than those in Cable 2. This
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Fig. 9. A series of boxplots which show the distribution of various data parameters in
each of the cable based subsets. From these distributions it is possible to roughly charac-
terize the signature of those data which are most contaminated by current leakages.

Table 1
Relative differences between the survey parameters associated with the suspicious
electrodes 15 and 113 when compared with the remainder of the data where the TX
and RX electrodes are on separate cables.

Electrode 15 Electrode 113

VAB Moderate Very high (maxed)
I Low Very low
VMN High Moderate
Data misfit High High
PAB Low Very low
RAB Moderate Very high
qa High High

claim is further supported by the fact that the data is most highly
contaminated when at least one of the TX and RX electrodes are on
Cable 1 (see plots in Fig. 8 (h) and (i)). These findings support the
general results of the SVD analysis, but more clearly show the scope
of the problem.

As shown in Fig. 9 those data which appear most contaminated
by current leakages are characterized by:

• low TX voltage (VAB)
• low injection current (I)
• high potential difference (VMN)
• low TX power (PAB)
• slightly low TX resistances (RAB)
• high apparent resistivity (qa)

Current leakages can produce elevated VMN measurements since
any type of deficiency in the cable insulation or electrical shorts
between pins in the connection boxes can cause other electrodes
to behave like additional sources (both current sources and current
sinks). If these unaccounted for sources are closer to the M and N
potential electrodes than the A or B current electrodes it can produce
a sizable increase in measured potential differences.

The low PAB, VAB, and I associated with many of the measurements
are directly linked to the high VMN measurements since the Syscal
Pro modulates the TX voltage (VAB), and therefore the TX power,
PAB = VABI, to maintain a “constant” measured potential difference

Fig. 10. General cluster analysis workflow.
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Fig. 11. Detailed workflow for Stage II.

between the M and N electrodes (VMN) of 50 mV. If the test VMN mea-
surements are too large then VAB is decreased which also decreases
the injection current (I) since the resistance (RAB) of the earth and
instrument system is fixed for a particular TX (Ohm’s Law: VAB =
IRAB). Decreasing both VAB and I decreases the TX power (PAB = IVAB).
The elevated qa values are also a result of the high VMN and low I
measurements as shown by the following equation,

qa ≈ VMN

I
4p

[
1

AM
− 1

BM
− 1

AN
+

1

BN

]−1

=
VMN

IG
(4)

where G is the geometric factor.

From this analysis it is possible to determine which of the
cable based subsets are the most contaminated by current leak-
ages. Further analysis can then be focused on the less contaminated
subsets with the hope of isolating noisy measurements to create
a reliable data subset for inversion and interpretation. Those cable
based subsets which warrant further analysis include: (1) AB-Cable1,
MN-Cable2, (2) AB-Cable2, MN-Cable1, (3) ABMN-Cable2, and
(4) AB-Mixed, MN-Cable2.

By looking at the least contaminated data, those in which the TX
and RX electrodes are on separate cables, troublesome electrodes
such as electrodes 15 and 113 are easy to identify due to their com-
paratively high median misfits (see plots in Fig. 8 (d) and (e)). These
troublesome electrodes are not as easy to identify using SVD analysis
on the cable based subsets. While the first few singular vectors from
the high misfit data show peaks at electrode 15 and 113 there are a
number of other peaks which complicate the interpretation.

Further analyzing the distribution of measured survey parame-
ters using boxplots, similar to those in Fig. 9, it is possible to make
basic deductions regarding the source of contaminating noise for
each troublesome electrode. Table 1, summarizes the differences in
observed parameters for the two troublesome electrodes. Electrode
113 appears to have a very high contact resistance which makes it
difficult to push a sizable current, when the electrode is used as an
A or B current electrode. This results in a low transmitter power
and low VMN potential differences. Identifying the source of noise
impacting those data which incorporate electrode 15 is not as sim-
ple. Although it is possible that electrode 15 is one of the primary
sources of the current leakages it is hard to prove this since there
is not a strong correlation between high misfit data and those data
with at least one electrode in close proximity to electrode 15. Due
to the clearly inconsistent nature of data associated with electrodes
15 and 113 we removed these data from the inversion dataset.
Although electrode 40 also has a comparatively high median mis-
fit when it is used as an M electrode in the full dataset (Fig. 8 (a))
it is not correlated with high normalized misfits in the less con-
taminated data subsets. This indicates that the observed correlation
between electrode 40 and high normalized misfits in Fig. 8 (a) is
likely due to the current leakages, or some factor other than the
electrode itself.
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Fig. 12. Plots showing the distribution of data clustering results, from the AB-Mixed, MN-Cable2 subset, in two different variable spaces. Analyzing the visual distribution of the
clusters can be useful for identifying patterns and characterizing clusters which contain suspicious data. Clusters are easiest to differentiate in the web version of this article which
appears in color.
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Identifying electrical noise from infrastructure may also be pos-
sible using this approach. If the contaminating noise is isolated to
a specific electrode or group of electrodes in the same region they
can be identified. Different types of infrastructure will undoubtedly
bias measurements in different ways. Since the signature of infras-
tructure based noise may be difficult to theoretically characterize it
is important to have detailed field notes which describe the location
of all possible infrastructural noise sources. We do not believe that
electrode 15 is impacted by infrastructural noise since it is located in
a region with very little infrastructure.

Through our manual search we have identified current leakages
within the cables and/or connecting boxes as the primary source of
electrical noise in our survey. Current leakages are more prevalent
within Cable 1 than Cable 2, but both cables are affected. In addition
to the current leakages 2 troublesome electrodes have been iden-
tified which are consistently associated with high misfit data. As a
result of the magnitude and extent of the contamination some sub-
sets of the data will simply be discarded while others warrant further
analysis. For this we proceed into Stage II, where data clustering is
utilized to identify and separate out highly contaminated data from
the remaining data subsets to attain a reliable dataset for the final
inversion and interpretation.

4.2. Stage II: cluster analysis

Although we have identified several sources of noise and removed
some of the most heavily contaminated data the remaining data sub-
sets still require extensive data QC analysis to help remove lingering
effects of the current leakages and possibly other secondary noise
sources. Accurately identifying and dealing with these contaminated
data is a challenging problem since the characteristic patterns may
be obscured by the presence of pattern overprinting from multiple
noise sources.

To remove some of the subjectivity from the search for cor-
relations between survey parameters and high misfit data, cluster
analysis as detailed in Fig. 10 is employed. Our cluster analysis is
based on the k-Means data clustering algorithm (MacQueen, 1967).
Based on the parameters provided for each data point, the k-Means
algorithm partitions the data into a predefined number of clusters.
To start, each cluster is randomly assigned a data point. New points
are then iteratively added to the cluster with the nearest centroid,
and the cluster means are recomputed to account for the additional
points. This iterative process continues until there are no reassign-
ments of data to different clusters or the decrease in the squared
error is small. Jain et al. (1999) provide a good review of k-Means data
clustering as well as other clustering algorithms. A complete outline
of Stage II shown in Fig. 11.

The first step is to decide which data parameters to use in the
clustering. After multiple trials, a simple clustering based on VMN, VAB,
I, and the normalized data misfit from the inversion iteration where
0d begins to plateau was chosen. Depending on the application and
type of noise present, other parameters may also prove useful for
clustering. Before clustering, the data need to be normalized so that
each of the parameters are on the same general scale. Since the dis-
tribution of parameters is not normally distributed, the following
normalizations were tested: z-score normalization and dividing by
the l2 or l1 norm of the data. Although the observed differences in the
resulting clustering were very small the l2 normalization was chosen
since the clusters appeared to be slightly tighter.

Choosing the optimal number of clusters is a topic of interest
in machine learning. One approach for determining the number of
clusters is the L-curve method. In this method the number of clusters
is determined by the corner point in a plot of a cluster evaluation
metric versus the number of clusters specified (Salvador and Chan,
2004). Trials were run with 2–12 clusters on multiple subsets of
the data and the Akaike and Bayesian information criterions (AIC
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Fig. 13. Boxplots showing the distribution of survey parameters in each cluster from
the the AB-Mixed, MN-Cable2 subset. High normalized misfits and the characteristic
signatures of noise sources identified in Stage I allow us to identify contaminated
clusters.
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Fig. 14. Hypothetical cluster tree diagram showing the verified clusters with a check
and the discarded clusters with a X. Each color denotes a cluster and its possible sub-
clusters.

and BIC respectively) were computed for each clustering. These cri-
terion provide a general measure of how well the data are clustered
while enforcing a penalty for each additional cluster. Plots of these
information criterions versus the number of clusters suggest that
the corner point typically falls between 4–6 clusters. For the sake
of efficiency all subsequent clustering analysis was done using 6
clusters. Although not all of the tested subsets required 6 clusters
to characterize the data, for this application it is better to have 1–2
extra clusters than too few.

An example of the data clustering is presented here using the AB-
Mixed, MN-Cable2 data subset. Fig. 12 shows the distribution of the
clusters in different parameter spaces. Boxplots showing the distri-
bution of survey parameters associated with each cluster are shown
in Fig. 13. Together these plots allow us to identify clusters contain-
ing inconsistent or highly noise-contaminated data, and search for
correlations which provide clues as to the source of the contami-
nating noise. The boxplots show that clusters 4–6 have many of the
traits which characterized the data which were highly contaminated
by current leakages in Stage I (i.e. high VMN, high qa, high normalized
data misfits, and lower PAB).

Fig. 15. Detailed workflow for Stage III.

Table 2
Data subset sizes.

Data subset # Data (Pre-QC) # Data (Post-QC) % Discarded

AB-Cable1, MN-Cable2 8183 6335 22.6%
AB-Cable2, MN-Cable1 9485 7584 20.0%
ABMN-Cable2 10,997 6775 38.4%
AB-Mixed, MN-Cable2 22,134 4703 78.8%
Full Dataset 95,194 25,397 73.3%

After clustering the data, each of the clusters are then inverted
independently. If the inversion of an individual cluster converges
easily to the target misfit then the data within that cluster is deemed
self-consistent and the cluster is set aside for recombination in Stage
III. For clusters with moderately large normalized misfits we iter-
ate the data clustering process by further clustering the data within
that cluster. In this way we are further subdividing the data to look
at clusters of clusters. Through this process a tree of clusters is cre-
ated (see Fig. 14). Clusters, such as clusters 4–6 from the AB-Mixed,
MN-Cable2 data subset shown above, with very high normalized
misfits, are deemed to be inconsistent and are either discarded or
their uncertainties are adjusted. Boxplots like those in Fig. 14 are
used to visualize the distribution of parameters within each cluster
and identify the signature of possible noise sources. This process con-
tinues until all of the clusters associated with a particular data subset
have been analyzed.

By breaking the data up into subsets and then clustering the sub-
sets we increase the number of inversions which need to be run in
order to verify the self-consistency of the data in each of these group-
ings. However, each of these inversions becomes a smaller problem
to solve. This process is easily parallelized, since each cluster and
each subset is analyzed independently at this stage.

It is important to stress that at this stage we are only checking
the self-consistency of data in each cluster. There is a danger that
inversions of small clusters may be able to easily fit the data due to a
lack of data to constrain various parts of the model space. However,
any contaminated or inconsistent data which slip through Stage II in
this manner will be caught and dealt with in the following stages as

Fig. 16. Detailed workflow for Stage IV.
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we build the dataset back up and check for inter-cluster and inter-
subset consistency. Once all of the data subsets which passed Stage I,
have completed Stage II we proceed to Stage III.

4.3. Stage III: recombine verified clusters from each subset

In Stage III all of those clusters from a given subset, which were
verified in Stage II (i.e. checked clusters in Fig. 14) are recombined
and then re-inverted (see Fig. 15 for an outline). If high misfit issues
persist then cluster analysis is iteratively performed on the recom-
bined subset until any inter-cluster inconsistencies (i.e. data which
may have been consistent with other data in their cluster, but are not
consistent with data in other clusters) are dealt with. Since most of
the contaminated data has been dealt with in the first two stages this
second round of cluster analysis should proceed quickly. By putting
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Fig. 17. Depth sections from the initial inversion model (panel (a)) where the full
dataset was used, and the post-QC inversion model (panel (b)). While many of the con-
ductive anomalies in the initial inversion model bleed together to form a large diffuse
region of high conductivity the post-QC inversion model contains 6 notable conduc-
tive anomalies (refer to the text for a full interpretation). In this figure the thin black
lines through the central portion of the model mark the outline of a former tunnel
which was sealed off to stem the inflow of water, and the ⊕ symbols mark possible
locations where water may be seeping down into the salt from the aquifer above.

each subset through this recombining process separately we keep
the size of the datasets small so that the analysis and inversions can
be completed quickly. Comparing the recovered inversion models
from each data subset can be useful since it provides insight into how
well different portions of the model are constrained by the data in
each subset.

If only one subset of data came out of Stage I then the data qual-
ity control process is completed here in Stage III and the recombined
subset should contain reliable data from which a final inversion
model can be obtained. If multiple subsets of data came out of
Stage I then proceed to Stage IV where the consistent subsets are
recombined into a single dataset.

Table 2 shows the sizes of the data subsets, which were selected
for further analysis in Stage I, both before any data were removed and
after Stage III of the data QC process was completed. From this table
it is evident that each subset was affected by the current leakages
and other possible noise sources to different degrees.

4.4. Stage IV: recombine verified subsets

In this final stage of the data QC process we recombine the various
subsets, which where checked in Stage III, to form a single dataset
which can be inverted to obtain a final inversion model. Fig. 16 shows
an outline of this process. First, all of the data subsets are combined
and re-inverted. If the inversion algorithm struggles to adequately
fit the data then a final round of cluster analysis is warranted. As
in Stage III the cluster analysis is iteratively applied to the recom-
bined dataset. Since the self-consistency of each subset was verified
in Stage III, we are now trying to identify inter-subset inconsisten-
cies. For the Mosaic field dataset presented here, additional cluster
analysis was not necessary at this stage. However, depending on the
dataset and the noise sources present, some troublesome data may
remain. These inconsistent clusters may need to be thrown out, or
their uncertainties may need to be adjusted. The final line of Table 2
compares the original size of the full dataset with that of the final
dataset from the data QC process. Due to the highly contaminated
nature of this dataset only 27% of the data were retained.

Through this data QC process, we are able to identify and deal
with noise-contaminated data to produce a reduced dataset that con-
tains only those data which have proven themselves to be consistent
and reliable. By working with the various subsets of the data we
have also had the chance to refine our assigned uncertainties to bet-
ter balance the data misfit among clusters or subsets with different
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shown in Fig. 17. Higher resolution areas are focused around electrodes 61–120 which
are connected with Cable 2. In the z-direction, only a small decrease in resolution
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structures within this region are constrained by the data.

noise levels. Using this dataset and our refined uncertainty estimates,
it is now possible to begin the formal inversion process to attain a
conductivity model that can be interpreted with a higher degree of
confidence.

5. Case study results

When you compare the inversion results from the full dataset
(Fig. 17 (a)) with the inversion model obtained after the data qual-
ity control process (Fig. 17 (b)) there are large scale similarities.
However, it is easier to interpret the post-QC model. In the initial
inversion, most of the anomalies in the central region bleed together
to form a generally more conductive region and it is difficult to iden-
tify individual anomalies. In the post-QC model there are 6 notable
conductive anomalies which have been labeled as A–F in Fig. 17 (b).
The location of many of these anomalies correlate well with those

regions where moisture was observed in the mine. Since the post-QC
model does a much better job of fitting the observed data (see Fig. 18)
it can be interpreted with a higher degree of confidence.

Anomaly A closely follows the location of old mine workings,
whose location is marked by the black lines in Fig. 17 (b), to the north
west where it passes over the current mine working and connects
with Anomaly D. This old section of tunnel was grouted off (sealed
with concrete) at its southern end due to flooding. These inversion
results indicate that this old section of tunnel still contains a sub-
stantial amount of brine. Anomalies E and F extend downward from
the level of the mine workings. In both of these regions there were
large quantities of standing water. The ⊕ symbols mark the loca-
tion of conductive structures in the recovered model which extend
upwards towards the Second Red Bed. In these localities we believe
that water is seeping down into the salt from the overlying aquifer
to form conductive anomalies A and B. It is possible that the water,
in conductive zones A and B, then flows through old mine workings
or dissolution conduits to the region around anomalies D–F where it
accumulates and slowly seeps downwards.

In the southern portion of the survey region there is another con-
ductive region, anomaly C, which extends upwards. This is another
region where water may be seeping into the mine from the aquifer
above. Although there is also evidence of seepage into the mine
workings at the far western end of this main tunnel, there is little evi-
dence of this in the recovered conductivity model. Since this region
is on the edge of our electrode array we may lack the resolution to
resolve this target.

When interpreting these model results we need to be mindful
of model resolution limitations which result from most of the elec-
trodes being located along a single depth plane. Throughout the main
tunnels there is 5 m of variation in the elevation of electrodes. Off to
the southeast 3 electrodes were also placed in a raise, approximately
20 m higher than the main tunnel level. This variation in the eleva-
tion of electrodes helps provide some resolution in the z-direction.
However, there is still a danger of the inversion mis-locating con-
ductive anomalies due to the distribution of sensitivities. Conductive
bodies above or below the mine level could potentially result in arti-
facts along the plane of higher sensitivities at the main tunnel level.
Alternatively, model structures could also be pushed or smeared out-
wards into portions for the model which are poorly constrained by
the data.

To quantify the resolution of our model we used a probing tech-
nique, studied by Bekas et al. (2007), to estimate the diagonal of the
model resolution matrix (diag(R) ≈ diag(JTJ), where R and J are the
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Fig. 20. A baseline synthetic study which shows how well the inversion is able to recover the conductive block under normal noise conditions, in which 5% Gaussian noise was
add to the forward modeled data. Both panels show depth slices through the model, which cut through the center of the tunnels and conductive block.
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Fig. 21. Inversion results from the bad electrodes trial. The panels show the progression of the recovered model at different stages of the data QC process. Although good results
are attained by removing all measurements associated with electrodes 5 and 24, clustering analysis produces a model which utilizes nearly 8600 more data and better resolves
the shape of the conductive block.

model resolution and sensitivity matrices respectively. Fig. 19 shows
the approximate model resolution for the same depth slice shown
in Fig. 17. Model resolution is highest near electrodes 61–120 on
Cable 2 since there are fewer data associated with Cable 1 in the
post-QC dataset due to the larger current leakage problems. Only
slight reductions in model resolution are observed out to a distance
of 10 m above or below the main tunnel level. These results improve
our confidence in the recovered model since all of the interpreted
anomalies fall within this 10 m zone above or below the main tunnel
level.

6. Synthetic testing

To further test the applicability of our data QC methodology we
tested it on a synthetic example in which three different types of
contaminating noise were added. The synthetic model consists of a
10 m × 10 m × 20 m long conductive block (sBlock = 10 S/m) which
is vertically centered in the central region between two legs of an
asymmetric tunnel (see Fig. 20 (a)). The tunnels measure 3 m × 3 m
in cross section. Both the tunnels and conductive block are hosted
in a 1 e−4 S/m full-space. As in the field example the electrodes
are placed every 5 m along the interior walls of the tunnels. The
electrodes are numbered 1 through 26 starting in the south-west
and proceeding clockwise around the tunnel. A non-conventional
dipole-dipole dataset, incorporating all possible dipole-dipole mea-
surements without reciprocals, was forward modeled and 5%
Gaussian noise was added. The inversion results of this relatively

uncontaminated dataset are shown in Fig. 20 (b). Under these nor-
mal noise conditions the inversion is able to fit the data and recover
the location of the conductive block.

 Iteration #

2 4 6 8 10 12 14

N
o
r
m

a
li
z
e
d
 D

a
ta

 M
is

fi
t

10
0

10
1

10
2

10
3

10
4

Full

No electrode 5 or 24

Clustering (Stage III, Round I)

Clustering (Final)

Fig. 22. This graph shows normalized data misfit curves for inversion results of the
synthetic bad electrodes trial. While the inversion struggles to fit the full dataset the
data QC methodology dramatically reduces the misfit so that misfits reach target levels
for the subset in which all data associated with electrodes 5 and 24 were removed and
the final dataset derived using clustering analysis.



178 M. Mitchell, D. Oldenburg / Journal of Applied Geophysics 135 (2016) 163–182

Table 3
Dataset sizes for the bad electrodes trial.

Bad electrodes dataset # Data % Discarded

Full 44,850 0%
No electrode 5 or 24 31,878 28.9%
Clustering (Stage III) 41,206 8.1%
Clustering (Final) 40,462 9.8%

To evaluate the data QC methodology’s ability to deal with some
of the types of noise present in the field dataset, synthetic trials were
set up to simulate the contaminating effects of a few troublesome
electrodes, current leakages due to damaged cables or connection
boxes, and the effects of infrastructure such as large steel pipes
which are hung from the tunnel walls. Statistical measures of the
noise present in the field dataset were used to contaminate the syn-
thetic data. Estimations of the noise in the field data were made
by computing the percent difference between normalized potentials
(dobs = VMN/I) from the full field dataset and the forward mod-
eled data from the final post-QC inversion result (dpred). Subsets of
the data were then analyzed to determine the distribution of per-
cent differences in each subset. A best fitting Student-t location-scale
probability distribution was fit to each distribution of percent differ-
ences. These probability distributions were then randomly sampled
to create noise models for the synthetic data.

6.1. Bad electrodes trial

For the bad electrodes trial, characteristic noise models derived
from the best fitting probability distribution for electrodes 15 and
113 in the field dataset were added to data associated with elec-
trodes 5 and 24 in the synthetic dataset. The contaminated dataset
was then put through the data QC process outlined above. In Stage
I, it is possible to identify electrodes 5 and 24 as troublesome elec-
trodes using both SVD analysis and boxplots similar to the one shown
in Fig. 8 (a). If all of the data associated with electrodes 5 and 24
are removed, the inversion is able to easily fit the remaining data.
For comparison the full dataset was passed to Stage II where the
clustering analysis was performed. After only 2 rounds of Stage III
clustering the data QC process was completed. Fig. 21 shows a com-
parison of the inversion models derived using the full bad electrode
dataset, the dataset without any measurements from electrodes 5
or 24, the dataset after one round of cluster analysis, and the final
post-QC dataset.

The normalized misfit curves for each inversion are shown in
Fig. 22, and Table 3 lists the number of data used in each inver-
sion. Although removing all of the data from the two troublesome
electrodes allows the inversion to reach the target misfit this may
be unnecessary. The results of the cluster analysis indicate that
only about one third of the measurements associated with these
electrodes were so contaminated with noise that they warranted
discarding. By retaining an additional 8584 measurements the final
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Fig. 23. These figures show the incremental improvements in the recovered model after each round of clustering analysis for the highly noise-contaminated data in the bad
cable trial. As the highly contaminated or inconsistent data are filtered out or the uncertainties are adjusted the location of the conductive anomaly shifts closer to the true
location of the conductive block and many of the small scale artifacts disappear.
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dataset from the clustering data QC process does a better job of
resolving the shape of the conductive block.

If all of the data associated with a specific electrode are believed
to be highly contaminated by a particular noise source it is best to
discard all of the data. However, the measurements may only be
highly contaminated when a specific electrode is used as a Tx elec-
trode, a Rx electrode, or when used in a specific configuration with
other electrodes. In these types of situations, cluster analysis is an
effective tool for discriminating between highly contaminated and
usable data.

6.2. Bad cable trial

For the bad cable trial, noise based on the distributions observed
in each of the cable split categories of the field data were added to the
synthetic data in each corresponding category. The data QC method-
ology was then applied to the synthetic dataset in the same manner
as the field dataset. Three rounds of Stage III clustering were required
to obtain a final quality controlled dataset due to the very high levels
of noise added to the data. The panels in Fig. 23 show a progression
through each of these rounds of clustering.

In this trial there are radical changes in the recovered model from
the initial inversion of the full dataset (Fig. 23 panel (a)) to the final
post-QC inversion (Fig. 23 panel (d)). In the recovered model from
the full dataset (Fig. 23 panel (a)) conductive material is concen-
trated along the western and northern sections of the tunnel. After
the first round of Stage IV clustering, the conductive anomaly has
shifted towards the central region between the tunnels but lies to
the south of the true location of the conductive block. Small spacial
scale positive and negative amplitude artifacts abound around elec-
trode locations on the interior walls of the tunnel. In the final round
of Stage IV clustering, the main conductive anomaly shifts northward
towards the true location of the conductive block and artifacts are
minimized.

The normalized data misfit curves in Fig. 24 show that the initial
inversion really struggled to fit the data because it was so severely
contaminated. Although extensive testing was conducted to adjust
the uncertainties of problematic clusters, nearly 85% of the data
were excluded from the final inversion (refer to Table 4). Despite
the severity of the contamination the post-QC recovered model does
a reasonably good job of recovering the location of the conductive
block. The smearing out of the conductive anomaly to the west is
likely due to a lack of sufficient data to constrain this portion of the
model since so much of the data had to be discarded.

6.3. Simulated infrastructure trial

In the simulated infrastructure trial, a single cell thick conduc-
tive structure was added to the inside wall of the tunnel to simulate
the presence of a large pipe or other infrastructure. This pipe-like
structure runs along the eastern leg of the tunnel between elec-
trode 16 and 20 (see Fig. 25 (a)). A relative conductivity of about
2.2 × 105 S/m was assigned, which approximates the existence of a
steel cylinder with a radius of 10 cm within the larger 1 m model
cells. Synthetic data was forward modeled using the model with the
“pipe”. By inverting the data without taking the simulated infrastruc-
ture into account we can treat the signal from the thin conductive
structure as a source of contaminating noise.

The results of the simulated infrastructure trial are shown in
Fig. 25. As in the other trials, the inversion struggles to fit the full
dataset and a number of artifacts are introduced into the recovered
model in the vicinity of the pipe-like structure. In Stage I of the data
QC process, boxplots similar to the one shown in Fig. 8 (a) and SVD
analysis was used to search for sources of noise which are associated
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Fig. 24. Normalized data misfit curves, for the bad cable trial, that show the
improvements in data fit with each round of clustering analysis. Due to the very
high noise levels the misfit curves are fairly flat. The inversion of the final clustering
subset is able to reach target misfit after 7 iterations.

with specific electrodes. Measurements using electrodes 16–20 were
found to be consistently associated with higher normalized misfits
than other electrodes. Since these are the electrodes closest to the
conductive “pipe” it seems logical that measurements utilizing these
electrodes would be most impacted. If all of the data associated with
electrodes 16–20 are removed, the inversion is able to easily fit the
remaining data and the recovered model does a reasonably good job
of resolving the conductive block as shown in Fig. 25 panel (c).

When the clustering analysis was carried out on the full dataset,
a final quality controlled dataset was obtained after a single round
of Stage III clustering. The recovered model (see Fig. 25 panel (d))
shows that the clustering analysis only removed those data which
were inconsistent and therefore difficult to fit. It did not completely
remove the influence of the pipe-like conductor since a conductive
anomaly is present between electrodes 16 and 20. If the location of
infrastructure was documented during data acquisition, conductive
anomalies such as this can be correctly attributed to infrastructure.
Although a few small artifacts persist, the location and size of the
conductive block are well resolved.

Normalized data misfit curves are shown in Fig. 26 for each inver-
sion, while the number of data in each dataset is summarized in
Table 5. While there is valuable signal contained in the additional
19,600 data retained in the final clustering dataset, the presence of
infrastructure based anomalies can complicate the interpretation.
This is especially true if the location of infrastructure is unknown
or if conductive targets are in close proximity to the infrastructure.
Care needs to be taken to differentiate the 2 types of anomalies; a
comparison of Fig. 25 (c) and (d) may prove to be a useful tool for
this.

Table 4
Dataset sizes for the bad cable trial.

Bad cable dataset # Data % Discarded

Full 44,850 0%
Clustering (Stage IV, Round I) 13,779 69.3%
Clustering (Stage IV, Round II) 12,285 72.6%
Clustering (Final) 7082 84.2%
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Fig. 25. A series of panels showing the results of the simulated infrastructure trial. While electrodes 16–20, which were closest to the pipe-like structure could be identified and
removed as troublesome electrodes in Stage I of the data QC process clustering analysis leads to the removal of far fewer data. While nearly all evidence of the infrastructure
have been removed from the inversion of the dataset without data from electrodes 16–20 the inversion of the final clustering dataset still prominently shows the location of the
pipe. Trade-offs between improved model resolution due to better data coverage and possible interpretation complications related to infrastructure based anomalies need to be
considered when processing the data.

7. Discussion

The multi-stage data quality control process presented in
Section 4 has been shown to be an effective tool for identifying
and dealing with highly noise-contaminated or inconsistent data. By
incorporating k-means clustering analysis into the data QC method-
ology, we have removed some of the subjectivity from the process.
It is no longer necessary to pick specific parameter based thresholds
to filter out the contaminated data, since the clustering algorithm
groups them together. By studying the characteristics of the different
data clusters, it is possible to identify those clusters which contain
noisy or inconsistent data and deal with them accordingly.

The utility of this methodology is clearly illustrated in our anal-
ysis of the highly contaminated Mosaic field dataset. Despite the
high levels of electrical noise, primarily due to current leakages in
the switch cables and connecting boxes, we were able to select
a reliable subset of the data for inversion. The post-QC recovered
conductivity model (see Fig. 17 (b)) was interpreted to show three
possible locations where water may be entering the mine work-
ings from above. While there is a conductive anomaly in the vicinity
of anomaly E which extends downwards, it is difficult to deter-
mine if this represents water which is seeping downward into the

underlying salt or water that is coming up from below due to over
pressurization of the deeper aquifer. To address concerns related to
model resolution we are currently researching different electrode
array designs, for subterranean environments, to improve resolution
in the z-direction and better constrain the around tunnel location of
targets. Despite the possible resolution limitations, the location of
conductive anomalies in the inversion model correlate well with an
old tunnel, which was sealed off to stem the inflow of water, and
regions were water was observed during data collection. These field
observations greatly increase our confidence in the final inversion
model and our interpretation.

To further test the utility of this data QC methodology three
synthetic trials were conducted (see Section 6). The success of the
synthetic trials improve our confidence in the recovered model from
the field dataset and show that the data QC methodology is an effec-
tive tool for diagnosing and handling a variety of potential noise
sources which may otherwise be difficult to identify in large, non-
conventional DC resistivity datasets. The synthetic trials show that
while the analysis in Stage I is useful for identifying possible noise
sources, discarding too much data at this stage can lead to significant
reductions in model resolution. Clustering analysis offers a more sur-
gical way to deal with noisy or inconsistent data, but is more time
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Fig. 26. Normalized data misfit curves for the simulated infrastructure trial which
show that both the final clustering inversion and the inversion of the dataset with
measurements from electrodes 16–20 removed are able to reach target misfit where
the inversion of the full dataset struggles to fit the signal associated with the pipe-like
conductor.

Table 5
Dataset sizes for the simulated infrastructure trial.

Simulated infrastructure dataset # Data % Discarded

Full 44,850 0%
No electrodes 16–20 17,955 60.0%
Clustering (Stage III) 38,144 15.0%
Clustering (Final) 37,552 16.3%

intensive. Boxplots such as those shown in Fig. 8 are useful tools for
assessing the degree of contamination and determining if additional
analysis is warranted.

While we have demonstrated the utility of this data QC method-
ology, further research which explores the use of different statistical
analysis and clustering techniques holds promise for further refine-
ment. Although this data QC methodology was designed for and
tested using DC resistivity data, it is generalizable and could easily be
adapted to analyze other types of geophysical field data.
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Appendix A. Electrode location errors

A first order estimation of the modeling errors due to uncertain-
ties in electrode locations can be computed by assuming that we are
working in a homogeneous full-space. It is then simple to compute
the impact of perturbations to A, B, M, and N electrodes locations on
the analytic solution of the potential difference. For a dipole–dipole

survey in a full space the analytic solution for the potential difference
is given by the following equation.

VMN =
I

4ps
G =

I
4ps

[
1

AM
− 1

BM
− 1

AN
+

1

BN

]
(A.1)

Where VMN is the potential difference between the M and N
electrode [V], I in the injection current [A], s is the full-space conduc-
tivity [S/m], and G is the geometric factor [m−1] which is a function
of the electrode separation distances AM, BM, AN, and BN [m]. We
define AM =

∥∥�rA − �rM
∥∥

2 where �rA and �rM are the locations of the A
and M electrodes respectively. If the other electrode separation dis-
tances are defined similarly we can express the uncertainty of each
potential difference measurement (dVMN) due to perturbations in �rA,
�rB, �rM and �rN in the following manner.

dVMN =
[
(∇�rA

VMN • d�rA)2 + (∇�rB
VMN • d�rB)2

+(∇�rM
VMN • d�rM)2 + (∇�rN

VMN • d�rN)2
]1/2

(A.2)

Oldenborger et al. (2005) provide a more thorough discussion on
the effects of electrode location errors which account for variations
in conductivity.

Appendix B. Normalized data residual

Two approaches were tested to quantify the difference between
repeat and reciprocal measurements: a percent difference relative to
the mean, and a normalized data residual. The percent difference is
not ideal since small measurements can quite easily have large per-
cent differences while the magnitude of the actual difference is quite
small. For this reason the normalized data residual was chosen to be
the more reliable metric.

Assuming that measurements i and j have been flagged as repeats
or reciprocals then the normalized data residual (r̃) between mea-
surements i and j is defined in the following manner.

r̃ =

∣∣∣dobs(i)
∣∣∣ −

∣∣∣dobs( j)
∣∣∣

n(i) + n( j)
(B.1)

where the observed data dobs = VMN/I and n is the uncertainty
which has been assigned to dobs. The hope is that normalized data
residuals ≤1 are indicative of repeat/reciprocal pairs which have
dobs measurements that are self-consistent given their associated
uncertainties.
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